Deformable Registration Methods for Medical Images: A Review Based on Performance Comparison

Deformable Registration Methods for Medical Images

Authors

  • Fakhre Alam Department of Computer Science and Information Technology, University of Malakand, Malakand, Pakistan
  • Sami Ur Rahman Department of Computer Science and Information Technology, University of Malakand, Malakand, Pakistan
  • Adnan Khalil Department of Computer Science and Information Technology, University of Malakand, Malakand, Pakistan
  • Shah Khusro Department of Computer Science, University of Peshawar, Peshawar, Pakistan
  • Muhammad Sajjad Department of Computer Science, Islamia College University Peshawar, Peshawar, Pakistan

Keywords:

Medical image processing, image registration, deformable registration, imaging modalities

Abstract

Deformable registration methods are widely used for the accurate registration of objects with largescale deformation. In this paper, we present a detail review on performance analysis of deformable registration methods. We comprehensively review each registration method and describe its features, advantages, issues and challenges. Deformable registration methods are further quantitatively compared and evaluated based on a set of criteria, which estimate the performance of each method. The performance of registration methods is estimated using root mean square error (RMS), mutual information (MI), computational time complexity and memory requirement. It is found in our analysis that every registration method has its own strength to register deformable objects. However, due to large-scale variations in deformable objects most of the registration methods are not still a perfect choice in clinical applications. Therefore, advanced and powerful registration methods are needed to develop in future, which can precisely, efficiently, and automatically register medical images with large-scale deformations.

References

Bushberg, J. T., J.A. Sielert, E.M. Leidholdt, jr., & J.M. Boone. The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, Philadelphia, USA (2002).

Flower, M.A. Webb’s Physics of Medical Imaging, 2nd ed. Taylor & Francis, Boca Raton, US (2012).

Metter, R.L.V., J. Beutel, & H. L., Kundel. Handbook of Medical Imaging, Volume 1. Physics and Psychophysics, vol. 1. Society of Photo- Optical Instrumentation Engineers, Bellingham, Washington, USA (2000).

Angenent, S., E., Pichon, & A. Tannenbaum, A., Mathematical methods in medical image processing, Bulletin (New Series) American Mathematical Society, Vol. 43, p. 365-396, doi: http://dx.doi.org/10.1090/S0273-0979-06-01104-9 (2006).

McInerney, T. & D. Terzopoulos, Deformable Models in Medical Image Analysis: A Survey,Medical Image Analysis, Vol. 1, p. 91–108.doi:10.1016/S1361-8415(96)80007-7 (1996).

Brown, L.G. A Survey OfImage Registration Techniques, ACM Computing Surveys (CSUR), vol. 24, p. 325-376, www.geo.uzh.ch/microsite/rsldocuments/research/SARlab/.../Bro92.pdf (1991).

Fahmi Khalifa, G.M.B., Georgy Gimel’farb, Jasjit S. Suri & Ayman S. El-Baz. State-of-the-art medical image registration methodologies: A survey, In: Multi Modality State-of-the-art Medical Image Segmentation and Registration Methodologies, R. A. Ayman S. El-Baz, Andrew F. Laine, & Jasjit S.Suri (Ed.), Springer, New York, p. 235-280, DOI:10.1007/978-1-4419-8195-0_9 (2011).

Hajnal, J., D., Hawkes, & D. Hill. Medical Image Registration. CRC Press LLC, http://www.ncbi.nlm.nih.gov/pubmed/11277237 (2001).

Maintz, J.B A. & M.A. Viergever, A survey of medical image registration, Medical Image Analysis, vol. 2, pp. 1-36, DOI: 3D10.1.1.110.3014 (1998).

Mani, V.R.S. & D.S. Rivazhagan. Survey of medical image registration. Journal of Biomedical Engineering and Technology 1: 8-25, DOI: http:// pubs.sciepub.com/jbet/1/2/1/ (2013).

Nielsen, L.K., Elastic Registration of Medical MR Images. Thesis in Computational Science, Department of Mathematics and Neuroinformatics and Image Analysis Group, Department of Physiology, University of Bergen, folk.uib.no/nmaxt/thesis/nielsen.pdf (2003).

Oliveira, F. & J. Tavares. Medical image registration: a review, In: Medical Imaging: Technology and Applications, K. I. Troy Farncombe, (Ed), CRC Press, p. 619-660, http://www.ncbi.nlm.nih.gov/pubmed/22435355 (2013).

Salvi, J., C. Matabosch, D. Fofi, & J. Forest. A review of recent range image registration methods with accuracy evaluation. Image Vision Comput., vol. 25, p. 578-596, DOI: 10.1016/ j.imavis.2006.05.012 (2007).

