Subtractive Proteomics Supported with Rational Drug Design Approach Revealed ZINC23121280 as a Potent Lead Inhibitory Molecule for Multi-drug Resistant Francisella tularensis

Drug Designing for Multidrug-Resistant Francisella tularensis

Authors

  • Naima Javed Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
  • Sajjad Ahmad Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
  • Saad Raza Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
  • Syed Sikander Azam Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan

DOI:

https://doi.org/10.53560/PPASB(58-1)349

Keywords:

Francisella tularensis, Subtractive proteomics, Glucose-1-phosphate thymidylyltransferase, Pharmacophore, Molecular docking, Molecular Dynamic simulation, MMPB/GBSA

Abstract

Francisella tularensis is a Gram-negative bacterium and is the etiological agent of taluremia. The prolonged use of antibiotics is the reason for pathogen resistance to antibiotics such as beta-lactams and macrolides. This leads to the search to explore novel drug targets for F. tularensis to inhibit its growth. Subtractive proteomics revealed Glucose-1-phosphate thymidylyltransferase (G1PTT) as the most promising protein as a drug target. A pharmacophore model was generated for virtual screening of a druglike library comprised of 1,000,000 drug molecules. Based on a pharmacophore-based search, a set of 152 compounds was predicted as the most potent inhibitors against this enzyme. The screened hits were docked with the target enzyme; which unveiled ZINC23121280 as the best-docked inhibitor having Autdock Vina binding energy of -7.2 kcal/mol and the GOLD score of 64.06. Moreover, the timedependent dynamic behavior of the complex was analyzed using Molecular Dynamics (MD) simulation studies that revealed a stable system with a Root Mean Square Deviation (RMSD) average value of 2.25 Å and Root Mean Square
Fluctuations (RMSF) of 1.16 Å. Radial Distribution Function (RDF) predicted strong hydrogen interactions between the ligand and Trp221 from the enzyme active pocket. The higher affinity of the antagonist for the enzyme was further supported by Molecular Mechanics Energies combined with the Poisson–Boltzmann and Surface Area (MMPBSA) and or Generalized Born and Surface Area (MMGBSA) with the estimated binding free energy of −1.07 kcal/mol and −29.59 kcal/mol, respectively. Findings from this present computational framework may provide the foundation for future drug discovery against F. tularensis.

References

M.E. Evans., D.W. Gregory.,W. Schaffner, and Z.A.McGee. Tularemia: a 30-year experience with 88 cases. Medicine 64:251–269 (1985).

L.D. Thomas, and W. Schaffner. Tularemia pneumonia. Infection Disease Clinics 24:43–55 (2010).

I. Golovliov., V. Baranov., Z. Krocova., H. Kovarova, and A. Sjostedt. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infection Immunity 71:5940–5950 (2003).

World Health Organization, WHO guidelines on Tularaemia: epidemic and pandemic alert and response (2007).

A. Johansson., A. Larkeryd., M. Widerstrom., S. Mortberg., K. Myrtannas., C. Ohrman., D. Birdsell.,P. Keim., D.M. Wagner., M. Forsman, and P. Larsson. An Outbreak of Respiratory Tularemia Caused by Diverse Clones of Francisella tularensis.Clinics Infection Diseases 59:1546–1553 (2014).

A.M. Hauri., I. Hofstetter., E. Seibold., P. Kaysser., J. Eckert., H. Neubauer, and W.D. Splettstoesser. investigating an airborne tularemia outbreak, Germany. Emerging Infectious Diseases 16:238–243 (2010).

A. Desvars., M. Furberg., M. Hjertqvist., L.Vidman., A. Sjostedt., P.Ryden, and A.Johansson.epidemiology and ecology of tularemia in Sweden,1984–2012. Emerging Infectious Diseases 21:32–39 (2015).

A. Sjostedt. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Annals of the New York Academy of Sciences 1105:1–29 (2007).

J. Ellis., P.C.F. Oyston., M. Green, and R.W.Titball. Tularemia. Clinical Microbiology Review 15:631–646 (2002).

J. Su., J. Yang., D. Zhao., T.H. Kawula., J.A. Banas, and J.R. Zhang. Genome-Wide Identification of Francisella tularensis virulence determinants. Infection Immunity 75:3089–3101 (2007).

J.E. Staples., K.A. Kubota., L.G. Chalcraft., P.S. Mead, and J.M. Petersen. Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerging Infectious Diseases 12:1113–1118 (2006).

