Improving Soil Quality and Yield of Intercropping-System Crops in a Dry Land Area through Plant Growth Promoting Rhizobacteria Application Frequency

Authors

  • Ida Ekawati Wiraraja University, Sumenep 69451, East Java, Indonesia
  • Henny Diana Wati Wiraraja University, Sumenep 69451, East Java, Indonesia
  • Maharani Pertiwi Koentjoro Graduate School of Brawijaya University, Malang 65145, East Java, Indonesia
  • Herni Sudarwati Graduate School of Brawijaya University, Malang 65145, East Java, Indonesia
  • Praptiningsih Gamawati Adinurani Merdeka University of Madiun, Madiun 63133. East Java, Indonesia
  • Roy Hendroko Setyobudi University of Muhammadiyah Malang, Malang 65145, East Java, Indonesia
  • Rizal Andi Syabana Wiraraja University, Sumenep 69451, East Java, Indonesia
  • Rusli Tonda University of Muhammadiyah Malang, Malang 65145, East Java, Indonesia
  • Shazma Anwar The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan

DOI:

https://doi.org/10.53560/PPASB(61-2)925

Keywords:

Arid Land, Bio Fertilizer, Environment-Friendly Technology, Mixed Farming, Multiple Cropping Practice, Sustainability Food Production

Abstract

The future of agriculture is prone to choose technology that can enhance the quality of the resources to support the sustainability of food production. Plant Growth Promoting Rhizobacteria (PGPR) is a reliable technology for future agriculture as it is environment-friendly, and able to optimize resource utilization and decrease external input. This research aimed to analyze the effect of PGPR (Pseudomonas fluorescens + Bacillus polymyxa) application frequency on chemical soil properties, a yield of an intercropping system in dry land, the in-between correlation of the parameters, and to determine the best PGPR application frequency. Randomized Complete Block Design (RCBD) was used in this research to put the treatment in the experimental unit properly. The treatments consisted of i) one-time application of PGPR at the planting time, ii) twice application of PGPR at the planting time and 15 Days After Planting (DAP), iii) three times application of PGPR at the planting time, 15 DAP and 30 DAP, iv) without application of PGPR as control. The results showed that PGPR application frequency improved chemical soil properties, yield, and total by-products as livestock feed. The activity of soil enzymes, nitrogenase, and phosphatase, was enhanced compared to the control. The application of PGPR in dryland areas is recommended to maintain soil fertility and support sustainable intercropping crop production. Further studies are needed to conduct mixed farming between agriculture, animal husbandry, clean energy (biogas), and organic fertilizer (residue from the biogas digester).

References

A. Zsogon, LE.P. Peres, Y. Xiao, J. Yan, and A.R. Fernie Enhancing crop diversity for food security in the face of climate uncertainty. The Plant Journal 109: 402–414 (2022).

l. Stavi, A. Paschalidou, A.P. Kyriazopoulos, R. Halbac-Cotoara-Zamfir, S.M. Siad, M. Suska-Malawska, D. Savic, J.R. de Pinho, L. Thalheimer, D.S. Williams, N. Hashimshony-Yaffe, K. van der Geest, C.M.d. S. Cordovil, and A. Ficko. Multidimensional food security nexus in drylands under the slow onset effects of climate change. Land 10(12): 1350 (2021).

D.J.M. Hall, S.L. Davies, R.W. Bell, and T.J. Edwards. Soil management systems to overcome multiple constraints for dryland crops on deep sands in a water limited environment on the south coast of western Australia. Agronomy 10: 1881 (2020).

A. Trigo, A. Marta-costa, and R. Fragoso. Principles of sustainable agriculture: Defining standardized reference points. Sustainability 13: 4086 (2021).

E.K.K. Jew, S. Whitfield, A.J. Dougill, D.D. Mkwambisi, and P. Steward. Farming systems and conservation agriculture: Technology, structures and agency in Malawi. Land Use Policy 95: 104612 (2020).

J.P. Schimel. Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics 49(1): 409–432 (2018).

H. Sukorini, E.R.T. Putri, E. Ishartati, S. Sufianto, R.H. Setyobudi, N.N. Huu, and S. Suwannarat. Assessment on drought stress resistance, salinity endurance, and indole acetic acid production potential of dryland-isolated bacteria. Jordan Journal of Biological Sciences 16(1): 137–147 (2023).

