Single Cell RNA Sequencing (scRNA-Seq) as an Emerging Technology in Cancer Research

Applications of scRNA-seq in cancer research

Authors

  • Atta Ur Rehman Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road, Mang Haripur, Pakistan
  • Abdur Rashid Government of Khyber Pakhtunkhwa, Department of Higher Education Archives and Libraries, Peshawar, Pakistan
  • Ijaz Anwar Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.53560/PPASB(58-3)663

Keywords:

Soybean, Cancer, Gene Expression, Single Cell RNA Sequencing, Transcriptome Profiling

Abstract

RNA sequencing (RNA-seq) has revolutionized basic biomedical research by studying the transcriptome at high resolution, and thus it has been proved to be very successful for understanding the molecular mechanisms of cancers. For example, RNA-seq has facilitated a comprehensive and multidimensional mapping of the key genomic changes that lead to various types of cancers. Nevertheless, the heterogeneous nature of cancer tissues has always been a problem. To overcome this challenge, single-cell RNA sequencing (scRNA-seq) has emerged as the most powerful tool to characterize cancer tissues by enhancing our knowledge of transcriptome at a single-cell resolution. In addition to disentangling the heterogeneity problem, scRNA-seq has other applications such as determining the molecular mechanisms of cellular differentiation, characterizing gene expression levels, and determining rare cell types found within cancer tissue. scRNA-Seq is used, as an emerging diagnostic tool, in tertiary healthcare settings with diverse clinical applications. Thus, the utility of scRNA-Seq in a healthcare system not only provides compelling evidence about understanding cancer biology but also points towards the development of therapeutic options in the future. The purpose of this review is to educate readers about the applications of scRNA-seq in cancer research in a wider context..

References

M. Wan, J. Wang, X. Gao, and J. Sklar. RNA Sequencing and its Applications in Cancer Diagnosis and Targeted Therapy. North American Journal of Medicine and Science 7(4): (2014).

A.P. Voigt, N.K. Mullin, E.M. Stone, B.A. Tucker, T.E. Scheetz, and R.F. Mullins. Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Progress in Retinal and Eye Research 83: 100934 (2021).

M. Zhao, J. Jiang, M. Zhao, C. Chang, H. Wu, and Q. Lu. The Application of Single-Cell RNA Sequencing in Studies of Autoimmune Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology 60(1): 68-86 (2021).

A.M. Ranzoni, A. Tangherloni, I. Berest, S.G. Riva, B. Myers, P.M. Strzelecka, J. Xu, E. Panada, I. Mohorianu, J. B. Zaugg, and A. Cvejic. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis. Cell Stem Cell 28(3): 472-487 (2021).

F. Iqbal, A. Lupieri, M. Aikawa, and E. Aikawa. Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 41(2): 585-600 (2021).

E.J. Armand, J. Li, F. Xie, C. Luo, and E.A. Mukamel. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron 109(1): 11-26 (2021).

K. Tomczak, P. Czerwińska, and M. Wiznerowicz. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemporary oncology 19(1): A68 (2015).

E.P. Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science 306 (5696): 636- 640 (2004).

S. Zhu, T. Qing, Y. Zheng, L. Jin, and L. Shi. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 8(32): 53763-53779 (2017).

P. Angerer, L. Simon, S. Tritschler, F.A. Wolf, D. Fischer, and F.J. Theis. Single cells make big data: New challenges and opportunities in transcriptomics. Current Opinion in System Biology 4: 485–91 (2017).

S. Picelli. Single-cell RNA-sequencing: The future of genome biology is now. RNA Biology 14(5): 637- 650 (2017).

A.M. Newman, C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, and A.A. Alizadeh. Robust enumeration of cell subsets from tissue expression profiles. Nature Methods 12(5): 453-7 (2015).

K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Treviño, H. Shen, P.W. Laird, D.A. Levine, and S.L. Carter. Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4(1): 1-11 (2013).

E. Becht, N.A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. Selves, P. Laurent-Puig, C. Sautès-Fridman, W.H. Fridman, and A. De Reyniès. Estimating the population abundance of tissue- infiltrating immune and stromal cell populations using gene expression. Genome Biology 17(1): 1-20 (2016).

D. Aran, Z. Hu, and A.J. Butte. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biology 18(1): 1-14 (2017).

D.R. Wilson, C. Jin, J.G. Ibrahim, and W. Sun. Iced-t provides accurate estimates of immune cell abundance in tumor samples by allowing for aberrant gene expression patterns. Journal of the American Statistical Association 115(531): 1055- 1065 (2020).

P. Charoentong, F. Finotello, M. Angelova, C. Mayer, M. Efremova, D. Rieder, H. Hackl, and Z. Trajanoski. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell reports 18(1): 248-262 (2017).