Saxena, S. & R., Kumar. A survey of recent and classical image registration methods. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7: 167-176, www.sersc.org/journals/IJSIP/vol7_no4/16.pdf (2014).

Schiller, J. Basics of Medical Image Segmentation and Registration. Technische Universität München, http://vision.in.tum.de/publications (2005).

Van den Elsen, P.A., E.J.D. Pol, & M. A. Viergever. Medical image matching-a review with classification, Engineering in Medicine and Biology Magazine, IEEE 12: 26-39, DOI: 10.1109/51.195938 (1993).

Wyawahare, M., P., Patil, & H., Abhyankar. Image registration techniques: an overview. International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 2, No. 3, http://www. sersc.org/journals/IJSIP/vol2_no3/2.pdf (2009).

Zitova, B. & J. Flusser. Image registration methods: A survey. Image and Vision Computing 21: 977– 1000, DOI:10.1016/S0262-8856(03)00137-9 (2003).

Aiming, L. A Survey of Medical Image Registration, Project Report: Advanced Video and Image Processing ECE 738, Available: homepages.cae.wisc.edu/~ece738/projs03/lu.doc (2000).

Goshtasby, A.A. Image Registration: Principles, Tools and Methods. Springer, DOI: 10.1007/978-1- 4471-2458-0 (2012).

Pitiot, A. (2005, 27-8-2014). Medical Image Registration Taxonomy. Available: http://www.ariser.info/training/imgproc.php (2005).

Bhadoria, S., P., Aggarwal, C.G., Dethe, & R., Vig, Comparison of segmentation tools for multiple modalities in edical imaging. Journal of Advances in Information Technology vol. 3, DOI:10.4304/jait.3.4.197-205 (2012).

Doi, K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Physics in Medicine and Biology 51: 5-27, DOI:10.1088/0031-9155/51/13/R02 (2006).

Maes, F., D., Vandermeulen, & P. Suetens. Medical image registration using mutual information. Proceedings of the IEEE, 91: 1699-1722, DOI:10.1109/JPROC.2003.817864 (2003).

Schramek, G.G.R., D. Stoevesandt, A. Reising, J.T. Kielstein, M. Hiss, & H. Kielstein. Imaging in anatomy: a comparison of imaging techniques in embalmed human cadavers. BMC Medical Education, vol. 13, p. 143, DOI: 10.1186/1472- 6920-13-143 (2013).

Schwarz, L. A. Non-rigid Registration Using Freeform Deformations. Ph.D. dissertation, Department of Computer Science, Technical University of Munich, http://campar.in.tum.de/twiki/pub/Main/LorenSchwarz/thesis-070510.pdf (2007).

Aristeidis Sotiras, C.D., N. Paragios. Deformable medical image registration: A survey. IEEE Trans Med Imaging. 32: 1153–1190, DOI: 10.1109/TMI.2013.2265603 (2013).

Wang, H., L. Dong, J. O’Daniel, R. Mohan, A.S. Garden, K.K. Ang, et al. Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 50: 2887–2905, DOI: 10.1088/0031-9155/50/12/011 (2005).

Jolesz, F. Intraoperative Imaging and Image- Guided Therapy: Springer, New York, DOI: DOI 10.1007/978-1-4614-7657-3 (2014).

Han, S.C., S. H. Choi, S. Park, S. S. Lee, H. Jung, M.-S. Kim, et al. Evaluation of various Deformable Image Registrations for Point and Volume Variations. arXiv preprint arXiv:1503.03622. DOI: 10.3938/jkps.67.218 (2015).

InsightSoftwareConsortium/ITK, cited 2015 (28-12-15), Available: https://github.com/InsightSoftwareConsortium/ITK/tree/master/ Examples/Data (2015).

Hu, Grossberg, & Mageras. Survey of recent volumetric medical image segmentation techniques. In: Biomedical Engineering, Carlos Alexandre Barros de Mello (Ed.), p. 315-337, DOI: 10.5772/7865 (2009).

Pham, D. L., C., Xu, & J.L. Prince. Current methods in medical image segmentation. Annu Rev Biomed Eng, 2: 315-37, DOI: 10.1146/annurev.bioeng.2.1.315 (2000).

Erdt, M., S. Steger, & G. Sakas. Regmentation: A New View of Image Segmentation and Registration. Journal of Radiation Oncology Informatics 4: 1-23, DOI: 10.5166/jroi-4-1-19 (2012).