A. Borowik, and J. Wyszkowska. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment 62(6): 250–255 (2016).

K. Lüneberg, D. Schneider, C. Siebe, and R. Daniel. Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico. Scientific Reports 8: 1413 (2018).

P. Tian, B.S. Razavi, X. Zhang, Q. Wang, and E. Blagodatskaya. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry 141: 107662 (2019).

I. Ekawati. Smart farming: Teknologi PGPR untuk keberlanjutan pertanian lahan kering. [Smart farming: PGPR technology for dry land farming sustainability]. Seminar Nasional Optimalisasi Sumberdaya Lokal di Era Revolusi Industri 4.0. pp. 615–622 (2019). [In Bahasa Indonesia].

https://www.ejournalwiraraja.com/index.php/PROSD/article/view/882/804

E.T. Alori, and O.O. Babalola. Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology 9: 2213 (2018).

O.B. Ojuederie, O.S. Olanrewaju, and O.O. Babalola. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy 9(11): 712 (2019).

N.H. Nguyen, P. Trotel-Aziz, C. Clément, P. Jeandet, F. Baillieul, and A. Aziz. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Journal Planta 255(6): 73–90 (2022).

M. Saakre, T.M. Baburao, A.P. Salim, R.M. Ffancies, V.P. Achuthan, G. Thomas, and S.R. Sivarajan. Identification and characterization of genes responsible for drought tolerance in rice mediated by Pseudomonas fluorescens. Rice Science 24(5): 291–298 (2017).

A.A. Helaly, S.M. Hassan, L.E. Craker, and E. Mady. Effects of growth-promoting bacteria on growth, yield and nutritional value of collard plants. Annals of Agricultural Sciences 65(1): 77–82 (2020).

P. Vejan, R. Abdullah, T. Khadiran, S. Ismail, and A.N. Boyce. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 21(5): 573 (2016).

I. Iqrar, Z.K. Shinwari, A. El-Sayed, and G.S. Ali. Bioactivity-driven high throughput screening of microbiomes of medicinal plants for discovering new biological control agents. BioRXiv 1–26 (2019).

https://www.biorxiv.org/content/10.1101/611855v1.full.pdf

O.S. Olanrewaju, B.R. Glick, and O.O. Babalola. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology 33(11): 197 (2017).

E. Ricci, T. Schwinghamer, D. Fan, D.L. Smith, and V. Gravel. Growth promotion of greenhouse tomatoes with Pseudomonas sp. and Bacillus sp. biofilms and planktonic cells. Applied Soil Ecology 138: 61–68 (2019).

S. Gouda, R.G. Kerry, G. Das, S. Paramithiotis, H.S. Shin, and J.K. Patra. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206(5): 131–140 (2018).

Z.K. Shinwari, F. Tanveer, and I. Iqrar. Role of microbes in plant health, disease management, and abiotic stress management. In: Microbiome in Plant Health and Disease: Challenges and Opportunities. V. Kumar, R. Prasad, M. Kumar, and D. Choudhary (Eds.). Springer, Singapore pp. 231–250 (2019).

M.C. Enebe, and O.O. Babalola. The influence of plant growth promoting rhizobacteria in plant tolerance. Applied Microbiology and Biotechnology 102(18): 7821–7835 (2018).

S. Anzuay, M.G.R. Ciancio, L. Ludueña, L. Ludueña, J.G. Angelini, G.G. Barros, N. Pastor, and T. Taurian. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiological Research 199: 98–109 (2017).

M. Cardinale, S. Ratering, C. Suarez, A.M.Z. Montoya, R. Geissler-Plaum, and S. Schnell. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiological Research 181: 22–32 (2015).

W.A. Kasim, R.M. Gaafar, R.M. Abou-Ali, M.N. Omar, and H.M. Hewait. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences 61(2): 217–227 (2016).

R. Gamez, M. Cardinale, M. Montes, S. Ramirez, S. Schnell, and F. Rodriguez. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiological Research 220: 12–20 (2019).

E. Rezaei-Chiyaneh, R. Amirnia, M.A. Machiani, A. Javanmard, F. Maggi, and M.R. Morshedloo. Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Scientia Horticulturae 261: 108951 (2020).

