Nanoparticles in Cancer Treatment: A Narrative Review
Nanoparticles in Cancer Treatment: A Narrative Review
DOI:
https://doi.org/10.53560/PPASB(58-3)664Keywords:
Cancer therapy, Cancer treatment, Multidrug resistance, Nanoparticles, Nanotechnology, Nanocarriers, NanomedicineAbstract
Nanoparticles have revolutionized the world with their enormous blessings specifically in cancer treatment. In past, conventional chemotherapy was the primary choice of treatment for patients. However, chemotherapeutics also had several pharmaceutical limitations such as stability, drug-drug interaction, drug resistance, and aqueous solubility. Reciprocally, dose curbing toxicity is significant with non-specific toxicity to healthy cells, loss of appetite, hair loss, peripheral neuropathy, vomiting, muscular fatigue, and diarrhea being the typical adverse effects. The introduction of multi-drug resistance (MDR) also posed a great threat for successful cancer treatment, whereby the tumor cells became resistant to many of the chemotherapeutic agents used. Nanotechnology-based novel chemotherapy opened a new horizon for the treatment of cancer. Particularly, nanoparticle-related medication is a highly potential newcomer for curtailing systemic toxicity via producing functionalized particles for specific treatment. It is also an alternative to circumvent multidrug resistance for possessing an ability to bypass the efflux mechanism correlated with this phenotype. Besides having various advantages in treatment, nanoparticles are also playing a key role in diagnostic entities. This paper aims to specifically outline the role of nanotechnology which it is playing in today’s era in the diagnosis and treatment of cancer with contemporary knowledge. To assess the role of nanoparticles in cancer treatment, this review analyzed all articles published from 2002 to 2021 in both Local and foreign journals. The article’s inclusion criteria were based on the article which contained relevant data regarding applications of nanoparticles in cancer treatment. Articles with copyright, irrelevant information, and lacking the full text were excluded. This paper will highlight the breakthrough, impediments, and prospects of nanoparticles in cancer treatment with an updated review.
References
K. Sztandera, M. Gorzkiewicz, and B. Klajnert- Maculewicz. Gold nanoparticles in cancer treatment. Molecular Pharmaceutics 16: 1-23 (2018).
S. Rezvantalab, N.I. Drude, M.K. Moraveji, N. Güvener, E.K. Koons, Y. Shi, T. Lammers, and F. Kiessling. PLGA-based nanoparticles in cancer treatment. Frontiers in Pharmacology 29: 1260-72 (2018).
H. Khan, H. Ullah, M. Martorell, S.E. Valdes, T. Belwal, S. Tejada, A. Sureda, and M.A Kamal. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. In: Seminars in Cancer Biology, Vol 69. Elsevier Academic Press, USA, p. 200-211 (2021).
R. Awasthi, A. Roseblade, P.M. Hansbro, M.J. Rathbone, K. Dua, and M. Bebawy. Nanoparticles in cancer treatment: opportunities and obstacles.Current Drug Targets 19: 1696-709 (2018).
A. A. Aghebati‐Maleki, S. Dolati, M. Ahmadi, Baghbanzhadeh, M. Asadi, A. Fotouhi, M. Yousefi, and L. Aghebati‐Maleki. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology 235: 1962-72 (2020).
A. Mahapatro, and D.K. Singh. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology 9: 1001-21 (2011).
M. Singh, S. Singh, S. Prasad, and I.S. Gambhir. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures 3: 115-22 (2008).
M. Wu, and S. Huang. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Molecular and Clinical Oncology 7: 738-46 (2017).
J. Peng, X. Liang. Progress in research on gold nanoparticles in cancer management. Medicine 98: 234-39 (2019).
N.A. Nasab, H.H. Kumleh, M. Beygzadeh, S. Teimourian, and M. Kazemzad. Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artificial Cells, Nanomedicine, and Biotechnology 46: 75-81 (2018).
M. Fan, Y. Han, S. Gao, H. Yan, L. Cao, Z. Li, X.J. Liang, and J. Zhang. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 10: 4944- (2020).
H. Zhang, X.L. Liu, Y.F. Zhang, F. Gao, G.L. Li, Y. He, M.L. Peng, and H.M. Fan. Magnetic nanoparticles based cancer therapy: current status and applications. Science China Life Sciences 61: 400-14 (2018).
