Comparative Analysis of Selenium and Quercetin Nanoparticles for their Antioxidant and Hepatoprotective Effects Against Acrylamide-Induced Liver Toxicity in Male Albino Wistar Rats

Authors

  • Uzma Faridi Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
  • Yahya Al-Awthan Department of Biology, University of Tabuk, Tabuk, Saudi Arabia
  • Mohamed Sakran Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
  • Nahla Zidan Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
  • Fahad Al-Mutairi Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
  • Quseen Akhtar Department of Plant Biotechnology and Molecular Biology, Shobhit University, Gangoh, Saharanpur, India

DOI:

https://doi.org/10.53560/PPASB(62-2)1105

Keywords:

Acrylamide, Selenium, Quercetin, Hepatotoxicity, Nanomedicine, Oxidative Stress

Abstract

Acrylamide, a potential occupational carcinogen, is a natural by-product formed during the thermal processing of starchy foods and roasted coffee beans. Recent studies have also reported high levels of acrylamide in various thermally treated fast foods in Saudi Arabia. This study aims to meet the critical need for effective antioxidant therapies to mitigate acrylamide-induced liver damage. By comparing the protective effects of selenium and quercetin nanoparticles, it seeks to identify the more potent nano-antioxidant, thereby contributing to the advancement of safer and more efficient strategies for preventing chemically induced hepatotoxicity. Twenty adult male Albino Wistar rats were randomly divided into four groups: control, acrylamide-treated, acrylamide + SeNP, and acrylamide + QNP. Acrylamide exposure (Acrylamide exposure (50 mg/kg/day, orally for 21 days)) significantly elevated serum levels of cholesterol (CHO), triglycerides (TG), low-density lipoprotein (LDL), alanine transaminase (ALT), aspartate transaminase (AST), creatinine, and urea, cholesterol (233.33 ± 7.50 mg/dL), (238.33 ± 4.93 mg/dL), (67.33 ± 2.51 mg/dL), (80.33 ± 3.51 U/L), and AST (80.00 ± 3.00 U/L) respectively, compared to the control group (CHO: 155.33 ± 8.02, TG: 150.00 ± 7.93, LDL: 39.33 ± 4.16, ALT: 16.66 ± 3.78, AST: 22.66 ± 2.08). while significantly reducing glutathione (GSH) and superoxide dismutase (SOD) levels in liver tissues compared to the control group. Treatment with SeNPs and QNPs led to a marked reduction in these altered biochemical parameters and improved liver histopathology. In conclusion, selenium and quercetin nanoparticles exhibited a protective effect against acrylamide-induced hepatotoxicity in male Albino Wistar rats, suggesting their potential use in mitigating liver damage caused by environmental toxins.

References

1. L. Rifai and F.A. Saleh. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. International Journal of Toxicology 39(2): 93-102 (2020).

2. D. Sharp. Acrylamide in food. Lancet 361(9355): 361-362 (2003).

3. A.P. Arisseto, M.C. Toledo, Y. Govaert, J.V. Loco, S. Fraselle, E. Weverbergh, and J.M. Degroodt. Determination of acrylamide levels in selected foods in Brazil. Food Additives & Contaminants 24(3): 236-241 (2007).

4. N.G. Halford, T.Y. Curtis, N. Muttucumaru, J. Postles, J.S. Elmore, and D.S. Mottram. The acrylamide problem: A plant and agronomic science issue. Journal of Experimental Botany 63(8): 2841-2851 (2012).

5. R.E Löfstedt. Science communication and the Swedish acrylamide “alarm”. Journal of Health Communication 8(5): 407-432 (2003).

6. J. Keramat, A. LeBail, C. Prost, and M. Jafari. Acrylamide in baking products: a review article. Food and Bioprocess Technology 4(4): 530-543 (2011).

7. J.S. Ahn, L. Castle, D.B. Clarke, A.S. Lloyd, M.R. Philo, and D.R. Speck. Verification of the findings of acrylamide in heated foods. Food Additives & Contaminants 19(12): 1116-1124 (2002).