H. Prasetyo, R.H. Setyobudi, P.G. Adinurani, Z. Vincēviča-Gaile, A. Fauzi, T.A. Pakarti, R. Tonda, N.V. Minh, and M. Mel. Assessment of soil chemical properties for monitoring and maintenance of soil fertility in Probolinggo, Indonesia. Proceedings of the Pakistan Academy of Sciences: Part B 59(4): 99–113 (2022).

BPS-Statistics of Sumenep Regency. Kabupaten Sumenep dalam angka 2022. [Sumenep Regency in figures 2022].

https://www.sumenepkab.go.id/uploads/document/books/SUMENEP-DALAM-ANGKA-2022.pdf (accessed 19 May 2023). [In Bahasa Indonesia].

N. Mathimaran, S. Jegan, M.N. Thimmegowda, V.R. Prabavathy, P. Yuvaraj, R. Kathiravan, M.N. Sivakumar, B.N. Manjunatha, N.C. Bhavitha, A. Sathish, G.C. Shashidhar, D.J. Bagyaraj, E.G. Ashok, D. Singh, A. Kahmen, T. Boller, and P.N. Mäder. Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Frontiers in Sustainable Food Systems 4: 1–12 (2020).

Zechmeister-Boltenstern. Nitrogenase activity by acetylene reduction. In: Methods in Soil Biology. F. Scinner, R. Ohlinger, E Kandeler, R. Margesin (Eds.). Springer-Verlag Berlin Heidelberg (1996).

P.G. Adinurani. Perancangan dan Analisis Data Percobaan Agro; Manual dan SPSS. [Design and Analysis of Agrotrial Data: Manual and SPSS]. Plantaxia, Yogyakarta, Indonesia (2016). [In Bahasa Indonesia].

https://opac.perpusnas.go.id/DetailOpac.aspx?id=1159798#

P.G. Adinurani. Statistika Terapan Agroteknologi (disusun sesuai rencana pembelajaran semester). [Agrotechnology Applied Statistics (compiled according to the semester learning plan)]. Deepublish, Yogyakarta, Indonesia (2022). [In Bahasa Indonesia]

https://deepublishstore.com/shop/buku-statistika-terapan-3/

A. Banerjee, S. Sanyal, and S. Sen. Soil phosphatase activity of agricultural land: A possible index of soil fertility. Agricultural Science Research Journals 2(7): 412–419 (2012).

A.C.N. Boukhelata, Y. Kaci, O. Abrous-Belbachir, and R. Djebbar. Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters. Biocatalysis and Agricultural Biotechnology 19: 101087 (2019).

Q.A. Panhwar, O. Radziah, U.A. Naher, J. Shamshuddin, and M.I. Razi. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. The Scientific World Journal. 2013: 272409 (2013).

Z. Wang, Z. Chen, and X. Fu. Integrated effects of co-inoculation with phosphate-solubilizing bacteria and n2-fixing bacteria on microbial population and soil amendment under C deficiency. International Journal of Environmental Health Research 16: 2442 (2019).

A. Yadav, K. Yadav, and A. Vashistha. Phosphate solubilizing activity of Pseudomonas fluorescens PSM1 isolated from wheat rhizosphere. Journal of Applied and Natural Science 8(1): 93–96 (2016).

S.B. Sharma, R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1): 587 (2013).

S. Qiu, A.J. McComb, and R.W. Bell. Ratios of C, N and P in soil water direct microbial immobilisation–mineralisation and N availability in nutrient amended sandy soils in southwestern Australia. Agriculture, Ecosystems and Environment. 127(1–2): 93–99 (2008).

N.S. Raymond, B. Gómez-Muñoz, F.J.T. van der Bom, O. Nybroe, L.S. Jensen, D.S. Müller-Stöver, A. Oberson, and A.E.N.S. Richardson. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytologist 229(3):1268–1277 (2021).

M. Saha, B.R. Maurya, V.S. Meena, I. Bahadur, and A. Kumar. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and Agricultural Biotechnology 7: 202–209 (2016).

H. Etesami, S. Emami, and H.A. Alikhani. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - A review. Journal of Plant Nutrition and Soil Science 17(4): 897–911 (2017).