Y. Cai, W. Si, W. Huang, P. Chen, J. Shao, and X. Dong. Organic dye based nanoparticles for cancer phototheranostics. Small 14: 1704247 (2018).
A. Sharma, A.K. Goyal, and G. Rath. Recent advances in metal nanoparticles in cancer therapy. Journal of Drug Targeting 26: 617-32 (2018).
S. Kang, W. Shin, K. Kang, M.H. Choi, Y.J. Kim, Y.K. Kim, D.H. Min, and H. Jang. Revisiting of Pd nanoparticles in cancer treatment: all-round excellence of porous Pd nanoplates in gene-thermo combinational therapy. ACS Applied Materials & Interfaces 10: 13819-28 (2018).
S. Goodall, M.L. Jones, and S. Mahler. Monoclonal antibody‐targeted polymeric nanoparticles for cancer therapy–future prospects. Journal of Chemical Technology & Biotechnology 90: 1169-76 (2015).
E.R. Evans, P. Bugga, V. Asthana, and R. Drezek. Metallic nanoparticles for cancer immunotherapy. Materials Today 21: 673-85 (2018).
H. Wang, X. Li, B.W. Tse, H. Yang, C.A. Thorling, Y. Liu, M. Touraud, J.B. Chouane, X. Liu, M.S. Roberts, and X. Liang. Indocyanine green- incorporating nanoparticles for cancer theranostics. Theranostics 8: 1227- (2018).
Z. Zhou, J. Song, R. Tian, Z. Yang, G. Yu, L. Lin, G. Zhang, W. Fan, F. Zhang, G. Niu, and L. Nie. Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angewandte Chemie 129: 6592-6 (2017).
M. Saeed, W. Ren, and A. Wu. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomaterials science 6: 708-25 (2018).
H. Dong, L. Pang, H. Cong, Y. Shen, and B. Yu. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Delivery 26: 416-32 (2019).
Z.Q. Zuo, K.G. Chen, X.Y. Yu, G. Zhao, S. Shen, Z.T. Cao, Y.L. Luo, and J. Wang. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 82: 48-59 (2016).
S. Bayda, M. Hadla, S. Palazzolo, P. Riello, G. Corona, G. Toffoli, and F. Rizzolio. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Current Medicinal Chemistry 25: 4269-303 (2018).
V.S. Madamsetty, A. Mukherjee, and S. Mukherjee. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Frontiers in Pharmacology 10: 1264- (2019).
J.H. Ryu, H.Y. Yoon, I.C. Sun, I.C. Kwon, and K. Kim. Tumor‐Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Advanced Materials 32: 2002197 (2020).
R. Meir, K. Shamalov, T. Sadan, M. Motiei, G. Yaari, C.J. Cohen, and R. Popovtzer. Fast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapy. ACS Nano 11: 11127-34 (2017).
M. Hematyar, M. Soleimani, A. Es-Haghi, and A.R. Mokarram. Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC–MS/MS. Artificial Cells, Nanomedicine, and Biotechnology 46: S1226-35 (2018).
G. Yu, T.Y. Cen, Z. He, S.P. Wang, Z. Wang, X.W. Ying, S. Li, O. Jacobson, S. Wang, L. Wang, and L.S. Lin. Porphyrin Nanocage‐ Embedded: Single‐Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie International Edition 58: 8799-803 (2019).
S. Sau, H.O. Alsaab, K. Bhise, R. Alzhrani, G. Nabil, and A.K. Iyer. Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. Journal of Controlled Release 27: 24- 34 (2018).
S. Uthaman, K.M. Huh, and I.K. Park. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomaterials research 22: 101-10 (2018).
O. Sahin, A. Meiyazhagan, P.M. Ajayan, and S. Krishnan. Immunogenicity of externally activated nanoparticles for cancer therapy. Cancers 12: 3559- (2020).
K. Li, H. Nejadnik, and H.E. Daldrup-Link. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discovery Today 22: 1421-9 (2017).
B. García-Pinel, C. Porras-Alcalá, A. Ortega- Rodríguez, F. Sarabia, J. Prados, C. Melguizo, and J.M. López-Romero. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 9: 638 (2019).
