Hydrophobic Drug Release Studies from the Core/Shell Magnetic Mesoporous Silica Nanoparticles and their Anticancer Application
Drug Release Studies from Magnetic Mesoporous Nanoparticles and their Anticancer Application
DOI:
https://doi.org/10.53560/PPASB(58-1)646Keywords:
Mesoporous silica, nanoparticles, loading, release, hydrophobic drugs, PANC-1 cellsAbstract
Multiple therapeutic hydrophobic drugs can be delivered simultaneously by inorganic, biocompatible iron core mesoporous silica shell nanoparticles. We synthesized superparamagnetic iron oxide nanocrystals encapsulated within mesostructured silica spheres through the sol-gel process. The dose of hydrophobic drugs Paclitaxel (PTX) and Camptothecin (CPT) loading and released on Fe3 O4 @SiO2 core/shell nanoparticle detected by U.V-visible spectrophotometry using a platform of nanoparticles (NPS). After being subjected to external heating, the drug release efficiency of paclitaxel (PTX) and camptothecin (CPT) Fe3 O4 @SiO2 core/shell nanoparticles is increased. Paclitaxel (PTX) and Camptothecin (CPT) Fe3 O4 @SiO2 core/shell nanoparticles did not heat the solution when an alternating magnetic field (AMF) was applied, and there was only mild drug leakage. When compared to Fe3 O4 @MSNs, the nanoparticles (PTX) and (CPT) Fe3 O4 @MSNs function as cancer-targeting mediators, increasing the killing of PANC-1 cancer cells. Human cancer cells were given these therapeutic anticancer water-insoluble drugs with nanoparticles, which is a valuable vehicle for drug delivery, and induced the inhibition of proliferation. Therefore, the goal of this study to emphasize Fe3 O4 @SiO2 core/shell potential as a superior candidate for hydrophobic drug
delivery to the PANC-1 cancer cell.
References
O.C. Farokhzad., J. M. Karp., and R. Langer. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opinion on Drug Delivery 3 :311-24 (2006)
F. S. Collins, and H. A. Varmus. New Initiative on Precision Medicine. The New England Journal of 3. E.M. Alexandrino, S. Ritz, F. Marsico, G. Baier, V. Mailänder, K. Landfester. Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. Journal of Materials Chemistry B 2 : 1298-1306 (2014)
M. Wu, X.M. Xia, C. Cui, P. Yu, Y. Zhang, and L. Liu,. Highly efficient loading of amorphous paclitaxel in mesoporous hematite nanorods and they are in vitro antitumor activity. Journal of Materials Chemistry 1: 1687-1695 (2013)
K.S. Cunha, M.L. Reguly, U. Graf, and H. H. Rodrigues de Andrade. Comparison of camptothecin derivatives presently in clinical trials: genotoxic potency and mitotic recombination. Mutagenesis 17(2): 141-7 (2002).
M. Duphal, and D. Chowdry. Phytochemical-Based Nanomedicine for Advanced Cancer Theranostics: Perspectives on Clinical Trials to Clinical Use. International Journal of Nanomedicine 15: 9125-9157 (2020)
R.W. Peck, Precision Medicine Is Not Just Genomics: The Right Dose for Every Patient. Annual Review of Pharmacology and Toxicology
: 105−122 (2018)
Z . Li, D.L. Clemens, B.Y. Lee, B. J. Dillon, M. A. Horwitz, and J.I. Zink. Mesoporous Silica Nanoparticles with pH-Sensitive Nanovalves
for Delivery of Moxifloxacin Provide Improved Treatment of Lethal Pneumonic Tularemia. American Chemical Society Nano 9 : 10778−10789 (2015)
B. Ruehle, D.L. Clemens, B.Y. Lee, M.A. Horwitz, and J. I . Zink. A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous
Silica Nanoparticles. The Journal of the American Chemical Society 139 : 6663−6668 (2017)
R. Mo, T. Jiang, R. Disanto, W. Tai, and Z. Gu, ATP-Triggered Anticancer Drug Delivery. Nature Communications 5: 3364 (2014) DOI: 10.1038/ncomms4364
H. Li, L.L. Tan, P. Jia, Q.L. Li, Y.L. Sun, J. Zhang, Y.Q. Ning, J. Yu, and Y.W. Yang. Near-Infrared Light-Responsive Supramolecular Nanovalve Based on Mesoporous Silica-Coated Gold Nanorods. Chemical Science Journal 5: 2804−2808 (2014).