B. Weselowski, N. Nathoo, A.W. Eastman, J. MacDonald, and Z.C. Yuan. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiology 16: 244 (2016).

L. Hu, C.A.M. Robert, S. Cadot, X. Zhang, M. Ye, B. Li, D. Manzo, N. Chervet, T. Steinger, M.G.A. van der Heijden, K. Schlaeppi, and M. Erb. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications 9: 2738 (2018).

M.K. Hassan, J.A. McInroy, and J.W. Kloepper. The interactions of rhizodeposits with plant growth promoting rhizobacteria in the rhizosphere: A Review. Agriculture 9(7): 142 (2019).

D. Rao, K. Aparna, and S.R. Mohanty. Microbiology and biochemistry of soil organic matter, carbon sequestration and soil health. Indian Journal of Fertilizers 15(2): 124–138 (2019).

O.Y.A. Costa, J.M. Raaijmakers, and E.E. Kuramae. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology 9: 1636 (2018).

V. Rotaru. Responses of acid phosphatase activity on the root surface and rhizospheric soil of soybean plants to phosphorus fertilization and rhizobacteria application under low water supply. Scientific Papers. Series A. Agronomy 50(8): 295–300 (2015).

C.S.R.M. Grover, S. Kundu, and S. Desai. Soil enzymes. In: Encyclopedia of Soil Science. Third Edition, R. Lal (Ed.), Taylor & Francis pp. 2100–2107 (2017).

T. Kunito, T. Shiroma, H. Moro, and H. Sumi. Annual variation in soil enzyme activity in a paddy field: Soil temperature and nutrient availability are important for controlling enzyme activities. Applied and Environmental Soil Science 2018: 4093219 (2018).

H. Zheng, Y. Liu, J. Zhang, Y. Chen, L. Yang, H. Li, and L. Wang. Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecology 219(1): 31–44 (2018).

Y. Qu, J. Tang, Z. Li, Z. Zhou, J. Wang, S. Wang, and Y. Chao. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12(23): 10095 (2020).

N.A.D. Benedetto, M.R. Corbo, D. Campaniello, M.P. Cataldi, A, Bevilacqua, M. Sinigaglia, and Z. Flagella. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiology 3(3): 413–434 (2017).

R.F.D. Almeida, E.R. Naves, R. Pinheiro, and D. Mota. Soil quality: Enzymatic activity of soil β-glucosidase. Global Journal of Agricultural Research and Reviews 3(2): 2437–1858 (2015).

R. Kausar, M.I. Choudary, M.I. Akram, M. Rashid, O.U Rehman, A. Malik, M.A.U.R. Khalid, M. Zubair, and S. Alvi. Response of groundnut (Arachis hypogaea L.) to plant growth promoting Rhizobacteria in degraded soils. African Journal of Agricultural Research 13(17): 904–910 (2018).

J.V. Lima, R.S. Tinôco, F.L. Olivares, A.J.G. de Moraes, G.S. Chia, and G.B. da Silva. Hormonal imbalance triggered by rhizobacteria enhance nutrient use efficiency and biomass in oil palm. Scientia Horticulturae 264: 109161 (2020).

S.M.N.A. Muscolo, M.R. Panuccio, Z. Zahir, and S. Mahmood. Use of plant growth-promoting rhizobacteria to ameliorate the performance of lentil under salinity. Journal of Applied Botany and Food Quality. 92: 179–186 (2019).

R.B.S. Nabi, R. Shahzad, R. Tayade, M. Shahid, A. Hussain, M.W. Ali, and B. Yun. Evaluation potential of PGPR to protect tomato against fusarium wilt and promote plant growth. Peer J 16(9): e11194 (2021).

M. Grover, S. Bodhankar, A. Sharma, P. Sharma, J. Singh, and L. Nain. PGPR mediated alterations in root traits: Way toward sustainable crop production. Frontiers in Sustainable Food Systems 4: 618230 (2021).

S. Kapali, R.M. Gade, A.V. Shitole, and S. Aswathi. Isolation and characterization of Pseudomonas fluorescens and Bacillus subtilis and their in vitro evaluation. Advances in Life Sciences 5(16): 5856–5859 (2016).