X. Zhen, P. Cheng, and K. Pu. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small 15: 1804105 (2019).
M.E. Vance, T. Kuiken, E.P. Vejerano, S.P. McGinnis, M.F. Hochella, D. Rejeski, and M.S. Hull. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein journal of nanotechnology 6: 1769-80 (2015).
K. Dua, S.D. Shukla, D.J. Andreoli T. Pinto, and P.M. Hansbro. Nanotechnology: Advancing the translational respiratory research. Interventional Medicine and Applied Science 9: 39-41 (2017).
N. Sanvicens, and M.P. Marco. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in biotechnology 26: 425-33 (2008).
A. Prokop, and J.M. Davidson. Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences 97: 3518-90 (2008).
J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews 55: 329-47 (2003).
R. Singh, and J.W. Lillard. Nanoparticle-based targeted drug delivery. Experimental Molecular Pathology 86: 215-23 (2009).
J. Jose, R. Kumar, S. Harilal, G.E. Mathew, A. Prabhu, M.S. Uddin, L. Aleya, H. Kim, and B. Mathew. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environmental Science and Pollution Research 27: 19214-25 (2020).
J. Key, and K. Park. Multicomponent, tumor- homing chitosan nanoparticles for cancer imaging and therapy. International journal of molecular sciences 18: 594 (2017).
J. Kolosnjaj-Tabi, and C. Wilhelm. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?. International journal of molecular sciences 21: 967-75 (2020).
H. Chugh, D. Sood, I. Chandra, V. Tomar, G. Dhawan, and R. Chandra. Role of gold and silver nanoparticles in cancer nano-medicine. Artificial cells, nanomedicine, and biotechnology 46: 1210- 20 (2018).
Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, and Y. Li. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7: 2575 (2017).
M. Neek, T.I. Kim, and S.W. Wang. Protein-based nanoparticles in cancer vaccine development. Nanomedicine: Nanotechnology, Biology and Medicine 15: 164-74 (2019).
M.O. Ansari, M.F. Ahmad, G.G. Shadab, and H.R. Siddique. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer. Journal of Drug Delivery Science and Technology 45: 177-83 (2018).
S.K. Sharma, N. Shrivastava, F. Rossi, and N.T. Thanh. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today 29: 100795 (2019).
Y. Wang, S. Song, S. Zhang, and H. Zhang. Stimuli- responsive nanotheranostics based on lanthanide- doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today 25: 38-67 (2019).
P. Singh, S. Pandit, V.R. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic. Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences 19: 1979- (2018).
B. Shrestha, L. Tang, and G. Romero. Nanoparticles‐ mediated combination therapies for cancer treatment. Advanced Therapeutics 2: 1900076 (2019).
M. Cordani, and A. Somoza. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cellular and Molecular Life Sciences 76: 1215-42 (2019).
D. Zhi, T. Yang, J. Yang, S. Fu, and S. Zhang. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomaterialia 10: 13-34 (2020).
C.G. Liu, Y.H. Han, R.K. Kankala, S.B. Wang, and A.Z. Chen. Subcellular performance of nanoparticles in cancer therapy. International Journal of Nanomedicine 15: 675 (2020).
T.T. Tran, P.H. Tran, T.J. Yoon, and B.J. Lee. Fattigation-platform theranostic nanoparticles for cancer therapy. Materials Science and Engineering 75: 1161-7 (2017).
H. Zhou, J. Ge, Q. Miao, R. Zhu, L. Wen, J. Zeng, and M. Gao. Biodegradable inorganic nanoparticles for cancer theranostics: Insights into the degradation behavior. Bioconjugate chemistry 31: 315-31 (2019).
W. Hong, F. Guo, N. Yu, S. Ying, B. Lou, J. Wu, Y. Gao, X. Ji, H. Wang, A. Li, and G. Wang. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Drug Design, Development and Therapy 15: 2843 (2021).
A. Nikkhoo, N. Rostami, S. Farhadi, M. Esmaily, S.M. Ardebili, F. Atyabi, M. Baghaei, N. Haghnavaz, M. Yousefi, M.R. .Aliparasti, and G. Ghalamfarsa. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. International journal of pharmaceutics 58: 119236 (2020).
Y. Zhao, X. Zhao, Y. Cheng, X. Guo, and W. Yuan. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Molecular Pharmaceutics 15: 1791-9 (2018).
