The Role of Hematological Parameters in Atrial Fibrillation Risk Assessment

Authors

  • Saira Rafaqat Department of Zoology, Lahore College for Women University, Lahore, Pakistan
  • Saima Sharif Department of Zoology, Lahore College for Women University, Lahore, Pakistan
  • Shagufta Naz Department of Zoology, Lahore College for Women University, Lahore, Pakistan
  • Mona Majeed Senior Registrar, Emergency Department, Punjab Institute of Cardiology, Lahore, Pakistan
  • Muhammad Saqib Senior Registrar, Department of Medicine, Sir Ganga Ram Hospital, Lahore, Pakistan
  • Farzana Rashid Department of Zoology, Lahore College for Women University, Lahore, Pakistan
  • Qasim Ali Senior Registrar, Emergency Department, Punjab Institute of Cardiology, Lahore, Pakistan

DOI:

https://doi.org/10.53560/PPASB(60-4)902

Keywords:

Atrial Fibrillation, Haematological Parameters, Relationship, Blood Count, Risk Assessment, Pakistani Population

Abstract

Atrial fibrillation (AF) is an irregular and rapid heartbeat in the heart’s atrial chambers. Conversely, haematological parameters are commonly utilized in clinical settings to evaluate overall health and disease. Our research explored the potential role of haematological parameters in atrial fibrillation within the Pakistani population. In this case-control a total of 400 participants were enrolled from the Punjab Institute of Cardiology, Lahore, Pakistan. The participants were divided into two groups: a control group comprising 200 healthy individuals, and an AF group consisting of 200 individuals diagnosed with atrial fibrillation. Haematological parameters were assessed using an automated hematology analyzer. The AF group had higher levels of white blood cells, red blood cells, and mean corpuscular volume as compared to control group. Conversely, lower levels of haemoglobin, hematocrit, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration and platelets were observed in AF group compared to control group. In conclusion, our research established a significant relationship between haematological parameters and atrial fibrillation in the Pakistani population.

References

L. Macle, J. Cairns, K. Leblanc, T. Tsang, A. Skanes, J.L. Cox, and J.S. Healey. 2016 focused update of the Canadian Cardiovascular Society guidelines for the management of atrial fibrillation. Canadian Journal of Cardiology 32: 1170-1185 (2016).

S.A.H. Sadegh, S.J. Mirhosseini, M. Rezaeisadrabadi, H.R. Dehghan, F. Sedaghat-Hamedani, E. Kayvanpour, A. Popov, and O.J. Liakopoulos. Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interactive Cardiovascular and Thoracic Surgery 18: 646-654 (2014).

L. Mark, G. Dani, R. Vendrey, G. Paragh, and A. Katona. Oral anticoagulant therapy and bleeding events with vitamin K antagonists in patients with atrial fibrillation in a Hungarian county hospital. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 21: 518-525 (2015).

G. Lippi, F. Sanchis-Gomar, and G. Cervellin. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke 16: 217-221 (2021).

I.M.O. Adetifa, P.C. Hill, D.J. Jeffries, D. Jackson‐Sillah, H.B. Ibanga, G. Bah, S. Donkor, T. Corrah, and R.A. Adegbola. Haematological values from a Gambian cohort–possible reference range for a West African population. International Journal of Laboratory Hematology 31: 615-622 (2009).

E.S. Lugada, J. Mermin, F. Kaharuza, E. Ulvestad, W. Were, N. Langeland, B. Asjo, S. Malamba, and R. Downing. Population-based hematologic and immunologic reference values for a healthy Ugandan population. Clinical and Vaccine Immunology 11: 29-34 (2004).

A. Weymann S. Ali-Hasan-Al-Saegh, A. Sabashnikov, A. Popov, S.J. Mirhosseini, T. Liu, and M. Lotfaliani. Prediction of new-onset and recurrent atrial fibrillation by complete blood count tests: a comprehensive systematic review with meta-analysis. Medical Science Monitor Basic Research 23: 179-222 (2017).

D. Wolbrette, G. Naccarelli, A. Curtis, M. Lehmann, and A. Kadish. Gender differences in arrhythmias. Clinical Cardiology: An International Indexed and Peer‐Reviewed Journal for Advances in the Treatment of Cardiovascular Disease 25: 49-56 (2002).

B. Surawicz, and S.R. Parikh. Differences between ventricular repolarization in men and women: description, mechanism and implications. Annals of Noninvasive Electrocardiology 8: 333-340 (2003).

S. Westerman, and N. Wenger. Gender differences in atrial fibrillation: a review of epidemiology, management, and outcomes. Current Cardiology Reviews 15: 136-144 (2019).

M. Rienstra, J.X. Sun, J.W. Magnani, M.F. Sinner, S.A. Lubitz, L.M. Sullivan, P.T. Ellinor, and E.J. Benjamin. White blood cell count and risk of incident atrial fibrillation (from the Framingham Heart Study). The American Journal of Cardiology 109: 533-537 (2012).

T. Yamashita, A. Sekiguchi, Y. Iwasaki, T. Date, K. Sagara, H. Tanabe, H. Suma, H. Sawada, and T. Aizawa. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circulation Journal 74: 262-270 (2010).