K.J. Kugeler., P.S. Mead., A.M. Janusz., J.E. Staples., K.A. Kubota., L.G. Chalcraft, and J.M. Petersen. Molecular epidemiology of Francisella

tularensis in the United States. Clinical Infectious Diseases 48:863–870 (2009).

J. Celli, and T.C. Zahrt. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harbor Perspective Medicine 3:a010314 (2013).

W.J. Dai., W. Bartens., G. Kohler., M. Hufnagel., M. Kopf, and F. Brombacher. Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice. Journal of Immunology 158:5297–5304 (1997).

A. Tarnvik. Nature of protective immunity to Francisella tularensis. Reviews of Infectious Diseases 11:440–451 (1989).

S. Ahmad., S. Raza., S.W. Abbasi, and S.S. Azam. Identification of natural inhibitors against Acinetobacter baumannii D-alanine-D-alanine ligase enzyme: A multi-spectrum in silico approach. Journal of Molecular Liquids 262:460–475 (2018).

S. Ahmad., S. Raza., R. Uddin, and S.S. Azam. Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular Graphics and Modelling 82:74–92 (2018).

G.R. Marshall. Computer-Aided Drug Design. Annual Reviews in Pharmacology Toxicology 27:193–213 (1987).

S. Ahmad., S. Raza., A. Abro., K.R. Liedl, and S.S. Azam. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. Journal of Biomolecular Structure and Dynamics 0:1–20 (2018).

R. Gupta., D. Pradhan., A.K.. Jain, and C.S. Rai.TiD: Standalone software for mining putative drug targets from bacterial proteome. Genomics 109:51–57 (2017).

Z .Khalid., S. Ahmad., S. Raza, and S.S. Azam. Subtractive proteomics revealed plausible drug candidates in the proteome of multi-drug resistant Corynebacterium diphtheriae. Meta Gene 17: 34-42 (2018).

A.L. Harvey. Natural products in drug discovery. Drug Discovery Today 13:894–901(2008).

G. Sanober., S. Ahmad, and S.S. Azam. Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Reports 7:147–153 (2017).

S. Ahmad., S. Raza., R. Uddin, and S.S. Azam. Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular Graphics and Modelling 82:74-92 (2018).

R. Zhang, and Y. Lin. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research 37:D455–D458 (2009).

S. Zuccotti., D. Zanardi., C. Rosano., L. Sturla.,M. Tonetti, and M. Bolognesi. Kinetic and crystallographic analyses support a sequentialordered bi-bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. Journal of Molecular Biology 313:831–843 (2001).

S. Ahmad., S. Raza., R. Uddin, and S.S. Azam. Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics and Modelling 77:72–85(2017).

C. Wang., P.H. Nguyen., K. Pham., D. Huynh., T.B.N. Le., H. Wang, P. Ren, and R. Luo. Calculating protein–ligand binding affinities with

MMPBSA: method and error analysis. Journal of Computational Chemistry 37:2436–2446 (2016).

UniProt. UniProt: the universal protein knowledgebase. Nucleic Acids Research 46:2699 (2018).

S. Twine., M. Bystrom., W. Chen., M. Forsman., I. Golovliov., A. Johansson., J. Kelly., H. Lindgren., K. Svensson., C. Zingmark., W. Conlan, and A. Sjostedt. a mutant of Francisella tularensis strain Schu S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infection Immunity 73:8345–8352 (2005).

G. Sanober., S. Ahmad, and S.S. Azam. Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Reports 7:147–153 (2017).

Y. Huang., B. Niu., Y. Gao., L. Fu, and W. Li. CDHIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682 (2010).

AR. Ortiz., P. Gomez-Puertas., A. Leo-Macias., P.Lopez-Romero, and E. Lopez-Vinas. Computational Approaches to Model Ligand Selectivity in Drug Design. Current Topics in Medicine Chemistry 6:41–55 (2006).

R. Cloete., E. Oppon., E. Murungi., W.D. Schubert, and A. Christoffels. Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis. BMC Bioinformatics 17: 75 (2016).

Y. Moriya., M. Itoh., S. Okuda., A.C. Yoshizawa, and M. Kanehisa. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35:182-185 (2007).

A. Naz., F.M. Awan., A. Obaid., S.A. Muhammad., R.Z. Paracha., J. Ahmad, and A. Ali. Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infection Genetics Evolution 32:280–291 (2015).