B.M. Bajracharya, C.M. Smeaton, I. Markelov, E. Markelova, C. Lu, O.A. Cirpka, and P. Van Capellen. Organic matter degradation in energy-limited subsurface environments — A bioenergetics-informed modeling approach. Geomicrobiology Journal 39(1): 1–16 (2022),

S. Reischke, M.G.K. Kumar, and E. Bååth. Threshold concentration of glucose for bacterial growth in soil. Soil Biology and Biochemistry 80: 218–223 (2015).

G. Rathore, R. Kaushal, V. Sharma, G. Sharma, S. Chaudhary, S.S. Dhaliwal, A.M. Alsuhaibani, A. Gaber, and A. Hossain. Evaluation of the usefulness of fermented liquid organic formulations and manures for improving the soil fertility and productivity of brinjal (Solanum melongena L.). Agriculture. 13(2): 417 (2023).

T.G. Pham, H.T. Nguyen, and M. Kappas. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. International Soil and Water Conservation Research 6(4):280–288 (2018).

G. Bongiorno, E.K. Bünemann, L. Brussaard, P. Mäder, C.U. Oguejiofor, and R.G.M. de Goede. Soil management intensity shifts microbial catabolic profiles across a range of European long-term field experiments. Applied Soil Ecology 154: 103596 (2020).

D.H. Goenadi, R.H. Setyobudi, E. Yandri, K. Siregar, A. Winaya, D. Damat, W. Widodo, A. Wahyudi, P.G. Adinurani, M. Mel, I. Zekker, M.Z. Mazwan, D.D. Siskawardani, E.D. Purbajanti, and I. Ekawati. Land suitability assessment and soil organic carbon stocks as two keys for achieving sustainability of oil palm (Elaeis guineensis Jacq.). Sarhad Journal of Agriculture 37(1): 184–196 (2021).

I.K. Sumantra, I.K. Widnyana, N.G.A.E. Martingsih, I.M. Tamba, P.G. Adinurani, I. Ekawati, M. Mel, and P. Soni. Agronomic characters and quality of fruit of salak cv. gulapasir planted in various agro-ecosystems. Jordan Journal of Biological Science 16(2): 207–221 (2023).

R. Pramulya, T. Bantacut, E. Noor, M. Yani, M. Zulfajrin, Y. Setiawan, H.B. Pulunggono, S. Sudrajat, O. Anne, S. Anwar, P.G. Adinurani, K. Siregar, H. Prasetyo, S.S. Harsono, E. Novita, D.M Rahmah, N.N. Huu, D. Agustia, and M.I. Rasyid. Carbon footprint calculation of net CO2 in agroforestry and agroindustry of Gayo Arabica coffee, Indonesia. Jordan Journal of Biological Sciences 16(2): 335–343 (2023).

R. Negi, T. Kaur, R. Devi, D. Kour, and A.N. Yadav. Assessment of nitrogen-fixing endophytic and mineral solubilizing rhizospheric bacteria as multifunctional microbial consortium for growth promotion of wheat and wild wheat relative Aegilops kotschyi. Heliyon 8(12): e12579 (2022).

D.N. Destari, M.P. Koentjoro, Isdiantoni, I. Ekawati, and E.N. Prasetyo. Pre-evaluation of urease production by Bacillus sp. SK II-5 thermophilic bacteria using agricultural waste as a substrate. IOP Conference Series: Earth and Environmental Science 649: 012030 (2021)

H. Susanto, R.H. Setyobudi, D. Sugiyanto, S.M. Nur, E. Yandri, H. Herianto, Y. Jani, S.K. Wahono, P.G. Adinurani, Y. Nurdiansyah, and A. Yaro. Development of the biogas-energized livestock feed making machine for breeders E3S Web of Conferences 188: 00010 (2019).

P.G. Adinurani, R.H. Setyobudi, S.K. Wahono, M. Mel, A. Nindita, E. Purbajanti, S.S. Harsono, A.R. Malala, L.O. Nelwan, and A. Sasmito. Ballast weight review of capsule husk Jatropha curcas Linn. on acid fermentation first stage in two-phase anaerobic digestion. Proceedings of the Pakistan Academy of Sciences: Part B 54(1): 47–57 (2017).

