Assessment of Hepatic Enzyme Derangements in Patients with Covid-19

Authors

  • Asma Nafisa Department of Pathology, Rawalpindi Medical University, Rawalpindi, Pakistan
  • Saifullah Department of Medicine and Allied Health Sciences, Sargodha Medical College, Sargodha, Pakistan https://orcid.org/0000-0002-5173-0076
  • Sarah Naheed Department of Pathology, Niazi Medical and Dental College Sargodha, Pakistan https://orcid.org/0000-0002-6791-9252
  • Riwa Amjad Dental College, HITEC Institute of Medical Sciences, Taxila, Pakistan
  • Mehwish Iqbal Department of Pathology, Rawalpindi Medical University, Rawalpindi, Pakistan

DOI:

https://doi.org/10.53560/PPASB(61-2)849

Keywords:

Alanine Aminotransferase, Covid-19, Total Bilirubin, Liver Damage, Aspartate Aminotransferase

Abstract

About half of the patients with Covid-19 have deranged hepatic enzymes at presentation. The goal of the study was to identify specific patterns of abnormalities in enzymes so that clinical treatment and therapeutic methods can be improved for affected individuals. This understanding is crucial for improving patient outcomes and creating individualized treatment schedules. A total of 182 RT-PCR-confirmed Covid-19 cases were enrolled and different biochemical variables were compared among patients with varying degrees of disease severity. Data with abnormal distribution were described as median (minimum-maximum) and analyzed with the Mann-Whitney U test and the Kruskal-Wallis test. Multivariate binary regression analysis was applied to find the predictors associated with disease severity. The mean age of patients was 56.46 ± 15.60 years. Median AST levels in 182 patients were more than ALT at admission (52.45 vs. 46.35 U/L. Most of the subjects with the deranged hepatic enzyme at presentation had minimal elevations 1-2X upper limit of normal (ALT 74.8%, AST 77.0%, TBIL 98.3%).  An increase of ≥ 5 times the upper limit of normal was observed in 7 (3.8%) and 5 (2.7%) patients for AST and ALT, respectively. Non-survivors were older, had higher median levels of AST 70 U/L vs. 47 U/L, LDH 855 vs 470 (for both p-value = 0.0001), and had a longer hospital stay compared to discharged groups. In multivariate analysis, advanced age, raised level of LDH and extended hospital stay showed a significant association with mortality. Liver dysfunction is commonly observed in hospitalized subjects and may be linked to severe disease.

References

G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli D. Cereda, A. Coluccello, G. Foti, R. Fumagalli, G. Iotti, N. Latronico, L. Lorini, S. Merler, G. Natalini, A. Piatti, M.V. Ranieri, A.M. Scandroglio, E. Storti, M. Cecconi, and A. Pesenti. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 323(16): 1574-1581(2020).

N. Vabret, G.J. Britton, C. Gruber, S. Hegde, J. Kim, M. Kuksin, R. Levantovsky, L. Malle, A. Moreira, and M.D. Park. Immunology of COVID-19: current state of the science. Immunity 52(6): 910-941 (2020).

O.K. Fix, B. Hameed, R.J. Fontana, R.M. Kwok, B.M. McGuire, D.C. Mulligan, D.S. Pratt, M.W. Russo, M.L. Schilsky, E.C. Verna, R. Loomba, D.E. Cohen, J.A. Bezerra, K.R. Reddy, and R.T. Chung. Clinical Best Practice Advice for Hepatology and Liver Transplant Providers During the COVID-19 Pandemic. AASLD Expert Panel Consensus Statement. Hepatology 72(1): 287-304(2020).

F. Qi, S. Qian, S. Zhang, and Z. Zhang. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 526(1): 135-140(2020).

D. Jothimani, R. Venugopal, M.F. Abedin, I. Kaliamoorthy, and M. Rela. COVID-19 and Liver. Journal of Hepatology 73(5): 1231-1240(2020).

E.A.F.T.S.O.T. Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. Journal of Hepatology 51(2): 237-267(2009).

Ministry of National Health and Services, Regulations & Coordination, Government of Pakistan. https://nhsrc.gov.pk/SiteImage/Misc/files/20200704%20Clinical%20Management%20Guidelines%20for%20COVID-19%20infections_1203.pdf.

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, and Y. Xiong. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323(11): 1061-1069 (2020).

Y. Wang, S. Liu, H. Liu, W. Li, F. Lin, L. Jiang, X. Li, P. Xu, L. Zhang, and L. Zhao. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. Journal of Hepatology 73(4): 807-816 (2020).

W. Guan, Z. Ni, Y. Hu, W. Liang, C. Ou, J. He, and D. Hui. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine 382(18): 1708-1720(2019).

A. Medetalibeyoglu, Y. Catma, N. Senkal, A. Ormeci, B. Cavus, M. Kose, O.F. Bayramlar, G. Yildiz, F. Akyuz, and S. Kaymakoglu. The effect of liver test abnormalities on the prognosis of COVID-19. Annals of Hepatology 19(6): 614-621(2020).