8. Y. Tepe. Acrylamide in surface and drinking water. In: Acrylamide in Food Analysis, Content and Potential Health Effects. V. Gulkan (Ed.). Academic Press pp. 285-305 (2004).

9. C. Westney. Food acrylamide mystery solved. Nature 80(40): 7 (2002).

10. M.C. Mentella, F. Scaldaferri, C. Ricci, A. Gasbarrini, and G.A.D. Miggiano. Cancer and Mediterranean diet: A review. Nutrients 11(9): 2059 (2019).

11. Nutrition Evidence Library (NEL). A series of systematic reviews on the relationship between dietary patterns and health outcomes. United States Department of Agriculture (2014). https://nesr.usda.gov/sites/default/files/2019-06/DietaryPatternsReport-FullFinal2.pdf

12. M.R. Khan, Z.A. Alothman, M. Naushad, A.K. Alomary, and S.M. Alfadul. Monitoring of acrylamide carcinogen in selected heat-treated foods from Saudi Arabia. Food Science and Biotechnology 27(4): 1209-1217 (2018).

13. M.M. El Tawila, A.M. Al-Ansari, A.A. Alrasheedi, and A.A Neamatallah. Dietary exposure to acrylamide from cafeteria foods in Jeddah schools and associated risk assessment. Journal of Science of Food and Agriculture 97(13): 4494-4500 (2017).

14. A. Petersen, A. Fromberg, J. H. Andersen, J.J. Sloth, K. Granby, L. Duedahl-Olesen, P.H. Rasmussen, S. Fagt, T.L. Cederberg, T. Christensenet, and et al. Chemical Contaminants. Food Monitoring 2004-2011. National Food Institute, Technical University of Denmark, Division of Food Chemistry; Kongens Lyngby, Denmark (2013). https://backend.orbit.dtu.dk/ws/portalfiles/portal/56832860/Report-on-Chemical-Contaminants-2004-2011.pdf

15. J.D. Schoenfeld and J.P.A. Ioannidis. Is everything we eat associated with cancer? A systematic cookbook review. American Journal of Clinical Nutrition 97(1): 127-134 (2013).

16. S. Koszucka and A. Nowak. Thermal processing food-related toxicants: A review. Critical Reviews in Food Science and Nutrition 59(22): 3579-3596 (2019).

17. A. Wasserman. Recipe for a better tomorrow: A food industry perspective on sustainability and our food system. Journal of Hunger & Environmental Nutrition 4(3-4): 446-453 (2009).

18. E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, and M. Tornqvist. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50(17): 4998-5006 (2002).

19. D.V. Zyzak, R.A. Sanders, M. Stojanovic, D.H. Tallmadge, B.L Eberhart, D.K. Ewald, and et al. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry 51(16): 4782-4787 (2003).

20. L.S. Jakobsen, K. Granby, V.K. Knudsen, M. Nauta, S.M. Pires, and M. Poulsen. Burden of disease of dietary exposure to acrylamide in Denmark. Food and Chemical Toxicology 90: 151-159 (2016).

21. D.R. Doerge, J.F. Young, J.J. Chen, M.J. Dinovi, and S.H. Henry. Using dietary exposure and physiologically based pharmacokinetic/pharmacodynamic modeling in human risk extrapolations for acrylamide toxicity. Journal of Agricultural and Food Chemistry 56(15): 6031-6038 (2008).

22. P.E. Boon, A. de Mul, H. van der Voet, G. van Donkersgoed, M. Brette, and J.D. van Klaveren. Calculations of dietary exposure to acrylamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 580(1-2): 143-155 (2005).

23. J.H. Exon. A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, Part B: Critical Reviews 9(5): 397-412 (2006).

24. R.M. LoPachin and A.P. DeCaprio. Protein adduct formation as a molecular mechanism in neurotoxicity. Toxicological Sciences 86(2): 214-225 (2005).

25. H.G. Mohamed and E. Tantawi. Protective role of ginger (Zingiber officinale) against acrylamide-induced neurotoxicity in mice. Egyptian Journal of Histology 30(2): 325-336 (2007).