R.H. Setyobudi, A. Sasmito, P.G. Adinurani, A. Nindita, A.S. Yudhanto, Y.A. Nugroho, T. Liwang, and M. Mel. The study of slurry recirculation to increase biogas productivity from Jatropha curcas Linn. capsule husk in two phase digestion. Energy Procedia 65: 300-308 (2015).

P.G. Adinurani, T. Liwang, Salafudin , L.O. Nelwan, Y. Sakri, S.K. Wahono, and R.H. Setyobudi. The study of two stages anaerobic digestion application and suitable bio-film as an effort to improve bio-gas productivity from Jatropha curcas Linn capsule husk. Energy Procedia 32: 84–89 (2013).

Anukam A and Nyamukamba P. The chemistry of human excreta relevant to biogas production: A review. In: Anaerobic Biodigesters for Human Waste Treatment. M.K. Meghvansi, A.K. Goel (Eds.). Environmental and Microbial Biotechnology, Springer, Singapore Pp. 29-38 (2022).

Somorin TO. Valorisation of human excreta for recovery of energy and high-value products: A Mini-review. In: Valorization of Biomass to Value-Added Commodities. M.O. Daramola, and A.O. Ayeni (Eds.). Green Energy and Technology, Springer Springer Nature Switzerland pp. 341–370 (2020).

J. Burlakovs, Z. Vincevica-Gaile, V. Bisters, W. Hogland, M. Kriipsalu, I. Zekker, RH. Setyobudi, Y. Jani, and O. Anne. Application of anaerobic digestion for biogas and methane production from fresh beach-cast biomass. Proceedings EAGE GET 2022 – 3rd Eage Global Energy Transition 2022: 1–5 (2022).

E. Yandri, B. Novianto, F. Fridolini, R.H. Setyobudi, H. Wibowo, S.K. Wahono, K. Abdullah, W. Purba and Y.A. Nugroho. The technical design concept of hi-tech cook stove for urban communities using non-wood agricultural waste as fuel sources. E3S Web of Conferences. 226: 00015 (2021).

Y. Benyahya, A. Fail, A. Alali, and M. Sadik. Recovery of household waste by generation of biogas as energy and compost as bio-fertilizer—A Review. Processes 10(1): 81 (2022).

P. Barłóg, L. Hlisnikovský, and E. Kunzová. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 10(3): 379 (2020).

W. Czekała, T. Jasiński, M. Grzelak, K. Witaszek and J. Dach. Biogas plant operation: Digestate as the valuable product. Energies 15(21): 8275 (2022).

Baştabak, B. and Koçar, G. A review of the biogas digestate in agricultural framework. Journal of Material Cycles and Waste Management 22: 1318–1327 (2020).

P.G. Adinurani, S. Rahayu, E.D. Purbajanti, D.D. Siskawardani, K. Stankeviča, and R.H. Setyobudi. Enhanced of root nodules, uptake NPK, and yield of peanut plant (Arachis hypogaea L.) using rhizobium and mycorrhizae applications. Sarhad Journal of Agriculture 37(1): 16–24 (2021).

A.I. Raya-Hernández, P.F. Jaramillo-López, D.A. López-Carmona, T. Díaz, J. A. Carrera-Valtierra, and J. Larsen. Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization. Applied Soil Ecology 149: 103511 (2020).

P. Bijalwan, K. Jeddi, I. Saini, M. Sharma, P. Kaushik, and K. Hessini. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi Journal of Biological Sciences 28(7): 3678–3684 (2021).

G.S. Malhi, M. Kaur, P. Kaushik, M.N. Alyemeni, A.A. Alsahli, and P. Ahmad. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences 28(2): 1465–1476 (2021).

Downloads

Published

2024-06-26

How to Cite

Ida Ekawati, Henny Diana Wati, Maharani Pertiwi Koentjoro, Herni Sudarwati, Praptiningsih Gamawati Adinurani, Roy Hendroko Setyobudi, Rizal Andi Syabana, Rusli Tonda, & Shazma Anwar. (2024). Improving Soil Quality and Yield of Intercropping-System Crops in a Dry Land Area through Plant Growth Promoting Rhizobacteria Application Frequency. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 61(2), 159–169. https://doi.org/10.53560/PPASB(61-2)925

Issue

Section

Research Articles