Comparison of Host Expression Systems used for Efficient Recombinant Proteins Production

Host Expression System for Recombinant Proteins Production

Authors

  • Sania Sahreen Institute of Industrial Biotechnology, Government College University, Lahore
  • Sundas Sharif Institute of Industrial Biotechnology, Government College University, Lahore
  • Hamna Ahmad Institute of Industrial Biotechnology, Government College University, Lahore
  • Hamid Mukhtar Institute of Industrial Biotechnology, Government College University, Lahore

DOI:

https://doi.org/10.53560/PPASB(60-1)731

Keywords:

DNA Recombinant Technology, Expression Systems, Cell Lines, Recombinant Proteins

Abstract

The marvels of DNA recombination technology have revolutionized the field of biotechnology. Several hormones, antibody subunits, vaccines, enzymes, and interferons are being produced at the industrial level, in suitable expression systems, under optimized conditions. For recombinant protein production, a range of expression systems are available such as bacteria, yeast, fungi, plant cells, insects and animal cells, etc. Each recombinant protein has different nature due to which it requires different challenges regarding the expression system and production conditions. Every expression system has its advantages and limitations on the basis of which it can be considered or rejected for a particular protein production. Therefore, it is very significant to investigate the potential and limitations of several expression systems to choose the suitable one for particular protein production at an industrial scale. The optimization criteria of an expression system is evaluated on several factors such as productivity, efficiency, physiological characteristics, total cost, safety, convenience, and down-streaming conditions. Escherichia coli and Saccharomyces cerevisiae remained the organisms of choice to produce recombinant proteins for a long time, but now several other microorganisms are also being targeted to evaluate their efficiency toward recombinant protein production. Prokaryotic expression systems can be used to produce eukaryotic proteins as well however, the use of a eukaryotic expression system is preferable because it retains the structural, functional, and regulatory properties of therapeutic proteins. This review illustrates a brief view of a variety of expression systems, their efficiency, and limitations in recombinant protein production.

References

Y. Gong, H. Hu, Y. Gao, X. Xu, and H. Gao Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. Journal of Industrial Microbiology and Biotechnology 38(12): 1879-1890 (2011).

S. Khan, M.U. Ullah, R. Siddique, G. Nabi, S. Manan, M. Yousaf, and H. Hou. Role of recombinant DNA technology to improve life. International journal of genomics (2016).

B. Calo-Fernández, and J.L. Martínez-Hurtado. Biosimilars: company strategies to capture value from the biologics market. Pharmaceuticals 5(12):1393-1408 (2012).

D. Weinacker, C. Rabert, A.B. Zepeda, C.A. Figueroa, A. Pessoa, and J.G. Farías. Applications of recombinant Pichia pastoris in the healthcare industry. Brazilian Journal of Microbiology 44: 1043-1048 (2013).

N.K. Tripathi, and A. Shrivastava. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Frontiers of Bioengineering and Biotechnology 7: 420 (2019).

Research Report. Recombinant DNA Technology Market Economy Size Expected a Growth of USD 223.0 Billion by 2028, According to Vantage Market Research, Vantage Market Research (2022). https://www.vantagemarketresearch.com/recombinantdna-technology-market-1829/request-sample

W.H. Brondyk. Selecting an appropriate method for expressing a recombinant protein. Methods in Enzymology 463:131-147 (2009).

R. O’Flaherty, A. Bergin, E. Flampouri, L.M. Mota, I. Obaidi, A. Quigley, Y. Xie, and M. Butler. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnology Advances 43:107552 (2020).

R. Chen. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances 30(5):1102-1107 (2012).

N. Ferrer-Miralles, P. Saccardo, J.L. Corchero, Z. Xu, and E. García-Fruitós. General introduction: recombinant protein production and purification of insoluble proteins. Insoluble Proteins 1-24 (2015).

S.A. Berkowitz, J.R. Engen, J.R. Mazzeo, and G.B. Jones. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nature Reviews Drug Discovery11(7): 527-540 (2012).

Gupta, S.K., A.K. Dangi, M. Smita, S. Dwivedi and P. Shukla. Effectual bioprocess development for protein production. In Applied Microbiology and Biotechnology, 203-227 (2019).