M-C. Chen, J.P. Chang, W.H. Liu, C.H. Yang, Y.L. Chen, T.H. Tsai, Y.H. Wang, and K.L. Pan. Increased inflammatory cell infiltration in the atrial myocardium of patients with atrial fibrillation. The American Journal of Cardiology 102: 861-865 (2008).

A. Frustaci, C. Chimenti, F. Bellocci, E. Morgante, M.A. Russo, and A. Maseri. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96: 1180-1184 (1997).

A. Arafa, Y. Kokubo, R. Kashima, M. Teramoto, Y. Sakai, S. Nosaka, K. Shimamoto, H. Kawachi, C. Matsumoto, and K. Kusano. Association Between White Blood Cell Count and Atrial Fibrillation Risk―A Population-Based Prospective Cohort Study. Circulation Journal 87: 41-49 (2022).

Z. Wang, P. Korantzopoulos, L. Roever, and T. Liu. Red blood cell distribution width and atrial fibrillation. Biomarkers in Medicine 14: 1289-1298 (2020).

H.M. Yao, X.L. Wang, X. Peng, S.Y. Chen, X. Wan, W. Zuo, and X. Gan. Increased red blood cell distribution width might predict left ventricular hypertrophy in patients with atrial fibrillation. Medicine 99(37): e22119 (2020).

S.A. Eryd, Y. Borné, O. Melander, M. Persson, J.G. Smith, B. Hedblad, and G. Engström. Red blood cell distribution width is associated with incidence of atrial fibrillation. Journal of Internal Medicine 275: 84-92 (2014).

W.H. Lim, E.K. Choi, K.D. Han, S.R. Lee, M.J. Cha, and S. Oh. Impact of hemoglobin levels and their dynamic changes on the risk of atrial fibrillation: a nationwide population-based study. Scientific Reports 10: 6762 (2020).

T. Katayama, N. Fujiwara, and Y. Tsuruya. Factors contributing to left atrial enlargement in adults with normal left ventricular systolic function. Journal of Cardiology 55: 196-204 (2010).

S. Okuno, T. Ashida, A. Ebihara, T. Sugiyama, and J. Fujii. Distinct increase in hematocrit associated with paroxysm of atrial fibrillation. Japanese Heart Journal 41: 617-621 (2000).

B.K. Shively, E.A. Gelgand, and M.H. Crawford. Regional Left Atrial Stasis During Atrial Fibrillation and Flutter: Determinants and Relation to Stroke. Journal of the American College of Cardiology 27: 1722–1729 (1996).

H. Sohara, S. Amitani, M. Kurose, and K. Miyahara.Atrial fibrillation activates platelets and coagulation in a time-dependent manner: a study in patients with paroxysmal atrial fibrillation. Journal of the American College of Cardiology 29: 106-112 (1997).

N. Takahashi, T. Ashida, J. Kiraku, and J. Fujii. Increase in erythrocyte volume in patients with chronic atrial fibrillation. Japanese Heart Journal 38: 387-391 (1997).

R. Providencia, M.J. Ferreira, L. Gonçalves, A. Faustino, L. Paiva, A. Fernandes, S. Barra, J. Pimenta, and A.M. Leitão-Marques. Mean corpuscular volume and red cell distribution width as predictors of left atrial stasis in patients with non-valvular atrial fibrillation. American Journal of Cardiovascular Disease 3: 91- 102 (2013).

F. Dong, X. Zhang, B. Culver, H.G. Chew Jr, R.O. Kelley, and J. Ren. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clinical Science 109: 277-286 (2005).

J. Park, M.J Cha, Y.J Choi, E. Lee, I. Moon, S. Kwak, S. Kwon, S. Yang , S. Lee , E.K. Choi, and S. Oh. Prognostic efficacy of platelet count in patients with nonvalvular atrial fibrillation. Heart Rhythm 16: 197-203 (2019).

M. Yadav, P. Généreux, G. Giustino, M.V. Madhavan, S.J. Brener, G. Mintz, A. Caixeta, K. Xu, R. Mehran, and G.W. Stone. Effect of baseline thrombocytopenia on ischemic outcomes in patients with acute coronary syndromes who undergo percutaneous coronary intervention. Canadian Journal of Cardiology 32: 226-233 (2016).

S. Kamath, A.D. Blann, B.S.P. Chin, F. Lanza, B. Aleil, J.P. Cazenave, and G.Y.H. Lip. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. European Heart Journal 23: 1788-1795 (2002).

Y. Liu, H. Lv, R. Tan, X. An, X.H. Niu, Y.J. Liu, X. Yang, X. Yin, and Y.L. Xia. Platelets promote Ang II (angiotensin II)-induced atrial fibrillation by releasing TGF-β1 (transforming growth factor-β1) and interacting with fibroblasts. Hypertension 76: 1856-1867 (2020).

Downloads

Published

2023-12-21

How to Cite

Rafaqat, S., Sharif , S., Naz, S., Majeed, M., Saqib, M., Farzana Rashid, & Ali, Q. (2023). The Role of Hematological Parameters in Atrial Fibrillation Risk Assessment. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 60(4), 635–641. https://doi.org/10.53560/PPASB(60-4)902

Issue

Section

Research Articles

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.