Anti-bacterial and Anti-biofilm Effect of Curcumin-Ag Nanoparticles against Pseudomonas aeruginosa Isolated from Iraqi Burn Patients Infections

Authors

  • Rasha Mohammed Sajet Al-Oqaili Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran
  • Seyyed Meysam Abtahi Froushani Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran
  • Likaa Hamied Mahdi Department of Biology, College of Science, Mustansiriyah University, Iraq

DOI:

https://doi.org/10.53560/PPASB(62-1)1067

Keywords:

Antimicrobial Activity, Antibiofilm, Burn, Curcumin Silver Nanoparticles, Characterization, Pseudomonas aeruginosa

Abstract

The increasing emergence of multidrug-resistant bacteria, which are the cause of wound infections, constitutes a major health problem, and because of their ability to produce biofilms. The main objective of the present study is to evaluate the antibacterial and antibiofilm activity of curcumin-Ag nanoparticles. According to Scanning Electron Microscopy (SEM) and X-Ray Diffraction analysis (XRD), the nanoparticles appeared in spherical shapes and sizes of 47.98 - 58.80 nm. From UV-Visible spectrum a high-intensity absorption peak around 450 nm called the spectral plasmonic region (SPR), is observed for curcumin-Ag. To examine the antibacterial activity, the agar-well diffusion method was performed. Minimum inhibitory concentrations (MIC) of curcumin-Ag nanoparticles and gentamicin were used to evaluate the antibacterial activity against resistant Pseudomonas aeruginosa. The results indicate that nano-curcumin possesses material anti-bacterial activity against all Ps. aeruginosa isolates disparity with control, and the anti-bacterial activity of nano-curcumin at 256 μg/ml was significantly higher than 128 μg/ml, according to earlier research, curcumin nanoparticles break down bacterial cell walls, and when this happens, the bacteria lyse and die. Antibiotic susceptibility testing was performed on Piperacillin (70%), Imipenem (53.33%), Colstine (40%), Gentamycin (0%), and Ceftaroline (CFT) (30%). Significant antibacterial action of curcumin NPs was observed against the most biofilm-producing Ps. aeruginosa isolates.

References

G.H.R.V. de Macedo, G.D.E. Costa, E.R. Oliveira, G.V. Damasceno, J.S.P. Mendonça, L.S. Silva, V.L. Chagas, J.M.N. Bazán, A.S.D.S. Aliança, R.C.M. Miranda, A. Zagmignan, A.S. Monteiro, and L.C.N. Silva. Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 10(2): 148 (2021).

M.Y. Memar, K. Adibkia, S. Farajnia, S.M. Kafil, Y. Khalili, R. Azargun, and R. Ghotaslou. In-vitro effect of imipenem, fosfomycin, colistin, and gentamicin combination against carbapenem-resistant and biofilm-forming Pseudomonas aeruginosa isolated from burn patients. Iranian Journal of Pharmaceutical Research 20(2): 286 (2021).

M. Gholami, H. Zeighami, R. Bikas, A. Heidari, F. Rafiee, and F. Haghi. Inhibitory activity of metal-curcumin complexes on quorum sensing related virulence factors of Pseudomonas aeruginosa PAO1. AMB Express 10(1): 111 (2020).

L.H. Mahdi, A.B. Hasson, M.G. Sulaiman, A.H. Mohammed, H.K. Jawad, G.A. Al- Dulmi, H.R. Essa, S. Albukhaty, and R. Khan. Anti-microbial efficacy of L-glutaminase (EC 3.5.1.2) against multidrug-resistant Pseudomonas aeruginosa infection. Journal Antibiotics 77(2): 111-119 (2024).

A. Kunwar, P.P. Shrestha, S. Shrestha, S. Thapa, S. Shrestha, and N.M. Amatya. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burns Open 5: 125–129 (2021).

R.K. Raghavendhar and L.L. Devanand. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 24(16): 2930 (2019).

S.G. Gupta, S. Patchva, and B.B. Aggarwal. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal 15(1): 195–218 (2013).

A. Gupta, S.M. Briffa, S.Swingler, H.Gibson, V. Kannappan, G. Adamus, M. Kowalczuk, C. Martin, and I. Radecka. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules 21(5): 1802-1811 (2020).

A. Gupta, D.J. Keddie, V. Kannappan, H.Gibson, I.R. Khalil, M. Kowalczuk, C. Martin, X. Shuai, and I. Radecka. Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. European Polymer Journal 118: 437-450 (2019).

Z. Song, Y. Wu, H. Wang, and H. Han. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Materials Science & Engineering: C 99: 255– 263 (2019).

M. Fahim, A. Shahzaib, N. Nishat, A. Jahan, T.A. Bhat, and A. Inam. Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 16: 100125 (2024).