C. Walsh. Posttranslational modification of proteins: expanding nature’s inventory. Roberts and Company Publishers (2006).

F. Kadir, P. Ives, A. Luitjens, and E. van Corven. Production and purification of recombinant proteins. In Pharm. Biotechnology 47-67 (2013).

R.S. Felberbaum. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnology Journal 10(5):702-714 (2015).

M. Karbalaei, S. A. Rezaee, and H. Farsiani. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of cellular physiology 235(9):5867-5881 (2020).

B. Owczarek, A. Gerszberg and K. HnatuszkoKonka. A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. BioMed Research International (2019).

F.J. Fernández, and M.C. Vega. Choose a suitable expression host: a survey of available protein production platforms. Advanced Technologies for Protein Complex Production and Characterization 15-24 (2016).

J.R. Ho, and J. Chien. Trends in translational medicine and drug targeting and delivery: new insights on an old concept—targeted drug delivery with antibody–drug conjugates for cancers. Journal of Pharmaceutical Science 103(1):71-77 (2014).

E. García-Fruitós. Lactic acid bacteria: a promising alternative for recombinant protein production. Microbial cell factories 11(1):1-3 (2012).

A.F. Jozala, D.C. Geraldes, L.L. Tundisi, V.D.A. Feitosa, C.A. Breyer, S.L. Cardoso, P.G. Mazzola, L.D. Oliveira-Nascimento, C.D.O. RangelYagui, P.D.O. Magalhães, and M.A.D. Oliveira. Biopharmaceuticals from microorganisms: from production to purification. Brazilian Journal of Microbiology 47:51-63 (2016).

T.V. Plavec and A. Berlec. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Applied microbiology and biotechnology 103(5):2053-2066 (2019).

R.A. Börner, V. Kandasamy, A.M. Axelsen, A. T.Nielsen, and E. F. Bosma. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS microbiology letters 366(1):291 (2019).

J.A. Mora-Villalobos, J. Montero-Zamora, N. Barboza, C. Rojas-Garbanzo, J. Usaga, M. RedondoSolano, L. Schroedter, A. Olszewska-Widdrat, and J.P. López-Gómez. Multi-product lactic acid bacteria fermentations: a review. Fermentation 6(1): p.23 (2020).

M. M. Dragosits, G. Frascotti, L. Bernard‐Granger, F. Vázquez, M. Giuliani, K. Baumann, E. Rodríguez‐Carmona, J. Tokkanen, E. Parrilli, M.G. Wiebe, and R. Kunert. Influence of growth temperature on the production of antibody Fab fragments in different microbes: a host comparative analysis. Biotechnology Progress 27(1): 38-46 (2011).

M. Giuliani, E. Parrilli, P. Ferrer, K. Baumann, G. Marino, and M.L. Tutino. Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochemistry 46(4): 953-959 (2011).

V. Meyer, F. Wanka, J. van Gent, M. Arentshorst, C.A. van den Hondel, and A.F. Ram. Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Applied and environmental microbiology 77(9):2975-2983 (2011).

C. Batianis, E. Kozaeva, S.G. Damalas, M. Martín‐Pascual, D.C.Volke, P.I. Nikel, and V. A. Martins dos Santos. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida. Microbial biotechnology 13(2):368-385 (2020).

K.X. Huang, M. Badger, K. Haney, and S.L Evans. Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expression and Purification 53(2);325-330 (2007).

T.W. Overton. Recombinant protein production in bacterial hosts. Drug Discovery Today 19(5):590-601 (2014).

G.C. Barnard, G.E. Henderson, S. Srinivasan and T.U. Gerngross. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expression and Purification 38(2):264-271 (2004).

M. Hansson, P. Samuelson, T.N. Nguyen, and S. Ståhl. General expression vectors for Staphylococcus carnosus enabled efficient production of the outer membrane protein A of Klebsiella pneumoniae. FEMS Microbiology Letters 210(2):263-270 (2002).

T.C. Cairns, C. Nai, and V. Meyer. How a fungus shapes biotechnology: 100 years of Aspergillus

niger research. Fungal Biology and Biotechnology 5(1):1-14 (2018).

