Integron Mediated Multiple Heavy Metal and Antibiotic Resistance in Plant Growth Promoting Epiphytic Bacteria

Authors

  • Noor-e-Saba Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
  • Rida Batool Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
  • Nazia Jamil Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

DOI:

https://doi.org/10.53560/PPASB(62-2)1030

Keywords:

Epiphytic Bacteria, Plant Growth Promotion, Antioxidant activity, DPPH Activity, IntI1 Gene

Abstract

The present study was conducted to investigate the co-selection of antibiotic and heavy metal resistance in epiphytic bacteria isolated from Withania somnifera, Ficus benghalensis, Olea europaea and Aloe vera. Thirty epiphytic bacterial strains were isolated. Six isolated strains were selected and observed to have significant multiple heavy metals and antibiotics resistance. Single and synergistic effect of heavy metals and antibiotics constantly boosted the growth rate of selected bacterial isolates. Inoculation of these epiphytic bacteria caused increment in seedling, shoot and root length upto 58-70%, 25-37%, 87-125% respectively, while there was an increase in number of leaves upto 25-50% of Triticum aestivum. These epiphytic bacteria exhibited high extracellular antioxidant potential with rise in DPPH (2, 2-diphenyl 1-picrylhydrazyl) scavenging ability (33-59%) and phenols concentration (78-173 µg/ml). Phylogenetic analysis revealed 99-100% similarity of these bacterial strain AN1 (Staphylococcus pasteuri), AN2 (Microbacterium paraoxydans), BG4 (Pseudomonas azotoformans), BG6 (Staphylococcus haemolyticus), OL21 (Staphylococcus haemolyticus), and AV2 (Paenobacillus lactis). Sixty-six percent of these bacteria carried IntI1 gene having similarity with XerC integrase/recombinases superfamily conserved domains. Our findings suggested that existence of IntI1 gene in epiphytic bacterial genome helps in their survival under stress environment.

References

1. R. Krishnamoorthy, S.W. Kwon, K. Kumutha, M. Senthilkumar, S. Ahmed, T. Sa, and R. Anandham. Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion. 3 Biotech 8(6): 275 (2018).

2. Y. Xiong, R. Yang, X. Sun, H. Yang, and H. Chen. Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. Journal of Applied Phycology 30(2): 1225-1237 (2018).

3. Y. Ma, M. Rajkumar, C. Zhang, and H. Freitas. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174: 14-25 (2016).

4. R.O. Schlechter, M. Miebach, and M.N.P. Remus-Emsermann. Driving factors of epiphytic bacterial communities: a review. Journal of Advanced Research 19: 57-65 (2019).

5. N. Wang, L.L. Stelinski, K.S. Pelz-Stelinski, J.H. Graham, and Y. Zhang. Tale of the huanglongbing disease pyramid in the context of the citrus microbiome. Phytopathology 107(4): 380-387 (2017).

6. J.M. Munita and C.A. Arias. Mechanisms of antibiotic resistance. Microbiology Spectrum 4(2): 1-37 (2016).

7. R. Karmakar, S. Bindiya, and P. Hariprasad. Convergent evolution in bacteria from multiple origins under antibiotic and heavy metal stress, and endophytic conditions of host plant. Science of The Total Environment 650: 858-867 (2019).

8. F. Arsène-Ploetze, O. Chiboub, D. Lièvremont, J. Farasin, K.C. Freel, S. Fouteau, and V. Barbe. Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters. Environmental Science and Pollution Research International 25: 1470-1483 (2018).

9. G.W. Sundin and N. Wang. Antibiotic resistance in plant-pathogenic bacteria. Annual Review of Phytopathology 56: 161-180 (2018).

10. N. Asatiani, T. Kartvelishvili, N. Sapojnikova, M. Abuladze, L. Asanishvili, and M. Osepashvili. Effect of the simultaneous action of zinc and chromium on Arthrobacter spp. Water, Air, & Soil Pollution, 229(12): 395 (2018).

11 G. Gianluigi, L.D. Vecchio, M. Cirlini, M. Gozzi, L. Gazza, G. Galaverna, S. Potestio, and G. Visioli. Exploring the rhizosphere of perennial wheat: potential for plant growth promotion and biocontrol applications. Scientific Reports 14(1): 22792 (2024).

12. A. Sagar, G. Thomas, S. Rai, R. K. Mishra, and P. W. Ramteke. Enhancement of growth and yield parameters of wheat variety AAI-W6 by an organic farm isolate of plant growth promoting Erwinia species (KP226572). International Journal of Agriculture, Environment and Biotechnology 11(1): 159-171 ((2018).

13. I. Afzal, Z. K. Shinwari, S. Sikandar, and S. Shahzad. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiological Research 221: 36-49 (2019).

14. S. Bhushan, M. Gogoi, A. Bora, S. Ghosh, S. Barman, T. Biswas, M. Sudarshan, A.R. Thakur, I. Mukherjee, S.K. Dey, and S.R. Chaudhuri. Understanding bacterial biofilm stimulation using different methods-a criterion for selecting epiphytes by plants. Microbiology and Biotechnology Letters 47(2): 303-309 (2019).