P. Aiello, S. Consalvi, G. Poce, A. Raguzzini, E. Toti, M. Palmery, M. Biava, M. Bernardi, M.A. Kamal, G. Perry, and I. Peluso. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. In: Seminars in Cancer Biology, Vol. 69. Elsevier Academic Press, USA, p. 150-71 (2021).
R. Nasr, H. Hasanzadeh, A. Khaleghian, A. Moshtaghian, A. Emadi, and S. Moshfegh. Induction of apoptosis and inhibition of invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman Medical Journal 33: 111 (2018).
T.T. Le, T.Q. Bui, T.M. Ha, M.H. Le, H.N. Pham, and P.T. Ha. Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy. Journal of Materials Science 53: 13826-42 (2018).
P.H. Tsai, M.L. Wang, J.H. Chang, A.A. Yarmishyn, P.N. Nguyen, W. Chen, Y. Chien, T.I. Huo, C.Y. Mou, and S.H. Chiou. Dual delivery of HNF4α and cisplatin by mesoporous silica nanoparticles inhibits cancer pluripotency and tumorigenicity in hepatoma-derived CD133-expressing stem cells. ACS Applied Materials & Interfaces 11: 19808-18 (2019).
R.A. Revia, Z.R. Stephen, and M. Zhang. Theranostic nanoparticles for RNA-based cancer treatment. Accounts of Chemical research 52: 1496- 506 (2019).
Y.G. Yuan, Q.L. Peng, and S. Gurunathan. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. International Journal of Nanomedicine 12: 6487 (2017).
A. Rostami, and A. Sazgarnia. Gold nanoparticles as cancer theranostic agents. Nanomedicine Journal 6: 147-60 (2019).
R. Mrówczyński, A. Jędrzak, K. Szutkowski, B.F. Grześkowiak, E. Coy, R. Markiewicz, T. Jesionowski, and S. Jurga. Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials 8: 170-79 (2018).
Y. Yin, Q. Hu, C. Xu, Q. Qiao, X. Qin, Q. Song, Y. Peng, Y. Zhao, and Z. Zhang. Co-delivery of doxorubicin and interferon-γ by thermosensitive nanoparticles for cancer immunochemotherapy. Molecular Pharmaceutics 15: 4161-72 (2018).
A. Pugazhendhi, T.N. Edison, I. Karuppusamy, and B. Kathirvel. Inorganic nanoparticles: a potential cancer therapy for human welfare. International Journal of Pharmaceutics 539: 104-11 (2018).
F. Mottaghitalab, M. Farokhi, Y. Fatahi, F. Atyabi, R. Dinarvand. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. Journal of Controlled Release 295: 250- 67 (2019).
H.G. Almanghadim, Z. Nourollahzadeh, N.S. Khademi, M.D. Tezerjani, F.Z. Sehrig, N. Estelami, M. Shirvaliloo, R. Sheervalilou, and S. Sargazi. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biology International 23: 3678-86 (2021).
R. Iyer, T. Nguyen, D. Padanilam, C. Xu, D. Saha, K.T. Nguyen, and Y. Hong. Glutathione-responsive biodegradable polyurethane nanoparticles for lung cancer treatment. Journal of Controlled Release 321:363-71 (2020).
R. Khalifehzadeh, and H. Arami. Biodegradable calcium phosphate nanoparticles for cancer therapy. Advances in Colloid and Interface Science 279: 102157 (2020).
M. Sun, D. Peng, H. Hao, J. Hu, D. Wang, K. Wang, J. Liu, X. Guo, Y. Wei, and W. Gao. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Applied Materials & Interfaces 9: 10453-60 (2017).
V. Krishnan, and S. Mitragotri. Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Advanced Drug Delivery Reviews 153: 87-108 (2020).
S. Mondal, P. Manivasagan, S. Bharathiraja, M.M. Santha, V.T. Nguyen, H.H. Kim, S.Y. Nam, K.D. Lee, and J. Oh. Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials 7: 426 (2017).
B. Zhou, Q. Wu, M. Wang, A. Hoover, X. Wang, F. Zhou, R.A. Towner, N. Smith, D. Saunders, J. Song, and J. Qu. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chemical Engineering Journal 396: 125239 (2020).