L. Martins-Santana, L.C. Nora, A. SanchesMedeiros, G.L. Lovate, M.H. Cassiano and R. SilvaRocha. Systems and synthetic biology approaches to engineer fungi for fine chemical production. Frontiers in Bioengineering and Biotechnology 6:117 (2018).

V. Meyer, B. Wu, and A.F. Ram. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnology Letters 33(3):469-476 (2011).

F. Ntana, U.H. Mortensen, C. Sarazin and R. Figge. Aspergillus: A powerful protein production platform. Catalysts 10(9):1064 (2020).

C.S. Nødvig, J.B. Nielsen, M.E. Kogle, and U.H. Mortensen. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PloS One 10(7): e0133085 (2015).

T. Katayama, Y. Tanaka, T. Okabe, H. Nakamura, W. Fujii, K. Kitamoto, and J.L. Maruyama. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnology Letters 38(4):637-642 (2016).

K.K. Fuller, S. Chen, J.J. Loros, and J.C. Dunlap. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryotic Cell 14(11):1073-1080 (2015).

N.S. Dunn-Coleman, P. Bloebaum, R.M. Berka, E. Bodie, N. Robinson, G. Armstrong, M. Ward, M. Przetak, G.L. Carter, R. LaCost, and L.J. Wilson. Commercial levels of chymosin production by Aspergillus. Bio/Technology 9(10): 976-981 (1991).

P.P. Ward, J.Y. Lo, M. Duke, G.S. May, D.R. Headon, and O.M. Conneely. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Bio/technology 10(7): 784-789 (1992).

K.I. Nakajima, T. Asakura, J.I. Maruyama, Y. Morita, H. Oike, A. Shimizu-Ibuka, T. Misaka, H. Sorimachi, S. Arai, K. Kitamoto, and K. Abe. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae. Applied and Environmental Microbiology 72: 3716-3723 (2006).

O.P. Ward. Production of recombinant proteins by filamentous fungi. Biotechnology Advances 30:1119-1139 (2012).

A. Harkki, J. Uusitalo, M. Bailey, M. Penttilä, and J.K. Knowles. A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technology 7: 596-603 (1989).

J.M. Uusitalo, K.H. Nevalainen, A.M. Harkki, J.K. Knowles, and M.E. Penttilä. Enzyme production by recombinant Trichoderma reesei strains. Journal of Biotechnology 17(1): 35-49 (1991).

E. Nyyssönen, M. Penttilä, A. Harkki, A. Saloheimo, J.K. Knowles, and S. Keränen. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnology 11(5): 591-595 24 (1993).

M. Penttila. Heterologous protein production in Trichoderma. In: Trichoderma and Gliocladium. G.E. Harman C.P. Kubicek, Taylor and Francis, London 365-82 (1998).

A. Schuster, and M. Schmoll. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology 87(3): 787-799 (2010).

H.V. Colot, G. Park, G.E. Turner, C. Ringelberg, C.M. Crew, L. Litvinkova, R.L. Weiss, K.A. Borkovich, and J.C. Dunlap. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proceedings of the National Academy of Sciences 103(27): 10352-10357 (2006).

S. Allgaier, R.D. Taylor, Y. Brudnaya, D.J. Jacobson, E. Cambareri, and W.D. Stuart. Vaccine production in Neurospora crassa. Biologicals., 37: 128–32 (2009).

D. Havlik, U. Brandt, K. Bohle, and A. Fleißner. Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microbial Cell Factories 16(1): 1-15 (2017).

D. Magaña-Ortíz, F. Fernández, A.M. Loske, and M.A. Gómez-Lim. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens. Current Microbiology 75(1): 40-48 (2018).

M.P. Zubieta, F.J. Contesini, M.V. Rubio,A.E.D.S.S. Gonçalves, J.A. Gerhardt, R.A. Prade, and A.R.D.L. Damasio. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microbial Biotechnology 11(2): 346-358

(2018).

D. Porro, B. Gasser, T. Fossati, M. Maurer, P. Branduardi, M. Sauer, and D. Mattanovich. Production of recombinant proteins and metabolites in yeast. Applied Microbiology and Biotechnology 89(4): 939-948 (2011).