L. Chen., J. Yang., J. Yu., Z. Yao., L. Sun., Y. Shen, and Q. Jin. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Research 33:325-328 (2005).

N.Y. Yu., J.R. Wagner., M.R. Laird., G. Melli., S.Rey., R. Lo., P. Dao., S.C. Sahinalp., M. Ester., L.J. Foster, and F.S.L. Brinkman. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615 (2010).

C.S. Yu., Y.C. Chen., C.H. Lu, and J.K. Hwang. Prediction of protein subcellular localization. Proteins Structure Function Bioinformatics 64:643–651 (2006).

C.S.Yu., C.W. Cheng., W.C. Su., K.C. Chang., S.W.Huang., J.K. Hwang, and C.H. Lu. CELLO2GO: a web server for protein subcellular localization prediction with functional gene ontology annotation.PLOS ONE 9:e99368 (2014).

S.S. Azam, and A.Shamim. An insight into the exploration of druggable genome of Streptococcus gordonii for the identification of novel therapeutic candidates. Genomics 104:203–214 (2014).

Y.Asad., S. Ahmad., T. Rungrotmongkol., K.E.Ranaghan, and S.S. Azam. Immuno-informatics driven proteome-wide investigation revealed novel peptide-based vaccine targets against emerging multiple drug resistant Providencia stuartii. Journal of Molecular Graphics and Modelling 80:238–250 (2018).

E.Gasteiger., C. Hoogland., A. Gattiker., S. Duvaud.,M.R. Wilkins., R.D. Appel, ands Bairoch, A. Protein identification and analysis tools on the expasy server. In: the proteomics protocols handbook. Humana Press, pp 571–607 (2005).

B. Hesp, and A.K. Willard. Enzymes as targets for drug design. In: Enzyme Chemistry. Springer, Dordrecht, pp 119–161 (1984).

M. Kallberg., H. Wang., S. Wang., J. Peng., Z. Wang., H. Lu, and J. Xu. Template-based protein structure modeling using the RaptorX web server. Nature Protocol 7:1511–1522 (2012).

Kelley, L.A. and Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocol 4:363–371 (2009).

K.Arnold., L. Bordoli., J. Kopp, and T. Schwede. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201 (2006).

A. Roy., A. Kucukural, and Y. Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocol 5:725–738 (2010).

D. Eisenberg., R. Luthy, and J.U. Bowie. VERIFY3D: Assessment of protein models with three-dimensional profiles. In: methods in

enzymology. Academic Press, pp 396–404 (1997).

M.J. Wiederstein, and M. Sippl. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research 35:407-10 (2007).

R.A. Laskowski., J.A. Rullmannn., M.W. MacArthur., R. Kaptein, and J.M. Thornton. AQUA and PROCHECK-NMR: programs for checking

the quality of protein structures solved by NMR. Journal of Biomolecular NMR 8:477–486 (1996).

E.F. Pettersen., T.D. Goddard., C.C. Huang., G.S. Couch., D.M. Greenblatt., E.C. Meng, and T.E.Ferrin. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612 (2004).

S. Baseer., S. Ahmad., K.E. Ranaghan, and S.S.Azam. Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals 50:87–99 (2017).

C.A. Lipinski., F. Lombardo., B.W. Dominy, and P.J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26.

J. Lange., L.S. Wyrwicz, and G. Vriend. (2016) KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins. Bioinformatics 32:932–936 (2001).

B.Huang. MetaPocket: A meta approach to improve protein ligand binding site prediction. OMICS: A Journal of Integrative Biology 13:325–330 (2009).

J.D. Thompson., J. Gibson, and D.G. Higgins. Multiple sequence alignment using clustalw and clustalx. Current Protocols in Bioinformatics 1:2-3 (2002).

M.L. Verdonk., J.C. Cole., M.J. Hartshorn., C.W. Murray, and R.D. Taylor. Improved protein–ligand docking using GOLD. Proteins Structure Function Bioinformatics 52:609–623 (2003).

O. Trott, and A.J. Olson. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31:455–461(2010).

E.F. Pettersen., T.D. Goddard., C.C. Huang., G.S. Couch., D.M. Greenblatt., E.C. Meng, and T.E.L.Ferrin. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612 (2004).