B. Li, E. Severson, J.C. Pignon, H. Zhao, T. Li, J. Novak, P. Jiang, H. Shen, J.C. Aster, S. Rodig, and S. Signoretti. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome biology 17(1): 1-16 (2016).

M. Barron and J. Li. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. Scientific reports 6(1): 1-10 (2016).

J. Racle, K. de Jonge, P. Baumgaertner, D.E. Speiser, and D. Gfeller. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife 6(13): (2017).

K. Street, D. Risso, R.B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, and S. Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC genomics 19(1): 1-16 (2018).

C. Lengauer, K.W. Kinzler, and B. Vogelstein. Genetic instabilities in human cancers. Nature 396(6712): 643-9 (1998).

D. Hanahan and R.A. Weinberg. Hallmarks of cancer: the next generation. Cell 144 (5): 646-74 (2011).

R.A. Burrell, N. McGranahan, J. Bartek, and C. Swanton. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467): 338-45 (2013).

K. Pietras and A. Ostman. Hallmarks of cancer: interactions with the tumor stroma. Experimental Cell Research 316(8): 1324-31 (2010).

M.I. Koukourakis, A. Giatromanolaki, A.L. Harris, and E. Sivridis. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor- associated stroma. Cancer Research 66(2): 632-637 (2006).

C. Feig, A. Gopinathan, A. Neesse, D.S. Chan, N. Cook, and D.A. Tuveson. The pancreas cancer microenvironment. Clinical Cancer Research 18(16): 4266-76 (2012).

A.P. Patel, I. Tirosh, J.J. Trombetta, A.K. Shalek, S.M. Gillespie, H. Wakimoto, D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, and D.N. Louis. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190): 1396-1401 (2014).

A.M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D.A. Weitz, and M.W. Kirschner. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5): 1187-1201 (2015).

S.K. Singh, I.D. Clarke, M. Terasaki, V.E. Bonn, C. Hawkins, J. Squire, and P.B. Dirks. Identification of a cancer stem cell in human brain tumors. Cancer research 63(18): 5821-5828 (2003).

M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, and M.F. Clarke. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 100(7): 3983-8 (2003).

J. Cao, J.S. Packer, V. Ramani, D.A. Cusanovich, C. Huynh, R. Daza, X. Qiu, C. Lee, S.N. Furlan, F.J. Steemers, and A. Adey. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357(6352): 661-667 (2017).

K. Kretzschmar, and F.M. Watt. Lineage tracing. Cell 148(1-2): 33-45 (2012).

M.B. Woodworth, K.M. Girskis, and C.A. Walsh. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nature Review Genetics 18(4): 230-244 (2017).

R.B. Fletcher, D. Das, and J. Ngai. Creating Lineage Trajectory Maps Via Integration of Single-Cell RNA-Sequencing and Lineage Tracing: Integrating transgenic lineage tracing and single-cell RNA- sequencing is a robust approach for mapping developmental lineage trajectories and cell fate changes. Bioessays 40(8): e1800056 (2018).

L. Gadye, D. Das, M.A. Sanchez, K. Street, A. Baudhuin, A. Wagner, M.B. Cole, Y.G. Choi, N. Yosef, E. Purdomand, and S. Dudoit. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell 21(6): 775-790 (2017).

T.J. Nowakowski, A. Bhaduri, A.A. Pollen, B. Alvarado, M.A. Mostajo-Radji, E. Di Lullo, M. Haeussler, C. Sandoval-Espinosa, S.J. Liu, D. Velmeshev, and J.R. Ounadjela. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358(6368): 1318-1323 (2017).

I. Stevant, Y. Neirijnck, C. Borel, J. Escoffier, L.B. Smith, S.E. Antonarakis, E.T. Dermitzakis, and S. Nef. Deciphering cell lineage specification during male sex determination with single-cell RNA sequencing. Cell reports 22(6): 1589-1599 (2018).

B. Raj, D.E. Wagner, A. McKenna, S. Pandey, A.M. Klein, J. Shendure, J.A. Gagnon, and A.F. Schier. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature biotechnology 36(5): 442-450 (2018).

B. Spanjaard, B. Hu, N. Mitic, P. Olivares-Chauvet, S. Janjuha, N. Ninov, and J.P. Junker. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nature biotechnology 36(5): 469-473 (2018).

D.E. Wagner, C. Weinreb, Z.M. Collins, J.A. Briggs, S.G. Megason, and A.M. Klein. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360(6392): 981- 987 (2018).

A. Alemany, M. Florescu, C.S. Baron, J. Peterson- Maduro, and A. van Oudenaarden. Whole-organism clone tracing using single-cell sequencing. Nature 556(7699): 108-112 (2018).