D. Porro, M. Sauer, P. Branduardi, and D. Mattanovich. Recombinant protein production in yeast. Microbial Biotechnology 31(3): 245-259 (2005).

A. Fleißner, and P. Dersch. Expression and export: recombinant protein production systems for Aspergillus. Applied Microbiology and Biotechnology 87(4): 1255-1270 (2010).

R. Mora-Lugo, M. Madrigal, V. Yelemane, and M. Fernandez-Lahore. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin. Applied Microbiology and Biotechnology 99(22): 9699-9708 (2015).

K. Zhang, L. Su, and J. Wu. Recent advances in recombinant protein production by Bacillus subtilis. Annual Review of Food Science and Technology 11: 295-318 (2020).

A. Rantasalo, M. Vitikainen, T. Paasikallio, J. Jäntti, C.P. Landowski, and D. Mojzita. Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Scientific Reports 9(1): 1-12 (2019).

P. Wong, M. Walter, W. Lee, G. Mannhaupt, M. Münsterkötter, H.W. Mewes, G. Adam, and U. Güldener. FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Research 39(suppl_1): D637-D639 (2010).

R.A. Hitzeman, F.E. Hagie, H.L. Levine, D.V. Goeddel, G. Ammerer, and B.D. Hall. Expression of a human gene for interferon in yeast. Nature 293(5835): 717-722 (1981).

J. Reiser, V. Glumoff, M. Kälin, and U. Ochsner. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Advances in Biochemical Engineering/Biotechnology 43: 75-102 (1990).

M.A. Romanos, C.A. Scorer, and J.J. Clare, J.J. 1992. Foreign gene expression in yeast: a review. Yeast 8(6): 423-488 (1992)

D.R. Haan, and W.V. Zyl. Differential expression of the Trichoderma reesei β-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Applied Microbiology Biotechnology 57(4): 521-527 (2001).

L. Brambilla, B.M. Ranzi, M. Vai, L. Alberghina, and D. Porro. Production of heterologous proteins from Zygosaccharomyces bailii. Tate and Lyle Ingredients Americas LLC, U.S. Patent 7,041,477 (2006).

P. Branduardi, D. Porro, M. Valli, and L. Alberghina. Process for expression and secretion of proteins by the non-conventional yeast Zygosaccharomyces bailii. U.S. Patent Application 10/534,171 (2007).

A. Goffeau, B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel,C. Jacq, M. Johnston, and E.J. Louis. Life with 6000 genes. Science 274: 546–567(1996).

C.J. Huang, A.J. Lowe, and C.A. Batt. Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Applied Microbiology and Biotechnology 87(2): 401-410 (2010).

E. Çelik, and P. Çalık. Production of recombinant proteins by yeast cells. Biotechnology Advances 30(5): 1108-1118 (2012).

D. Mattanovich, N. Callewaert, P. Rouzé, Y.C. Lin, A. Graf, A. Redl, P. Tiels, B. Gasser, and K. De Schutter. Open access to sequence: browsing the Pichia pastoris genome. Microbial Cell Factories 8(1): 1-4 (2009).

N.K. Tripathi. Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Reviews 3(3): 116-133 (2016).

D. Heefner, C. Weaver M. Yarus, and L. Burdzinski. 1992. Method for producing riboflavin with Candida famata. US Patent No. 5164303 (1992).

T. Papakonstantinou, R.H. Law, P. Gardiner, M.J. Rowley, and I.R. Mackay. Comparative expression and purification of human glutamic acid decarboxylase from Saccharomyces cerevisiae and Pichia pastoris. Enzyme and Microbial Technology 26(9-10): 645-652 (2000).

J. Olmos-Soto, and R. Contreras-Flores. Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Applied Microbiology and Biotechnology 62(4): 369-373 (2003).

C. Gurramkonda, S. Polez, N. Skoko, A. Adnan, T. Gäbel, D. Chugh, S. Swaminathan, N. Khanna, S. Tisminetzky, and U. Rinas. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microbia. Cell Factories 9(1): 1-11(2010).