M.G. Le, A. Paquirissamy, D. Gargouri, G. Fadda, F. Testard, C. Aymes-Chodur, E. Jubeli, T. Pourcher, B. Cambien, S. Palacin, and J.P. Renault. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Applied Bio Materials 2: 144- 54 (2018).
A.D. Pandya, E. Jäger, S.B. Fam, A. Höcherl, A. Jäger, V. Sincari, B. Nyström, P. Štěpánek, T. Skotland, K. Sandvig, and M. Hrubý. Paclitaxel- loaded biodegradable ROS-sensitive nanoparticles for cancer therapy. International journal of nanomedicine 14: 6269 (2019).
B. Li, Q. Li, J. Mo, and H. Dai. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Frontiers in Pharmacology 84: 51-59 (2017).
E. Darrigues, Z.A. Nima, W. Majeed, K.B. Vang- Dings, V. Dantuluri, A.R. Biris, V.P. Zharov, R.J. Griffin, and A.S. Biris. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 1: diagnosis. Drug Metabolism Reviews 49: 212-52 (2017).
J. He, C. Li, L. Ding, Y. Huang, X. Yin, J. Zhang, J. Zhang, C. Yao, M. Liang, R.P. Pirraco, and J. Chen. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Advanced Materials 31: 1902409 (2019).
S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, and K.M. Jadhav. Self- heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceramics International 46: 25576-83 (2020).
Z. Liu, L. Xiong, G. Ouyang, L. Ma, S. Sahi, K. Wang, L. Lin, H. Huang, X. Miao, W. Chen, and Y. Wen. Investigation of copper cysteamine nanoparticles as a new type of radiosensitiers for colorectal carcinoma treatment. Scientific Reports 7: 112-19 (2017).
G. Kandasamy, A. Sudame, T. Luthra, K. Saini, and D. Mait. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS omega 3: 3991-4005 (2018).
R. Liu, C. Hu, Y. Yang, J. Zhang, H. Gao. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharmaceutica Sinica B 9: 410-20 (2019).
R.D. Mokoena, P.B. George, and H. Abrahamse. Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy. International journal of molecular sciences 20: 4771 (2019).
N.K. Pandey, L. Chudal, J. Phan, L. Lin, O. Johnson, M. Xing, J.P. Liu, H. Li, X. Huang, Y. Shu, and W. Chen. A facile method for the synthesis of copper–cysteamine nanoparticles and study of ROS production for cancer treatment. Journal of Materials Chemistry B 7: 6630-42 (2019).
A.Y. Elmaboud, K.S. Mekheimer, and T.G. Emam. Numerical examination of gold nanoparticles as a drug carrier on peristaltic blood flow through physiological vessels: cancer therapy treatment. BioNanoScience 9: 952-65 (2019).
H. Abrahamse, C.A. Kruger, S. Kadanyo, and A. Mishra. Nanoparticles for advanced photodynamic therapy of cancer. Photomedicine and laser surgery 35: 581-8 (2017).
A. Ashkbar, F. Rezaei, F. Attari, and S. Ashkevarian. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Scientific Reports 10: 1-2 (2020).
S. Gulla, D. Lomada, V.V. Srikanth, M.V. Shankar, K.R. Reddy, S. Soni, and M.C. Reddy. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Methods in Microbiology 46 :255-93 (2019).
V. Ivošev, G.J. Sánchez, L. Stefancikova, A.D. Haidar, C.R. Vargas, X. Yang, R. Bazzi, E. Porcel, S. Roux, and S. Lacombe. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. Nanotechnology 31: 135102 (2020).
R. Li, Y. He, S. Zhang, J. Qin, and J. Wang. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B 8: 14-22 (2018).
C. Xu, F. Haque, D.L. Jasinski, D.W. Binzel, D. Shu, and P. Guo. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Letters 41: 357-70 (2018).
N. Sahakyan, A. Haddad, S. Richardson, V. Forcha-Etieundem, L. Christopher, H. Alharbi, and R. Campbell. Personalized nanoparticles for cancer therapy: a call for greater precision. Anti- Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents 17(8):1033-9 (2017).