Y. Zhu and C. Tao. DNA-Capped Fe3O4/SiO2 Magnetic Mesoporous Silica Nanoparticles for Potential Controlled Drug Release and
Hyperthermia. RSC Advances 5: 22365−22372 (2015)
J. L. Paris, M. V. Cabanas, M. Manzano, and M. Vallet-Regí. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound Responsive Drug Carriers. American Chemical Society Nano 9: 11023−11033 (201)
M. De. Smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grüll. Magnetic Resonance Imaging of High Intensity Focused Ultrasound Mediated Drug Delivery from Temperature-Sensitive Liposomes: An in Vivo Proof-of-Concept Study. The Journal of Controlled Release 150: 102−110 (2011)
X. Huang, I. H. El-Sayed, W. Qian, M. and A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. The Journal of the American Chemical Society 128 : 2115–2120 (2006)
R. Nicola, O. Costişor, S. Muntean, M. Nistor, A. Putz, C. Ianăşi, R. Lazău, L. Almásy, and L. Săcărescu. Mesoporous magnetic nanocomposites: a promising adsorbent for the removal of dyes from aqueous solutions. Journal of Porous Materials 27: 413–428 (2020)
J. F. Liu, B. Jang, D. Issadore, and A. Tsourkas. Use of Magnetic Fields and Nanoparticles to Trigger Drug Release and Improve Tumor Targeting. Nanomedicine and Nanobiotechnology 11(6): e1571 (2019) doi:10.1002/wnan.
Z. Medarova, W.Pham, C.Farrar, V. Petkova, and A. Moore. In-Vivo Imaging of siRNA Delivery and Silencing in Tumors. Nature Medicine 13 : 372–377 (2007)
K. Boubbou, R. Ali , S. Al-Humaid , A. Alhallaj, O. M. Lemine, M. Boudjelal , and A. AlKushi. Iron Oxide Mesoporous Magnetic Nanostructures with High Surface Area for Enhanced and Selective Drug Delivery to Metastatic Cancer Cells. Pharmaceutics 13: 553 (2021) https://doi.org/10.3390/pharmaceutics13040553
F. Ahmadpoor, A. Masood, N. Feliu, W. J. Parak, and S. A. Shojaosadati. The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontier in Nanotechnology 3:644- 743(2021)
T. Xia, M. Kovochich, M. Liong, H. Meng, S. Kabehie, S. George, J. I. Zink, and A. E. Nel, Polyethyleneimine Coating Enhances the Cellular
Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. American Chemical Society Nano 3 :
−3286 (2009)
S. Wu, H. C. Y. Lin, Y. Hung, W. Chen, C. Chang, and C. Y. Mou. PEGylated Silica Nanoparticles Encapsulating Multiple Magnetite Nanocrystals for High-Performance Microscopic Magnetic Resonance Angiography. Journal of Biomedical Materials Research - Part B Applied Biomaterials 99B: 81−88 (2011)
P. Saint-Crick, S. Deshayes, J. I. Zink, and A. M. Kasko. Magnetic Field Activated Drug Delivery Using Thermodegradable Azo-Functionalised PEG-Coated Core-Shell Mesoporous Silica Nanoparticles. Nanoscale 7 (31): 13168– 13172 (2015) DOI: 10.1039/C5NR03777H
A. Baeza, E. Guisasola, E. Ruiz-Hernández, and M. Vallet-Regí. Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials 24 (3):517– 524 (2012) DOI: 10.1021/cm203000
X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma, Y. Zhang, S.Chen, S. Tiwari, K. Shi, S. Zhang, H.M. Fan, Y. X. Zhao, and X-J. Liang. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 10 (8): 3793– 3815 (2020) DOI: 10.7150/thno.40805
A. P. Katsoulidis, D. E. Petrakis, G. S. Armatas, and P. J. Pomonis. Microporosity, pore anisotropy and surface properties of organized mesoporous silicates (OMSi) containing cobalt and cerium. The Journal of Materials Chemistry 17: 1518–1528 (2007)
X. Yu, P. Kaithal, H. Luo, P. Soman, and S. Ramakrishna, Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials, 13:4644 (2020) doi:10.3390/ma13204644
C. Hui, C. Shen, J. Tian, L. Bao, H. Ding, C. Li, Y. Tian, X. Shiab,and H. Gao, Core-shell Fe3O4@ SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3: 701–705 (2011)
U. Klekotka, D. Satuła , A. Basa, and B. KalskaSzostko, Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles. Materials 13: 1747 (2020) doi:10.3390/ma13071747
C. K. Dixit, S. Bhakta, A. Kumar, S. L. Suib , and J. F. Rusling. Fast nucleation for silica nanoparticle synthesis using a sol-gel method. Nanoscale 1;8(47):19662-19667 (2016). doi: 10.1039/c6nr07568a.