R. Arya, A. Bhattacharya, and K.S. Saini. Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. The FASEB Journal 22(12): 4055-4066 (2008).

B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. De Montigny, C. Marck, C. Neuvéglise, E. Talla, and N. Goffard. Genome evolution in yeast. Nature 430(6995): 35-44 (2004).

V. Wood, R. Gwilliam, M.A. Rajandream, M. Lyne, R. Lyne, A. Stewart, J. Sgouros, N. Peat, J. Hayles, S. Baker, and D. Basham. Erratum: The genome sequence of Schizosaccharomyces pombe. Nature 415: 871-880 (2002).

Y. Giga‐Hama, H. Tohda, K. Takegawa, and H. Kumagai. Schizosaccharomyces pombe minimum genome factory. Biotechnology and Applied Biochemistry 46(3):147-155 (2007).

S. Kjærulff, and M.R. Jensen. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochemical and Biophysical Research Communications 336(3): 974-982 (2005).

Y. Tekoah, A. Shulman, T. Kizhner, I. Ruderfer, L. Fux, Y. Nataf, D. Bartfeld, T. Ariel, S. Gingis–Velitski, U. Hanania, and Y. Shaaltiel. Large‐scale production of pharmaceutical proteins in plant cell culture—the protalix experience. Plant Biotechnology Journal 13(8):1199-1208 (2015).

M.J. Burnett, and A.C. Burnett. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants, People, Planet 2(2): 121-132 (2020).

K. Moustafa, A. Makhzoum, and J. TrémouillauxGuiller. Molecular farming on rescue of pharma industry for next generations. Critical Reviews in Biotechnology 36(5): 840-850 (2016).

J. Yao, Y. Weng, A. Dickey, and K.Y. Wang. Plants as factories for human pharmaceuticals: applications and challenges. International Journal of Molecular Sciences 16(12): 28549-28565 (2015).

N. Yan, C. Fan, Y. Chen, and Z. Hu. The potential for microalgae as bioreactors to produce pharmaceuticals. International Journal of Molecular Sciences 17(6): 962 (2016).

R. Biłas, K. Szafran, K. Hnatuszko-Konka, and A.K. Kononowicz. Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture (PCTOC) 127(2): 269-287 (2016).

A.W. Smagur, K.H. Konka, A. Gerszberg, T. Kowalczyk, P. Luchniak, and A.K. Kononowicz. Green way of biomedicine–how to force plants to produce new important proteins. Transgenic PlantsAdvances and Limitations 63-90 (2012).

J.K. Ma, P.M. Drake, and P. Christou. The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics 4(10): 794-805 (2003).

O.O. Obembe, J.O. Popoola, S. Leelavathi, and S.V. Reddy. Advances in plant molecular farming. Biotechnology Advances 29(2): 210-222 (2011).

T. Kawakatsu, and F. Takaiwa. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnology Journal 8(9): 939-953 (2010).

E.P. Rybicki. Plant‐made vaccines for humans and animals. Plant Biotechnology Journal 8(5): 620-637 (2010).

H. Daniell, M. Kulis, and R.W. Herzog. Plant cell-made protein antigens for induction of Oral tolerance. Biotechnology Advances 37(7): 107-13 (2019).

J. Marsian, and G.P. Lomonossoff. Molecular pharming—VLPs made in plants. Current Opinion in Biotechnology, 37: 201-206 (2016).

N.S. Rudolph. Biopharmaceutical production in transgenic livestock. Trends in Biotechnology 17(9): 367-374 (1999).

G. Dutton. Transgenic animal-based protein products move toward clinical trials. Genetic Engineering News 16(9): 37-37 (1996).

N.J. Chew. Emerging technologies: transgenic therapeutics. Biopharm Eugene 6:24-24 (1993).

E. Gecchele, M. Merlin, A. Brozzetti, A. Falorni, M. Pezzotti, and L. Avesani. A comparative analysis of recombinant protein expression in different biofactories: bacteria, insect cells and plant systems. Journal of Visualized Experiments, 23: 97 (2015).

A. Contreras-G´omez, F. S´anchez-Mir´on, Garc´ıa-Camacho, E. Molina-Grima, and Y. Chisti, Protein production using the baculovirus-insect cell expression system. Biotechnology Progress 30(1): 1–18 (2014).