26. S.A. Sakr, G.M. Badawy, H.I. El-Sayyad, and H.S Afify. Adverse effects of acrylamide on the developing retina of albino Wistar rats. Journal of Basic and Applied Scientific Research 1(7): 706-712 (2011).

27. J.B. Hall, M.A. Dobrovolskaia, A.K. Patri, and S.C. McNeil. Characterization of nanoparticles for therapeutics. Nanomedicine 2(6): 789-803 (2007).

28. B. Akbari, M.P Tavandashti, and M. Zandrahimi. Particle size characterization of nanoparticles-a practical approach. Iranian Journal of Materials Science and Engineering 8(2): 48-56 (2011).

29. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2015. Scientific opinion on acrylamide in food. EFSA Journal 13(6): 4104 (2015).

30. S.M. Moghimi, A.C. Hunter, and J.C. Murray. Nanomedicine: Current status and future prospects. The Federation of American Societies for Experimental Biology Journal 19: 311-330 (2005).

31. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, and H. Fuchs. Nanomedicine-challenge and perspectives. Angewandte Chemie International Edition 48(5): 872-897 (2009).

32. W.J. Jung and M.K. Sung. Effects of major dietary antioxidants on inflammatory markers of RAW 264.7 macrophages. BioFactors 21(1-4): 113-117 (2004).

33. B. Guan, R. Yan, R. Li, and X. Zhang. Selenium as a pleiotropic agent for medical discovery and drug delivery. International Journal of Nanomedicine 13: 7473-7490 (2018).

34. S. Afshar, A.A. Farshid, R. Heidari, and M. Ilkhanipour, Histopathological changes in the liver and kidney tissues of Wistar albino rat exposed to fenitrothion. Toxicology and Industrial Health 24(9): 581-586 (2008).

35. H. Hashemipour, H. Bagheri, A. Nasiri, and M. Naderi. Ammonia detection and measurement: In: Progresses in Ammonia: Science, Technology and Membranes. A. Basile and M.R. Rahimpour (Eds.). Elsevier pp. 271-293 (2024).

36. R.J. Henry, D.C. Cannon and J.W. Winkelman (Eds.). Clinical Chemistry, Principles and Technics, Bio-Science Laboratories (2nd Edition). Hagerstown, Md., Medical Department, Harper & Row, USA (1974).

37. S. Penickova, S. Benyaich, I. Ambar, and F. Cotton. Reliability of albumin bromocresol green colorimetric method and clinical impact. Scandinavian Journal of Clinical and Laboratory Investigation 84(7-8): 452-458 (2024.)

38. S. Reitman and S. Frankel. A colorimetric method for the determination of serum glutamic-oxaloacetic and glutamic-pyruvic transaminases. American Journal of Clinical Pathology 28(1): 56-63 (1957).

39. K. Satoh. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinical Chimica Acta 90(1): 37-43 (1978).

40. M.S. Moron, J.W. Depierre, and B. Mannervik. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta 582(1): 67-78 (1979).

41. S. Marklund and G. Marklund. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47(3): 469-474 (1974).

42. J.M Herrera, P. Viviani, M.V. Miró, A.L. Lifschitz, and G.L. Virkel. Rapid method for paraffin embedding of precision-cut liver slices. Tissue and Cell 90: 102511 (2024).

43. U. Acaroz, S. Ince, D. Arslan-Acaroz, Z. Gurler, I. Kucukkurt, H. H. Demirel, H.O Arslan, N. Varol, and K. Zhu. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and Chemical Toxicology 118: 745-752 (2018).

44. C. Uthra, S. Shrivastava, A. Jaswal, R. Althani, and T. Anwar. Therapeutic potential of quercetin against acrylamide-induced toxicity in rats. Biomedicine & Pharmacotherapy 86: 705-714 (2017).