W. Chen, F. Lu, C.C.V. Chen, K. C. Mo, Y. Hung, Z. X. Guo, C. H. Lin, M. H. Lin, Y. H Lin, C.Chang, and C. Y. Mou. Manganese-Enhanced MRI of Rat Brain Based on Slow Cerebral Delivery of Manganese (II) with Silica-Encapsulated MnxFe1 XO Nanoparticles. NMR in Biomedicine 26:1176−1185 (2013).
X. Liu, Y. Zhang, Y. Wang, W. Zhu, G.G. Li, X. Ma, Y. Zhang, S.Chen, S.Tiwari, K.Shi, S. Zhang, H.Fan, M. Zhao, and Y. X. Liang. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 10 (8) : 3793– 3815 (2020) DOI: 10.7150/thno.40805
J. R. H. Manning, C. Brambila, and S. V. Patwardhan. Unified mechanistic interpretation of amine-assisted silica synthesis methods to enable design of more complex materials. Molecular Systems Design & Engineering 6: 170-196 (2021)
B. Luo, S. Xu, W.F. Ma, W.-R. Wang, S.L. Wang, J. Guo, W.L. Yang, J.H. Hu and C.C. Wang, Development of redox/pH dual stimuli-responsive MSP@P(MAA-Cy) drug delivery system for programmed release of anticancer drugs in tumour cells. The Journal of Materials Chemistry 20:7107–7113 (2010)
S. Sahu, N. Sinha, S. K. Bhutia, M. Majhi, and S. Mohapatra, Luminescent magnetic hollow mesoporous silica nanotheranostics for camptothecin delivery and multimodal imaging. The Journal of Materials Chemistry 2: 3799–3808 (2014)
H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, and S. C. Xu, Fe3O4 @SiO2Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thickness. Chemistry of Materials 24, 4572-4580 (2012) H.Lidx.doi.org/10.1021/cm302828d
J. Voigt, J. Christensen, and V. P . Shastri. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with an affinity for caveolae. National Academy of Sciences (U.S.) 111 (8) : 2942– 7 (2014) DOI: 10.1073/pnas.1322356111
H. V. Quang, C. C. Chang, P. Song, E. M. Hauge, and J. Kjems. Caveolae-mediated mesenchymal stem cell labeling by PSS-coated PLGA PFOB nano-contrast agent for MRI. Theranostics 8(10): 2657-2671 (2018)
M. Mohammed, A. M Jawad, Z. Su, and C.Zhang. Stimuli-responsive Mesoporous silica nanoparticles for on-demand drug release. International Journal of Advanced Research in Biological Sciences 5(4): 152-166 (2018).
Downloads
Published
How to Cite
Issue
Section
License
Creative Commons Attribution (CC BY). Allows users to: copy the article and distribute; abstracts, create extracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation); include in a collective work (such as an anthology); and text or data mine the article. These uses are permitted even for commercial purposes, provided the user: includes a link to the license; indicates if changes were made; gives appropriate credit to the author(s) (with a link to the formal publication through the relevant DOI); and does not represent the author(s) as endorsing the adaptation of the article or modify the article in such a way as to damage the authors' honor or reputation.