W. Humphrey., A. Dalke, and K.Schulten. VMD: visual molecular dynamics. Journal of Molecular Graphics 14:33–38 (1996).

A.Abro, and S.S. Azam. Binding free energy based analysis of arsenic (+3 oxidation state) methyltransferase with S-adenosylmethionine. Journal of Molecular Liquids 220:375–382 (2016).

D.A. Case., V. Babin., J. Berryman., R.M. Betz., Q. Cai., D.S. Cerutti., I.T.E. Cheatham., T.A. Darden., R.E. Duke., H. Gohlke, and A.W. Goetz. Amber 14.

P.K. Weiner, and P.A. Kollman. AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry 2:287–303 (1981).

S. Andleeb., I.U. Din., M.K. Rauf., S.S. Azam., A. Badshah., H. Sadaf., A. Raheel., M.N. Tahir, and S. Raza. A one-pot multicomponent facile synthesis of dihydropyrimidin-2(1H)-thione derivatives using triphenylgermane as a catalyst and its binding pattern validation. RSC Advances 6:79651–79661 (2016).

V. Krautler., G.W.F. Van, and P.H. Hunenberger. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry 22:501–508 (2001).

H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of Chemical Physics 72:2384–2393 (1980).

D.R. Roe, and T.E. Cheatham. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation 9:3084–3095 (2013).

World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO Geneva Switzerland (2017).

C.L. Ventola. The Antibiotic Resistance Crisis. Pharmacy and Therapeutics 40:277–283 (2015)

B.M. Hassan., K. Ahmad., S. Roy., A.J. Mohammad.,M. Adil., S.S. Haris., S. Khan., K.M. Amjad., I.Provazník, and I. Choi. Computer aided drug design: success and limitations. Current pharmaceutical design 22: 572-581 (2016).

J.Drews. Drug Discovery: A Historical Perspective. Science 287:1960–1964 (2000).

T.Hossain., M. Kamruzzaman., T.Z. Choudhury., H.N. Mahmood., A.H.M.N Nabi, and M.I. Hosen. Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets against Salmonella enterica subsp. enterica serovar Poona. BioMed Research International 2017: (2017)

K.B. Patel., E. Toh., X.B. Fernandez., A. Hanuszkiewicz., G.G. Hardy., Y.V. Brun., M.A. Bernards, and M.A. Valvano. Functional Characterization of UDP-Glucose:Undecaprenyl-

Phosphate Glucose-1-Phosphate Transferases of Escherichia coli and Caulobacter crescentus. Journal of Bacteriology 194:2646–2657 (2012).

V. Sperandio., A.G. Torres, and J.B. Kaper. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Molecular Microbiology

:809–821 (2002).

G. McMullan, and J.P. Quinn. In vitro characterization of a phosphate starvation-independent carbonphosphorus bond cleavage activity in Pseudomonas fluorescens 23F. Journal of Bacteriology 176:320–324 (1994).

R.E. Webster. The tol gene products and the import of macronmolecules into Escherichia coli. Molecular Microbiology 5:1005–1011 (1991).

A. Wadood., M. Ghufran., S.F. Hassan., H. Khan., S.S. Azam, and U. Rashid. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. Pharmaceutical Biology 55:19–32 (2017).

E. Rutkowska., K. Pajak, and K. Jozwiak. Lipophilicity-- methods of determination and its role in medicinal chemistry. Acta Poloniae

Pharmaceutica -Drug Research 70:3–18 (2013).

S.A. Adcock, and J.A. McCammon. Molecular dynamics: survey of methods for simulating the activity of proteins. Chemical Reviews 106:1589–1615 (2006).

S. Abbasi., S. Raza., S.S. Azam., K.R. Liedl, and J.E. Fuchs. Interaction mechanisms of a melatonergic inhibitor in the melatonin synthesis pathway. Journal of Molecular Liquids 221:507–517 (2016).

J. Donohue. Radial distribution functions of some structures of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America 40:377–381 (1954).

Downloads

Published

2021-09-06

How to Cite

Javed, N. ., Ahmad, S. ., Raza, S. ., & Azam, S. S. . (2021). Subtractive Proteomics Supported with Rational Drug Design Approach Revealed ZINC23121280 as a Potent Lead Inhibitory Molecule for Multi-drug Resistant Francisella tularensis: Drug Designing for Multidrug-Resistant Francisella tularensis. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(1), 1–42. https://doi.org/10.53560/PPASB(58-1)349

Issue

Section

Research Articles