A. Jurj, C. Braicu, L.A. Pop, C. Tomuleasa, C.D. Gherman, and I. Berindan-Neagoe. The new era of nanotechnology, an alternative to change cancer treatment. Drug Design, Development and Therapy 11: 2871 (2017).
A. Gholami, S.M. Mousavi, S.A. Hashemi, Y. Ghasemi, W.H. Chiang, and N. Parvin. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metabolism Reviews 52: 205- 24 (2020).
E. Spyratou, M. Makropoulou, E.P. Efstathopoulos, A.G. Georgakilas, and L. Sihver. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 9: 173-79 (2017).
D. Maity, and G. Kandasamy. Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. In Nanotechnology Characterization Tools for Tissue Engineering and Medical. Springer, Berlin, Heidelberg, p. 299-332 (2019).
T. Li, S. Shi, S. Goel, X. Shen, X. Xie, Z. Chen, H. Zhang, S. Li, X. Qin, H. Yang, and C. Wu. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomaterialia 89: 1-3 (2019).
M.J. Gorbet, and A. Ranjan. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacology & Therapeutics 207: 107456 (2020).
K. Zabielska-Koczywąs, and R. Lechowski. The use of liposomes and nanoparticles as drug delivery systems to improve cancer treatment in dogs and cats. Molecules 22: 2167 (2017).
A. Dadwal, A. Baldi, and R.K. Narang. Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology 46: 295-305 (2018).
B. Wu, S.T. Lu, L.J. Zhang, R.X. Zhuo, H.B. Xu, and S.W. Huang. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment. International Journal of Nanomedicine 12: 1853 (2017).
Y. Liu, L. Qiao, S. Zhang, G. Wan, B. Chen, P. Zhou, N. Zhang, and Y. Wang. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomaterialia 6: 310-24 (2018).
G. Raja, Y.K. Jang, J.S. Suh, H.S. Kim, S.H. Ahn, and T.J. Kim. Microcellular environmental regulation of silver nanoparticles in cancer therapy: a critical review. Cancers 12: 664 (2020).
J. Guo, and L. Huang. Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews 156: 23-39 (2020).
W. Yu, X. He, Z. Yang, X. Yang, W. Xiao, R. Liu, R. Xie, L. Qin, and H. Gao. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 217: 119309 (2019).
Y. Xia, G. Tang, M. Guo, T. Xu, H. Chen, Z. Lin, Y. Li, Y. Chen, B. Zhu, H. Liu, and J. Cao. Silencing KLK12 expression via RGDfC-decorated selenium nanoparticles for the treatment of colorectal cancer in vitro and in vivo. Materials Science and Engineering: C 110: 110594 (2020).
Z. Zhang, Q. Wang, Q. Liu, Y. Zheng, C. Zheng, K. Yi, Y. Zhao, Y. Gu, Y. Wang, and C. Wang, X. Zhao. Dual‐Locking nanoparticles disrupt the PD‐1/ PD‐L1 pathway for efficient cancer immunotherapy. Advanced M aterials 31: 1905751 (2019).
A.T. Khalil, M. Ovais, J. Iqbal, A. Ali, M. Ayaz, M. Abbas, I. Ahmad, and H.P. Devkota. Microbes- mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. In Seminars in Cancer Biology, Vol 69. Elsevier Academic Press, USA, p.145-59 (2021).
Y. Wang, R. Cai, and C. Chen. The nano–bio interactions of nanomedicines: Understanding the biochemical driving forces and redox reactions. Accounts of Chemical Research 52: 1507-18 (2019).
Y. Yoshioka, K. Higashisaka, S.I. Tsunoda, and Y. Tsutsumi. The absorption, distribution, metabolism, and excretion profile of nanoparticles. In: Engineered Cell Manipulation for Biomedical Application, Springer, Tokyo, p. 259-271 (2014).
Downloads
Published
How to Cite
Issue
Section
License
Creative Commons Attribution (CC BY). Allows users to: copy the article and distribute; abstracts, create extracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation); include in a collective work (such as an anthology); and text or data mine the article. These uses are permitted even for commercial purposes, provided the user: includes a link to the license; indicates if changes were made; gives appropriate credit to the author(s) (with a link to the formal publication through the relevant DOI); and does not represent the author(s) as endorsing the adaptation of the article or modify the article in such a way as to damage the authors' honor or reputation.