Mishra, A., A. Rai, & A. Yadav. Medical image processing: A challenging analysis. International Journal of Bio-Science and Bio-Technology 6: 187- 194, http://dx.doi.org/10.14257/ijbsbt.2014.6.2.19 (2014).

Phamy, D.L., C. Xu, & J. L. Prince. A survey of current methods in mdical image segmentation. Annual Review of Biomedical Engineering 2: 315- 338, DOI: 10.1146/annurev.bioeng.2.1.315 (1998).

Yoo, T.S. Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. AK Peters Ltd, DOI: 10.1201/b10657 (2004).

Zhang, H., J. E. Fritts, & S.A. Goldman. Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding. 110: 260-280. DOI: 10.1016/j.cviu.2007.08.003, (2008).

Zuva, T., O. Olugbara, S. Ojo, & S. Ngwira. Image segmentation, available techniques, developments and open issues. Canadian Journal on Image Processing and Computer Vision 2: 20-29, https://www.scienceopen.com/document/vid/de286b73-697c-4035-bb39-87255f1b494b (2011).

Wang, X., L. Li, C. Hu, J. Qiu, Z. Xu, & Y. Feng. A comparative study of three CT and MRI registration algorithms in nasopharyngeal carcinoma. Journal of Applied Clinical Medical Physics, vol. 10, DOI: http://dx.doi.org/10.1120/jacmp.v10i2.2906 (2009).

Tate, P. M., D. M. A. Chapman, & R. Polytechnic. The assessment of magnetic imagery for computer assisted spinal surgery: Int’l Archives of Photogrammetry and Remote Sensing, 33: 09–816, www.isprs.org/proceedings/XXXIII/congress/.../809_XXXIII-part5.pdf (2000).

Crum, W.R., T. Hartkens, & D.L.G. Hill. Non-rigid image registration: theory and practice: The British Journal of Radiology 77: 140–153, DOI: 10.1259/bjr/25329214 (2004).

Gomes, P.N.S. Image Registration and its Relevance in Plantar Pressure Images. Thesis Integrated Master in Bioengineering, Faculty of Engineering, The University of Porto, https://web.fe.up.pt/~tavares/downloads/publications/relatorios/Pedro_Gomes_ Monografia.pdf (2013).

Perperidis, D. Spatio-temporal Registration and Modelling of the heart using cardiovascular MR Imaging. PhD thesis, Department of Computing, Imperial College London, University of London, DOI:10.1007/s11263-009-0212-6 (2005).

Markelj, P., D. Tomaževič, B. Likar, & F. Pernuš. A review of 3D/2D registration methods for imageguided interventions. Medical Image Analysis 16: 642-661, DOI: 10.1016/j.media.2010.03.005 (2012).

Rueckert, D. & P. Aljabar, Nonrigid registration of medical images: Theory, methods, and applications. Signal Processing Magazine, IEEE 27: 113-119, DOI: 10.1109/MSP.2010.936850 (2010).

Shekhar, R., V. Walimbe, S. Raja, & V. Zagrodsky, Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. Journal of Nuclear Medicine, 46: 1488- 1496., DOI:10.1016/j.radphyschem.2015.01.022 (2005 ).

Edward, C. Medical Image Registration: A Review of Existing Methods and Preliminary Numerical Results. MS Thesis, Rice University, http://hdl. handle.net/1911/17867 (2005).

Faliagka, E., G. Matsopoulos, A. Tsakalidis, J. Tsaknakis, & G. Tzimas, Registration and fusion techniques for medical images: Demonstration and evaluation. In: Biomedical Engineering Systems and Technologies. vol. 127. Springer Berlin Heidelberg p. 15-28, DOI: 10.1007/978-3-642-18472-7_2 (2011).

Glocker, B., A. Sotiras, N. Komodakis, & N. Paragios. Deformable medical image registration: setting the state of the art with discrete methods. Annual Review of Biomedical Engineering 13: 219- 244, DOI: 10.1146/annurev-bioeng-071910-124649 (2011).

Kadoya, N., Y. Fujita, Y. Katsuta, S. Dobashi, K. Takeda, K. Kishi, et al. Evaluation of various deformable image registration algorithms for thoracic images. Journal of Radiation Research 5:175-182, DOI: 10.1093/jrr/rrt093 (2013)

Published

2021-06-17

How to Cite

Alam, F. ., Rahman, S. U. ., Khalil, A. ., Khusro, S. ., & Sajjad, M. . (2021). Deformable Registration Methods for Medical Images: A Review Based on Performance Comparison: Deformable Registration Methods for Medical Images. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 53(2), 111–130. Retrieved from https://ppaspk.org/index.php/PPAS-A/article/view/333

Issue

Section

Articles