S. Richardson, J.S. Hirsch, M. Narasimhan, J.M. Crawford, T. McGinn, K.W. Davidson, C.-R.C. the Northwell, D.P. Barnaby, L.B. Becker, J.D. Chelico, S.L. Cohen, J. Cookingham, K. Coppa, M.A. Diefenbach, A.J. Dominello, J. Duer-Hefele, L. Falzon, J. Gitlin, N. Hajizadeh, T.G. Harvin, D.A. Hirschwerk, E.J. Kim, Z.M. Kozel, L.M. Marrast, J.N. Mogavero, G.A. Osorio, M. Qiu, and T.P. Zanos. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 323(20): 2052-2059 (2020).

M.A. Hundt, Y. Deng, M.M. Ciarleglio, M.H. Nathanson, and J.K. Lim. Abnormal Abnormal Liver Tests in COVID‐19: A Retrospective Observational Cohort Study of 1,827 Patients in a Major US Hospital Network. Hepatology 72(4): 1169-1176 (2020).

T. Chen, D. Wu, H. Chen, W. Yan, D. Yang, and G. Chen. Clinical characteristics of 113 deceased patients with coronavirus disease 2019. Retrospective Study [published online March 26, 2020], BMJ 368 (2020).

Z.P. Duan, Y. Chen, J. Zhang, J. Zhao, Z.W. Lang, F.K. Meng, and X.L. Bao, [Clinical characteristics and mechanism of liver injury in patients with severe acute respiratory syndrome], Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 11(8): 493-496 (2003).

Y. Ding, L. He, Q. Zhang, Z. Huang, X. Che, J. Hou, H. Wang, H. Shen, L. Qiu, Z. Li, J. Geng, J. Cai, H. Han, X. Li, W. Kang, D. Weng, P. Liang, and S. Jiang. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology 203(2): 622-630(2004).

Y.M. Arabi, A. Al-Omari, Y. Mandourah, F. Al-Hameed, A.A. Sindi, B. Alraddadi, S. Shalhoub, A. Almotairi, K. Al Khatib, A. Abdulmomen, I. Qushmaq, A. Mady, O. Solaiman, A.M. Al-Aithan, R. Al-Raddadi, A. Ragab, G.A. Al Mekhlafi, A. Al Harthy, A. Kharaba, M.A. Ahmadi, M. Sadat, H.A. Mutairi, E.A. Qasim, J. Jose, M. Nasim, A. Al-Dawood, L. Merson, R. Fowler, F.G. Hayden, H.H. Balkhy, and G. Saudi. Critical Care Trial, Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. Crit Care Med 45(10): 1683-1695 (2017).

L. Xu, J. Liu, M. Lu, D. Yang, and X. Zheng. Liver injury during highly pathogenic human coronavirus infections. Liver International: Official Journal of the International Association for the Study of the Liver 40(5): 998-1004 (2020).

X. Zou, K. Chen, J. Zou, P. Han, J. Hao, and Z. Han. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14(1): 185-192 (2020).

C.A. Philips, R. Ahamed, and P. Augustine. SARS-CoV-2 related liver impairment–perception may not be the reality. Journal of Hepatology 73(4): 991-992 (2020).

J.Gómez-Pastora, M. Weigand, J.Kim, X. Wu, J. Strayer, A.F. Palmer, M. Zborowski M. Yazer, and J.Chalmers. Hyperferritinemia in critically ill COVID-19 patients–Is ferritin the product of inflammation or a pathogenic mediator? Clinica Chimica Acta; International Journal of Clinical Chemistry 549(1): 249-251 (2020).

R.A.S. Santos, W.O. Sampaio, A.C. Alzamora, D. Motta-Santos, N. Alenina, M. Bader, and M.J. Campagnole-Santos. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological Reviews 98(1): 505-553 (2017).

I. Hamming, W. Timens, M.L. Bulthuis, A.T. Lely, G. Navis, and H. van Goor. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology 203(2): 631-637 (2004).

Q.L. Zhang, Y.Q. Ding, J.L. Hou, L. He, Z.X. Huang, H.J. Wang, and Y.D. Lu. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Di 1 Jun Yi Da Xue Xue Bao = Academic Journal of the First Medical College of PLA 23(2): 1125-1127 (2003).

N. Ikram, A. Nafisa, and R. Anjum. Predictive Efficacy of Haematological Biomarkers in COVID-19 infection. Journal of Rawalpindi Medical College 24(4): 423-429 (2020).

Downloads

Published

2024-06-27

How to Cite

Asma Nafisa, Saifullah, , S. N., Riwa Amjad, & Mehwish Iqbal. (2024). Assessment of Hepatic Enzyme Derangements in Patients with Covid-19. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 61(2), 227–234. https://doi.org/10.53560/PPASB(61-2)849

Issue

Section

Research Articles