45. J. Soppert, M. Lehrke, N. Marx, J. Jankowski, and H. Noels. Lipoproteins and lipids in cardiovascular disease: From mechanistic insights to therapeutic targeting. Advanced Drug Delivery Reviews 159: 4-33 (2020).

46. L. Gesquière, N. Loreau, A. Minnich, J. Davignon, and D. Blache. Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radical Biology and Medicine 27(1-2): 134-145 (1999).

47. A.M. Abdel-Moneim, H. Elsawy, A.M. Alzahrani, A. Ali, and O. Mahmoud. Silymarin ameliorates acrylamide-induced hyperlipidemic cardiomyopathy in male rats. BioMed Research International 2019: 4825075 (2019).

48. E. Sengul, V. Gelen, S. Yildirim, S. Tekin and Y. Dag. The effects of selenium in acrylamide-induced nephrotoxicity in Rats: Roles of oxidative stress, inflammation, apoptosis, and DNA damage. Biological Trace Element Research 199(1): 173-184 (2020).

49. X. Pan, X. Wu, D. Yan, C. Pend, C. Rao, and H. Yan. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicology Letters 288: 55-64 (2018).

50. S.M. Hamdy, A.M. Shabaan, A.K.M. Abdel Latif, A.M Abdel-Aziz, and A.M Amin. Protective effect of hesperidin and tiger nut against acrylamide toxicity in female Albino Wistar Rats. Experimental Toxicologic Pathology 69(8): 580-588 (2017).

51. E. Rivadeneyra-Domínguez, Y. Becerra-Contreras, A. Vázquez-Luna, R. Diaz-Sobac, and J.F Rodriguez-Landa. Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicology Reports 5: 1124-1128 (2018).

52. S.A.F. Mahmood, K.A.M. Amin, and S.F.M. Salih. Effect of acrylamide on liver and kidneys in Albino Wistar Rats. International Journal of Current Microbiology and Applied Sciences 4(5): 434-444 (2015).

53. Y. Liu, R. Wang, K. Zheng, Y. Xie, S. Jia and X. Zhao. Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica 50(8): 894-905 (2020).

54. M.Y. Karimi, I. Fatemi, H. Kalantari, R.A. Parsa, and H.R. Arman. Ellagic acid prevents oxidative stress, inflammation, and histopathological alterations in acrylamide-induced hepatotoxicity in Wistar Rats. Journal of Dietary Supplements 17(6): 651-662 (2020).

55. R.Z. Hamza, S.E. Alal-Motaan, and N. Malik. Protective and antioxidant role of selenium nanoparticles and vitamin C against acrylamide-induced hepatotoxicity in male mice. International Journal of Pharmacology 15(6): 664-674 (2019).

56. M. Mahdavinia, S. Alizadeh, A.R. Vanani, M.A. Dehghani, M. Shirani, M. Alipour, H.A. Shahmohammadi, and S.R. Asl. Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. Iranian Journal of Basic Medical Sciences 22(5): 499-505 (2019).

57. S.A. Abdelazeim, N.I. Shehata, H.F. Aly, and M.M. Ghoneim. Amelioration of oxidative stress-mediated apoptosis in copper oxide nanoparticles-induced liver injury in rats by potent antioxidants. Scientific Reports 10(1): 10812 (2020).

58. A.H.Y. Abduljalil, K. El-bakry, N. Omar, L. Deef, and S.A. Fahmy. Protective and therapeutic effects of Moringa oleifera leave nanoparticles against acrylamide-induced hepato and renal toxicity in adult male rats. Scientific Journal of Damietta Faculty of Science 14(2): 109-120 (2024).

Downloads

Published

2025-06-06

How to Cite

Faridi, U., Al-Awthan, Y., Sakran , M., Zidan, N., Al-Mutairi, F., & Quseen Akhtar. (2025). Comparative Analysis of Selenium and Quercetin Nanoparticles for their Antioxidant and Hepatoprotective Effects Against Acrylamide-Induced Liver Toxicity in Male Albino Wistar Rats. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 62(2), 177–187. https://doi.org/10.53560/PPASB(62-2)1105

Issue

Section

Research Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.