Y. Lyu, M. Yu, Q. Liu, Q. Zhang, Z. Liu, Y. Tian, D. Li, and M. Changdao. Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydrydrate Polymers 230: 115573 (2020)

E. Vetchinkina, E. Loshchinina, M. Kupryashina, A. Burov, T. Pylaev. and V. Nikitina. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. Peer J 6: e5237 (2018).

H. Matthew, D. Melissa, D. Maria, and G. Anisha Gup. Green Synthesis of Nanomaterials. Nanomaterials 11(8): 2130 (2021).

S. Khorrami, A. Zarrabi, M. Khaleghi, M. Danaei, and M.R. Mozafari. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine 13: 8013-8024 (2018).

D. Hatice, E. Furkan, A.S. Emir, M.W. Anna, B.I. Mikhael, and K. Sercan. Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials 14(18): 1527 (2024).

I. Hussain, N.B. Singh, A. Singh, H. Singh, and S.C. Singh. Green synthesis of nanoparticles and its potential application. Biotechnology Letters 38: 545-560 (2016).

M.J. Khan, K. Shameli, A.Q. Sazili, J. Selamat, and S.Kumari. Rapid Green Synthesis and Characterization of Silver Nanoparticles Arbitrated by Curcumin in an Alkaline Medium. Molecules 24(4): 719 (2019).

V. Gopinath, D.M. Ali, S. Priyadarshini, N.M. Priyadharsshini, N. Thajuddin, and P.Velusamy. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biologicalapproach. Colloids and Surfaces B: Biointerfaces 96: 69-74 (2012).

S. Basavaraja, S.D. Balaji, A. Lagashetty, A.H. Rajasab, and A. Venkataraman. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin 43(5): 1164-1170 (2008).

C.C. González, L.I.G. García, L.G.B. Jurado, and A.C. Castillo. Bactericidal activity of silver nanoparticles in drug-resistant bacteria. Brazilian Journal of Microbiology 54: 691-701 (2023).

A. Rai, S. Seena, T. Gagliardi, and P.J. Palma. Advances in the design of amino acid and peptide synthesized gold nanoparticles for their applications. Advances in Colloid and Interface Science 318: 102951 (2023).

A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, and G. Nath. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine 11(1): 37-44 (2020).

S. Browne, S. Bhatia, N. Sarkar, and M. Kaushik. Antibiotic-resistant bacteria and antibiotic-resistant genes in agriculture: a rising alarm for future. In: Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources. P. Singh and M. Sillanpää (Eds.). Academic Press pp. 247-274 (2023).

E.S. Nazoori and A. Kariminik. In Vitro Evaluation of Antibacterial Properties of Zinc Oxide Nanoparticles on Pathogenic Prokaryotes. Journal of Applied Biotechnology Reports 5(4): 162-165 (2018).

G. Stati, F. Rossi, T. Trakoolwilaiwan, D.L. Tung, S. Mourdikoudis, N.T.K. Thanh, and R.D. Pietro. Development and Characterization of Curcumin-Silver Nanoparticles as a Promising Formulation to Test on Human Pterygium-Derived Keratinocytes. Molecules 27(1): 282 (2022).

S. Bettini, R. Pagano, L. Valli, and G. Giancane. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles. Nanoscale 6: 10113-10117 (2014).

A. Shariati, E. Asadian, F. Fallah, T. Azimi, A. Hashemi, J.Y. Sharahi, and M.T. Moghadam. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infection and Drug Resistance 12: 2223-2235 (2019).

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne PA, USA (2020). https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

A.P. Magiorakos, A. Srinivasan, R.B. Carey, Y. Carmeli, M.E. Falagas, C.G. Giske, S. Harbarth, J.F. Hindler, G. Kahlmeter, B.O. Liljequist, D.L. Paterson, L.B. Rice, J. Stelling, M.J. Struelens, A. Vatopoulos, J.T. Weber, and D.L. Monnet. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 18(3): 268-281 (2012).

D.J. Freeman, F.R. Falkner, and K.C.T. Keane. New method for detecting slime production by Coagulase negative staphylococci. Journal of Clinical Pathology 42(8): 872-874 (1989).

R.M.S. AL-Oqaili. Use Ethidium Bromide as curing to plasmid in Staphylococcus aureus (MRSA) isolated from Patients Iraqi and Screening for Virulence Factors. Journal of Pharmaceutical Sciences and Research 10(9): 2351-2353 (2018).

D. Zhang, J. Xia, Y. Xu, M. Gong, Y. Zhou, L. Xie, and X. Fang. Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clinical and Experimental Medicine 16: 73-80 (2016).