15. J.G. Cappuccino and N. Sherman (Eds.). Microbiology - A Laboratory Manual. 4th Edition. The Benjamin/Cummings Publishing Co. Inc. Menlo Park, California USA (1996).

16. S.A. Medina-Salazar, M. Rodríguez-Aguilar, M.R. Vallejo-Pérez, R. Flores-Ramírez, J. Marín-Sánchez, G. Aguilar-Benítez, R. Jarquin-Gálvez, and J.P. Lara-Ávila, Biodiversity of epiphytic Pseudomonas strains isolated from leaves of pepper and lettuce. Biologia 75: 773-784 (2020).

17. S. Mustafa, S. Kabir, U. Shabbir, and R. Batool. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78: 115-123 (2019).

18. S.I. Shofia, K. Jayakumar, A. Mukherjee, and N. Chandrasekaran. Study of nanoparticles impact on the growth and exopolysaccharides production of epiphytic bacteria from seaweeds. Advanced Science Letters 24(8): 5923-5930 (2018).

19. G. Renchinkhand, S.H. Cho, M. Urgamal, Y.W. Park, J.H. Nam, H.C. Bae, G.Y. Song, and M.S. Nam. Characterization of Paenibacillus sp. MBT213 isolated from raw milk and its ability to convert ginsenoside Rb1 into ginsenoside Rd from Panax ginseng. Korean Journal for Food Science of Animal Resources 37(5): 735-742 (2017).

20. R. Dilshad and R. Batool. Antibacterial and antioxidant potential of Ziziphus jujube, Fagonia arabica, Mallotus phillipensis and Hemidesmus indicus. Jordan Journal of Pharmaceutical Sciences 15(3): 413-427 (2022).

21. H.J. Kim, A.W. Lee, and C. Park. Toxicological evaluation of Microbacterium foliorum SYG27B-MF. Regulatory Toxicology and Pharmacology 100: 16-24 (2018).

22. K. Tamura, M. Nei, and S. Kumar. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences 101: 11030-11035 (2004).

23. B.V. Mohite, S.H. Koli, C.P. Narkhede, S.N. Patil, and S.V. Patil. Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology 183: 582-600 (2017).

24. S. Alnaimat. Iron (II) and other heavy-metal tolerance in bacteria isolated from rock varnish in the arid region of Al-Jafer Basin, Jordan. Biodiversitas 18(3): 1250-1257 (2017).

25. R. Roychowdhury, P. Mukherjee, and M. Roy. Identification of chromium resistant bacteria from dry fly ash sample of Mejia MTPS thermal power plant, West Bengal, India. Bulletin of Environmental Contamination and Toxicology 96: 210-216 (2016).

26. Y. Ma, M. Rajkumar, A. Moreno, C. Zhang, and H. Freitas. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185: 75-85 (2017).

27. A. Ambrosini and L. M. Passaglia. Plant growth–promoting bacteria (PGPB): isolation and screening of PGP activities. Current Protocols in Plant Biology 2(3): 190-209 (2017).

28. J.B. Yu, M. Bai, C. Wang, H. Wu, and X. Liang. Regulation of secondary metabolites accumulation in medicinal plants by rhizospheric and endophytic microorganisms. Medicinal Plant Biology 3: e011 (2024).

29. M. Kaur and A. Karnwal. Screening of endophytic bacteria from stress-tolerating plants for abiotic stress tolerance and plant growth-promoting properties: identification of potential strains for bioremediation and crop enhancement. Journal of Agriculture and Food Research 14: 100723 (2023).

30. K.S. Singh, S. Anand, D. Aggrawal, J.K. Sharma, and V. Bahuguna. Exopolysaccharides of bacterial endophytes from medicinal plant of forest origin show antibacterial and biosurfactant properties. The Pharma Innovation Journal 7(4): 508-512 (2018).

31. J. Kumar, D. Singh, P. Ghosh, and A. Kumar. Endophytic and epiphytic modes of microbial interactions and benefits. In: Plant-Microbe Interactions in Agro-Ecological Perspectives. D.P. Singh, H.B. Singh and R. Prabha (Eds.) Springer Nature Singapore pp 227-253 (2017).

32. N.E. Es-Safi, S. Ghidouche, and P.H. Ducrot. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules 12(9): 2228-2258 (2007).

33. S.S. Mustafa, R. Batool, M. Kamran, H. Javed, and N. Jamil. Evaluating the role of wastewaters as reservoirs of antibiotic-resistant ESKAPEE bacteria using phenotypic and molecular methods. Infection and Drug Resistance 15: 5715-5728 (2022).

34. C. Mutuku, Z. Gazdag, and S. Melegh. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World Journal of Microbiology and Biotechnology 38: 152 (2022).

Downloads

Published

2025-06-04

How to Cite

Noor-e-Saba, Batool, R., & Jamil, N. (2025). Integron Mediated Multiple Heavy Metal and Antibiotic Resistance in Plant Growth Promoting Epiphytic Bacteria. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 62(2), 147–157. https://doi.org/10.53560/PPASB(62-2)1030

Issue

Section

Research Articles

Similar Articles

<< < 16 17 18 19 20 21 

You may also start an advanced similarity search for this article.