M. Tomita. Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnology Letters 33(4):645-654 (2011).

T. Adachi, X. Wang, T. Murata, M. Obara, H. Akutsu, M. Machida, A. Umezawa, and M. Tomita. Production of a non‐triple helical collagen α chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnology and

Bioengineering 106(6): 860-870 (2010).

S. Ogawa, M. Tomita, K. Shimizu, and K. Yoshizato. Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. Journal of Biotechnology 128(3):31-544 (2007).

Y. Cui, K. Miao, S. Niyaphorn, and X. Qu. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. International Journal of Molecular Sciences 21(3):995-1005 (2020).

D.M. Retallack, H. Jin, and L. Chew. Reliable protein production in a Pseudomonas fluorescens expression system. Protein Expression and Purification 81(2): 157-165 (2012).

M. Yang, H. Sun, H. Lai, J. Hurtado, and Q. Chen. Plant‐produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnology Journal 16(2): 572-580 (2018).

B.A. Rasala, M. Muto, P.A. Lee, M. Jager, R.M. Cardoso, C.A. Behnke, P. Kirk, C.A. Hokanson, R. Crea, M. Mendez, and S.P. Mayfield. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal 8(6): 719-733 (2010).

I.A. Dreesen, G. Charpin-El Hamri, and M. Fussenegger. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. Journal of Biotechnology 145(3):273-280 (2010).

E. Specht, S. Miyake-Stoner, and S. Mayfield. Micro-algae come of age as a platform for recombinant protein production. Biotechnology Letters 32(10):1373-1383 (2010).

K. Swiech, V. Picanço-Castro, and D.T. Covas. Human cells: new platform for recombinant therapeutic protein production. Protein Expression and Purification 84(1):147-153 (2012).

E. Adam, S. Sarrazin, C. Landolfi, V. Motte, H. LortatJacob, P. Lassalle, and M. Delehedde. Efficient longterm and high-yielded production of a recombinant proteoglycan in eukaryotic HEK293 cells using a membrane-based bioreactor. Biochemical and

Biophysical Research Communications 369(2):297-302 (2008).

X. Sun, P.E. Goh, K.T. Wong, T. Mori, and M.G. Yap. Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnology Letters 28(11): 843-848 (2006).

A. Tchoudakova, F. Hensel, A. Murillo, B. Eng, M. Foley, L. Smith, F. Schoenen, A. Hildebrand, A.R. Kelter, L.L. Ilag, and H.P. Vollmers. High level expression of functional human IgMs in human PER. C6® cells. In MAbs 1(2): 163-171 (2009).

J.A.V. Costa, and M.G. De Morais. The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology 102(1): 2-9 (2011).

T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux. Bioprospecting for hyperlipid producing microalgal strains for sustainable biofuel production. Bioresource Technology 102(1):57-70 (2011).

J. Abe, Y. Hiwatashi, M. Ito, M. Hasebe, and H. Sekimoto. Expression of exogenous genes under the control of endogenous HSP70 and CAB promoters in the Closteriumperacerosum–strigosum–littorale complex. Plant and Cell Physiology 49(4): 625-632 (2008).

L. Kai, and H. Armin. Stable nuclear transformation of Gonium pectorale. AGRIS (2009).

S. Kathiresan, and R. Sarada. Towards genetic improvement of commercially important microalga Haematococcuspluvialis for biotech applications. Journal of Applied Phycology 21(5):553-558 (2009).

S. Kathiresan, A. Chandrashekar, G.A. Ravishankar, and R. Sarada. Agrobacterium‐mediated transformation in the green alga

Haematococcuspluvialis (Chlorophyceae, Volvocales) 1. Journal of Phycology 45(3):642-649 (2009).

Y. Hirakawa, R. Kofuji, and K.I. Ishida. Transient transformation of a chlorarachniophyte alga, Lotharella amoebiformis (chlorarachniophyceae), with UIDA and EGFP reporter genes 1. Journal of Phycology 44(3):814-820 (2008).