S. Sandhuli, P. Shashiprabha, A.N. Dunuweera, N. Dunuweera, and R.M.G. Rajapakse. Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizomes. ACS Omega 6(12): 8246-8252 (2021).

M. Elshikh, S. Ahmed, S. Funston, P. Dunlop, M. McGaw, R. Marchant, and I.M. Banat. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters 38: 1015-1019 (2016).

S. Stepanovic, D. Vukovic, V. Hola, G.D. Bonaventura, S. Djukic, I. Cirkovic, and F. Ruzicka. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS) 115(8): 891-899 (2007).

A. Kunwar, P. Shrestha, S. Shrestha, S. Thapa, S. Shrestha, and N.M. Amatya. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Burns Open 5(3): 125-129 (2021).

R. Aakash, Kavyarathna, G.S. Nagananda, T.R. Kavya, R. Reddy, K.U. Minchitha, S. Swetha, and S. Suryan. Synergistic blend: Curcumin-loaded silver nanoparticles synthesized from Talaromyces atroroseus pigment for bio evaluation. Plant Nano Biology 10: 100120 (2024).

I. Ali, M. Ali, A.B. Ahmed, and H.I. Al-Ahmed. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Scientific Reports 13: 2256 (2023).

M.M. Gevorgyan, N.P. Voronina, N.V. Goncharova, T.V. Kozaruk, G.S. Russkikh, L.A. Bogdanova, and T.A. Korolenko. Cystatin C as a Marker of Progressing Cardiovascular Events during Coronary Heart Disease. Bulletin of Experimental Biology and Medicine 162(10): 421-424 (2017).

A. Joly and M.S. Latha. Synthesis of Nano-curcumin-Alginate Conjugate and its Characterization by XRD, IR, UV-VIS Andraman Spectroscopy. Oriental Journal of Chemistry 35(2): 751 (2019).

M.P. Gashti, F. Alimohammadi, A. Kiumarsi, W. Nogala, Z. Xu, W.J. Eldridge, and A. Wax. In: Nanocomposite Materials: Synthesis, Properties and Applications. J. Parameswaranpillai, N. Hameed, T. Kurian, and Y. Yu (Eds.). 1st Edition. Chapter 5. CRC Press, Taylor & Francis, Boca Raton (2016).

V.A. Hackley and J.D. Clogston. Measuring the Hydrodynamic Size of Nanoparticles in Aqueous Media Using Batch-Mode Dynamic Light Scattering. In: Methods in Molecular Biology: Characterization of Nanoparticles Intended for Drug Delivery. S.E. McNeil (Editor). Volume 697. Humana Press pp. 35-52 (2011).

T. Zheng, S. Bott, and Q. Huo. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation. ACS Applied Materials & Interfaces 8(33): 21585-21594 (2016).

J. Lim, S.P. Yeap, H.X. Che, and S.C. Low. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters 8(1): 381 (2013).

F. Kesisoglou, S. Panmai, and Y. Wu. Nanosizing-oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews 59(7): 631-644 (2007).

S. Mohanty, B. Baliyarsingh, and S.K. Nayak. Antimicrobial Resistance in Pseudomonas aeruginosa: A Concise Review. In: Antimicrobial Resistance - A One Health Perspective. M. Mareș, S.H.E. Lim, K.S. Lai, and R.T. Cristina (Eds.). Chapter 3. Intech Open (2020).

O.A. Akingbade, S.A. Balogun, D.A. Ojo, R.O. Afolabi, B.O. Motayo, P.O. Okerentugba, and I.O. Okonko. Plasmid profile analysis of multidrug resistant Pseudomonas aeruginosa isolated from wound Infections in Southwest, Nigeria. World Applied Sciences Journal 20(6): 766-775 (2012).

A. Litwin, O. Fedorowicz, and W. Duszynska. Characteristics of Microbial Factors of Healthcare-Associated Infections Including Multidrug-Resistant Pathogens and Antibiotic Consumption at the University Intensive Care Unit in Poland in the Years 2011–2018. International Journal of Environmental Research and Public Health 17(19): 6943 (2020).

L.H. Mahdi, N.Z. Mahdi, R.M. Sajet, I.G. Auda, H.N. Mater, L.A. Zwain, and L.G. Alsaadi. Anticariogenic and antibiofilm of purified bacteriocin of Lactobacillus curvatus and immunomodulatory effect of L. curvatus in streptococcal bacteremia. Reviews and Research in Medical Microbiology 30(1): 26-35 (2019).

L.M. Mahdi, A.R. Laftah, K.H. Yaseen, I.G. Auda, and R.H. Essa. Establishing novel roles of bifidocin LHA, antibacterial, antibiofilm and immunomodulator against Pseudomonas aeruginosa corneal infection model. International Journal of Biological Macromolecules 186: 433-444 (2021).