A.K. Shalek, R. Satija, X. Adiconis, R.S. Gertner, J.T. Gaublomme, R. Raychowdhury, S. Schwartz, N. Yosef, C. Malboeuf, D. Lu, and J.J. Trombetta. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453): 236-240 (2013).

Q. Deng, D. Ramskold, B. Reinius, and R. Sandberg. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167): 193-6 (2014).

M. Bengtsson, A. Stahlberg, P. Rorsman, and M. Kubista. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Research 15(10): 1388-92 (2005).

A. Haque, J. Engel, S.A. Teichmann, and T. Lonnberg. A practical guide to single-cell RNA- sequencing for biomedical research and clinical applications. Genome Medicine 9(1): 1-12 (2017).

J.A. Benitez, S. Cheng, and Q. Deng. Revealing allele-specific gene expression by single-cell transcriptomics. The International Journal of Biochemistry & Cell Biology 90: 155-160 (2017).

C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-Adkins, M. Smets, H. Leonhardt, H. Heyn, I. Hellmann, and W. Enard. Comparative analysis of single-cell RNA sequencing methods. Molecular cell 65(4): 631-643 (2017).

T.S. Andrews and M. Hemberg. Identifying cell populations with scRNASeq. Molecular Aspects of Medicine 59: 114-122 (2018).

X. Fan, X. Zhang, X. Wu, H. Guo, Y. Hu, F. Tang, and Y. Huang. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome biology 16(1): 1-17 (2015).

A.K. Bjorklund, M. Forkel, S. Picelli, V. Konya, J. Theorell, D. Friberg, R. Sandberg, and J. Mjösberg. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nature immunology 17(4): 451-460 (2016).

S. Picelli, A.K. Bjorklund, O.R. Faridani, S. Sagasser, G. Winberg, and R. Sandberg. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods 10(11): 1096-8 (2013).

T. Hashimshony, F. Wagner, N. Sher, and I. Yanai. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports 2(3): 666-73 (2012).

D.A. Jaitin, E. Kenigsberg, H. Keren-Shaul, N. Elefant, F. Paul, I. Zaretsky, A. Mildner, N. Cohen, S. Jung, A. Tanay, and I. Amit. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172): 776- 779 (2014).

V. Svensson, K.N. Natarajan, L.H. Ly, R.J. Miragaia, C. Labalette, I.C. Macaulay, A. Cvejic, and S.A. Teichmann. Power analysis of single-cell RNA- sequencing experiments. Nature methods 14(4): 381-387 (2017).

Z. Chen, M. Zhao, M. Li, Q. Sui, Y. Bian, J. Liang, Z. Hu, Y. Zheng, T. Lu, Y. Huang, and C. Zhan. Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray. Laboratory Investigation 100(10):1318-1329 (2020).

M.B. Lopes and S. Vinga. Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data. BMC Bioinformatics 21(1): 1-12 (2020).

H.W. Lee, W. Chung, H.O. Lee, D.E. Jeong, A. Jo, J.E. Lim, J.H. Hong, D.H. Nam, B.C. Jeong, S.H. Park, and K.M. Joo. Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient. Genome medicine 12: 1-21 (2020).

A. Maynard, C.E. McCoach, J.K. Rotow, L. Harris, F. Haderk, D.L. Kerr, A.Y. Elizabeth, E.L. Schenk, W. Tan, A. Zee, and M. Tan. Therapy-induced evolution of human lung cancer revealed by single- cell RNA sequencing. Cell 182(5): 1232-1251 (2020).

E. Papalexi and R. Satija. Single-cell RNA sequencing to explore immune cell heterogeneity. Nature Review Immunology 18(1): 35-45 (2018).

C. Zheng, L. Zheng, J.K. Yoo, H. Guo, Y. Zhang, X. Guo, B. Kang, R. Hu, J.Y. Huang, Q. Zhang, and Z. Liu. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7): 1342-1356 (2017).

G. Chen, B. Ning, and T. Shi. Single-Cell RNA- Seq Technologies and Related Computational Data Analysis. Frontiers in Genetics 10: 317 (2019).

D. Lahnemann, J. Köster, E. Szczurek, D.J. McCarthy, S.C. Hicks, M.D. Robinson, C.A. Vallejos, K.R. Campbell, N. Beerenwinkel, A. Mahfouz, and L. Pinello. Eleven grand challenges in single-cell data science. Genome biology 21(1): 1-35 (2020).

Downloads

Published

2021-09-17

How to Cite

Rehman, A. U. ., Rashid, A. ., & Anwar, I. . (2021). Single Cell RNA Sequencing (scRNA-Seq) as an Emerging Technology in Cancer Research: Applications of scRNA-seq in cancer research. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(3), 19–28. https://doi.org/10.53560/PPASB(58-3)663

Issue

Section

Research Articles