M. Kakinuma, M. Ikeda, D.A. Coury, H. Tominaga, I. Kobayashi, and H. Amano. Isolation and characterization of the rbcS genes from a sterile mutant of Ulvapertusa (Ulvales, Chlorophyta) and transient gene expression using the rbcS gene promoter. Fisheries Science 75(4):1015-1028 (2009).

M. Ohnuma, T. Yokoyama, T. Inouye, Y. Sekine, and K. Tanaka. Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzonmerolae 10D. Plant and Cell Physiology 49(1): 117-120 (2008).

S. Feng, L. Xue, H. Liu, and P. Lu. Improvement of efficiency of genetic transformation for Dunaliellasalina by glass beads method. Molecular Biology Reports 36(6):1433 (2009).

J. Zhu. Mammalian cell protein expression for biopharmaceutical production. Biotechnology Advances 30(5):1158-1170 (2012).

T. Rose. Alternative strategies and new cell lines for high-level production of biopharmaceuticals. Modern Biopharmaceuticals 761-777 (2008).

C.T. Campbell, and K.J. Yarema. Large-scale approaches for glycobiology. Genome Biology 6(11): 1-8 (2005).

S.K. Gupta, and P. Shukla. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Critical Reviews in Biotechnology 36(6):1089-1098 (2016).

S. Fahad, F.A. Khan, N.S. Pandupuspitasari, M.M. Ahmed, Y.C. Liao, M.T. Waheed, M. Sameeullah, S. Hussain, S. Saud, S. Hassan, and A. Jan. Recent developments in therapeutic protein expression technologies in plants. Biotechnology Letters 37(2):

-279 (2015).

M. Haon, S. Grisel, D. Navarro, A. Gruet, J.G. Berrin, and C. Bignon. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris. Frontiers in Microbiology 6:1002 (2015).

R.A. Rader. FDA biopharmaceutical product approvals and trends in 2012. BioProcess International 11(3): 18-27 (2013).

O. Flaherty, A.B. Adam, and M. Butler. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnology Advances 107552 (2020).

E. Łojewska, T. Kowalczyk, S. Olejniczak, and T. Sakowicz. Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expression and Purification. 120: 110-117 (2016).

M. Merlin, E. Gecchele, S. Capaldi, M. Pezzotti, and L. Avesani. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BioMed Research International (2014).

E.Y. Park, J.H. Zhang, S. Tajima and L. Dwiarti. Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. Journal of Applied Microbiology 103(2):468-476 (2007).

E. Langer. On the Horizon: New Expression Systems to Become Common Industry Platforms, BioPharm International 2-4 (2009).

S.R. Rudge, and M.R. Ladisch. Industrial challenges of recombinant proteins. Current Applications of Pharmaceutical Biotechnology 1-22 (2019).

L. Gifre, A. Arís, A. Bach, and E. Garcia-Fruitós. Trends in recombinant protein use in animal production. Microbial cell factories 16(1): 1-17 (2017).

K.X. Huang, M. Badger, K. Haney, and S.L. Evans. Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expression and Purification 53(2): 325-330 (2007). (Font)

J. B. Cibelli, K. H. Campbell, G. E. Seidel, M. D. West and R. P Lanza. The health profile of cloned animals. Nature Biotechnology 20(1):13-14 (2002).

Y. Chisti. Biodiesel from microalgae. Biotechnology Advances 25(3):294-306 (2007).

G. Potvin and Z. Zhang. Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnology advances 28(6):910-918 (2010).

N. ERGEN and H. TÜFEKÇİ. Mammalian cell lines used in bioprocessing. Journal of Experimental and Clinical Medicine 39(3) (2022).

J. Dumont, D. Euwart, B. Mei, S. Estes and R. Kshirsagar. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Critical reviews in biotechnology 36(6):1110-1122 (2016).

Downloads

Published

2023-03-03

How to Cite

Sania Sahreen, Sundas Sharif, Hamna Ahmad, & Mukhtar, H. (2023). Comparison of Host Expression Systems used for Efficient Recombinant Proteins Production: Host Expression System for Recombinant Proteins Production. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 60(1), 5–28. https://doi.org/10.53560/PPASB(60-1)731

Issue

Section

Review Articles