M. Bassetti, A. Vena, E. Righi, A. Croxatto, and B. Guery. How to manage Pseudomonas aeruginosa infections. Drugs in Context 7: 212527 (2018).

D. Nigussie, G. Davey, B.A. Legesse, A. Fekadu, and E. Makonnen. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies 21: 2 (2021).

K.B. Kowalska and W.R. Dudek. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10(2): 165 (2021).

G.F. Sanz, A.S. Hernando, and J.L. Martínez. Evolution under low antibiotic concentrations: A risk for the selection of Pseudomonas aeruginosa multidrug-resistant mutants in nature. Environmental Microbiology 24(3): 1279-1293 (2022).

N. Saidi, F. Davarzani, Z. Yousefpour, and P. Owlia. Effects of Sub-Minimum Inhibitory Concentrations of Gentamicin on Alginate Produced by Clinical Isolates of Pseudomonas aeruginosa. Advanced Biomedical Research 12(1): 94 (2023).

W.H. Lee, C.Y. Loo, M. Bebawy, F. Luk, R. Mason, and R. Rohanizadeh. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology 11(4): 338-378 (2013).

N. El-Kattan, A.N. Emam, A.S. Mansour, M.A. Ibrahim, A.B.A. El-Razik, K.A.M. Allam, N.M. Riadi, and S.A. Ibrahim. Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria. RSC Advances 12: 18022-18038 (2022).

S. Roudashti, H. Zeighami, H. Mirshahabi, S. Bahari, A. Soltani, and F. Haghi. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World Journal of Microbiology and Biotechnology 33: 50 (2017).

C.Y. Loo, R. Rohanizadeh, P.M. Young, D. Traini, R. Cavaliere, C.B. Whitchurch, and W.H. Lee. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agricultural and Food Chemistry 64(12): 2513-2522 (2016).

A.E. Krausz, B.L. Adler, V. Cabral, M. Navati, J. Doerner, R.A. Charafeddine, D. Chandra, H. Liang, L. Gunther, A. Clendaniel, S. Harper, J.M. Friedman, J.D. Nosanchuk, and A.J. Friedman. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine 11(1): 195-206 (2015).

F.K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, and M. Lin. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surfaces B: Biointerfaces 171: 398-405 (2018).

A.D. Selvan, D. Mahendiran, K.R. Senthil, and K.A. Rahiman. Garlic, Green tea and Turmeric Extracts-Mediated Green Synthesis of Silver Nanoparticles: Phytochemical, Antioxidant and in Vitro Cytotoxicity Studies. Journal of Photochemistry and Photobiology B: Biology 180: 243-252 (2018).

X.X. Yang, C.M. Li, and C.Z. Huang. Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection Xiao. Nanoscales 8(5): 3040-3048 (2016).

M. Górski, J. Niedźwiadek, and A. Magryś. Antibacterial activity of curcumin – a natural phenylpropanoid dimer from the rhizomes of Curcuma longa L. and its synergy with antibiotics. Annals of Agricultural and Environmental Medicine 29(3): 394-400 (2022).

A.M. El-Mahdy, M. Alqahtani, M. Almukainzi, M.F. Alghoribi, and S.H.A. Abdel-Rhman. Effect of Resveratrol and Curcumin on Gene Expression of Methicillin-Resistant Staphylococcus aureus (MRSA) Toxins. Journal of Microbiology and Biotechnology 34(1): 141-148 (2024).

D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, and L. Huang. Antibacterial mechanism of curcumin: A review. Chemistry & Biodiversity 17(8): e2000171 (2020).

M. Oves, M. Aslam, M.A. Rauf, S. Qayyum, H.A. Qari, M.S. Khan, M.Z. Alam, S. Tabrez, A. Pugazhendhi, and I.M.I. Ismail. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Materials Science & Engineering C: Materials for Biological Applications 89: 429-443 (2018).

R. Shanmuganathan, I. Karuppusamy, M. Saravanan, H. Muthukumar, K. Ponnuchamy, V.S. Ramkumar, and A. Pugazhendhi. Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Current Pharmaceutical Design 25(24): 2650-2660 (2019).

Downloads

Published

2025-03-10

How to Cite

Rasha Mohammed Sajet Al-Oqaili, Seyyed Meysam Abtahi Froushani, & Likaa Hamied Mahdi. (2025). Anti-bacterial and Anti-biofilm Effect of Curcumin-Ag Nanoparticles against Pseudomonas aeruginosa Isolated from Iraqi Burn Patients Infections. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 62(1), 25–39. https://doi.org/10.53560/PPASB(62-1)1067

Issue

Section

Research Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.