Automatic Signature Extraction from Document Images using Hyperspectral Unmixing

Automatic Signature Extraction Using Hyperspectral Unmixing

Authors

  • Kashif Iqbal Department of Electrical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
  • Khurram Khurshid Department of Electrical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan

Keywords:

Hyperspectral imaging, document image analysis, hyperspectral unmixing, end-member identification, abundance map, HySime, MVES, MVSA

Abstract

Signature is one of the most important and widely accepted biometric modality. It is the most common biometric used in documents like financial transactions, legal documents, contracts, etc. Over the years, many signature verification methods have been proposed; however, it is a common notion in most of these methods that signature is available separately for verification purposes. In real world scenarios, signatures are not always available separately particularly in forensics. In documents, signatures usually overlap with other parts of the document, like printed text, lines and graphics, where it becomes practically impossible to detect and localize the signature pixels. In this paper, we present a robust and very effective method for signature segmentation from documents using hyperspectral imaging. A comparative analysis of state of the art key-point detection based method and proposed hyperspectral unmixing method are provided.The preliminary study shows that spectral unmixing offers great potential for automatic signature extraction from document images.

References

Boyer, K.W., V. Govindaraju & E.N.K. Ratha. Special issue on recent advances in biometric systems. IEEE Transactions on Systems, Man, and Cybernetics 37(5): 1091-1095 (2007).

Impedovo, D. & G. Pirlo. Automatic signature verification: The state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(5): 609-635 (2008).

Salama, M.A. & W. Hussein. Invariant Directional Feature Extraction and Matching Approach for Robust Offline Signature Verification. In: Proceedings of IEEE International Conference on Image, Vision and Computing. IEEE, Portsmouth, UK, p. 91-95 (2016).

Marušić, T., Ž. Marušić & Ž. Šeremet. Identification of authors of documents based on offline signature recognition. In: Proceedings of 38th International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO. IEEE, Opatija, Croatia, p. 1144-1149 (2015)

Chambers, J., W. Van, A. Garhwal & M. Kankanhalli. Currency security and forensics: a survey. Multimedia Tools and Applications 74(11): 4013-4043 (2015).

Malik, M.I., M. Liwicki & A. Dengel. Part-based Automatic System in Comparison to Human Experts. In: Proceedings of 12th IAPR International Conference on Document Analysis and Recognition. IEEE, Washington DC, USA, p. 872-876 (2013).

Jain, A.K., F.D. Griess & S.D. Connell. On-line signature verification. Pattern Recognition 35(no.12): 2963-2972 (2002).

Ahmed, S., M.I. Malik, M. Liwicki & A. Dengel. Signature Segmentation from Document Images. In: Proceedings of International Conference on Frontiers in Handwriting Recognition.IEEE, Bari, Italy, p. 425-429 (2012).

Chan, T.H., C.Y. Chi, Y.M. Huang & W.K. Ma. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transanctions on Signal Processing 57: 4418-4432 (2009).

Li, J., A. Agathos, D. Zaharie, J.M.B. Dias, A. Plaza & X. Li. Minimum Volume Simplex Analysis: A Fast Algorithm for Linear Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing 53(9): 5067-5082 (2015).

Guo, J.K. & M.Y. Ma. Separating handwritten material from machine printed text using hidden Markov models. In: Proceedings of IAPR International Conference on Document Analysis and Recognition. IEEE, Washington DC, USA, p. 439-443(2001).

Imade, S., S. Tatsuta & T. Wada. Segmentation and classification for mixed text/image documents using neural network. In: Proceedings of IAPR International Conference on Document Analysis and Recognition. IEEE, Tsukuba Science City, Japan, p.930-934 (1993).

Zheng, Y., H. Li & D. Doermann. Machine printed text and handwriting identification in noisy document images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3): 337-353 (2004).

Chanda, S., K. Franke & U. Pal. Structural handwritten and machine print classification for sparse content and arbitrary oriented document fragments. In: Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, Sierre, Switzerland, p. 18-22 (2010).

Kuhnke, K., L. Simoncini & Z.M. Kovacs-V. A system for machine-written and hand-written character distinction. In: Proceedings of IAPR International Conference on Document Analysis and Recognition. IEEE, Montreal, Canada, p. 811-814 (1995).

Djeziri, S., F. Nouboud & R. Plamondon. Extraction of signatures from check background based on a filiformity criterion. IEEE Transactions on Image Processing 7(10): 1425-1438 (1998).

Madasu, V.K., M. Hafizuddin, M. Yusof, M. Hanm & K. Kubik, “Automatic extraction of signatures from bank cheques and other documents. In: Proceedings of Digital Image Computing: Techniques and Applications. Sun, C., H. Talbot, S. Ourselin & T. Adriaansen (Ed.), IAPR, Sydney, Australia, p. 591- 600 (2003).

Sankari, M., M. Benazir & R. Bremananth. Verification of bank cheque images using Hamming measures. In: Proceedings of 11th International Conference on Control Automation Robotics & Vision. IEEE, Singapore, p. 2531-2536, (2010).

Lewis, D., G. Agam, S. Argamon, O. Frieder, D. Grossman & J. Heard. Building a Test Collection for Complex Document Information Processing. In: Proceedings of 29th Annual International ACM SIGIR Conference on Research and development in Information Retrieval. ACM, Washington, USA, p.665-666 (2006).

Bay, H., T. Tuytelaars & L. Gool. SURF: Speeded Up Robust Features. Computer Vision and Image Understanding 110(3): 346–359 (2008).

Malik, M.I., S. Ahmed, F. Shafait, A.S. Mian, C. Nansen, A. Dengel & M. Liwicki. Hyper-spectral Analysis for Automatic Signature Extraction. In: Proceedings of 17th Biennial Conference of the International Graphonomics Society. Remi, C., L Prevost, & E. Anquetil (Ed.). HAL, Pointe-`a-Pitre, Guadeloupe, p. 1-4 (2015).

Abbas, A., K. Khurshid & F. Shafait, Towards Automated Ink Mismatch Detection in Hyperspectral Document Images. In: Proceedings of 14th IAPR International Conference on Document Analysis and Retrieval. IAPR, Kyoto, Japan (2017).

Bioucas-Dias, J., A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader & J. Chanussot. Hyperspectral unmixing overview: Geometricalstatistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(2): 354-379 (2012).

Craig, M.D. Minimum-volume transforms for remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing 32(3): 542-552 (1994).

Liu, X., M. Tanaka & M. Okutomi. Single-Image Noise Level Estimation for Blind Denoising. IEEE Transactions on Image Processing 22 (12): 5226-5237 (2013).

Bioucas-Dias J.M. & J.M. P. Nascimento. Hyperspectral Subspace Identification. GIEEE Transactions on Geoscience and Remote Sensing 46(8): 2435-2445 (2008).

Khurshid, K., I. Siddiqi, C. Faure & N. Vincent. Comparison of Niblack inspired Binarization methods for ancient documents. Document Recognition and Retrieval XVI 7247: doi: 10.1117/12.805827 (2009).

Published

2021-04-22

How to Cite

Iqbal, K. ., & Khurshid, K. . (2021). Automatic Signature Extraction from Document Images using Hyperspectral Unmixing: Automatic Signature Extraction Using Hyperspectral Unmixing. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 54(3), 269–276. Retrieved from https://ppaspk.org/index.php/PPAS-A/article/view/227

Issue

Section

Articles