Role of Dof Transcription Factors under Abiotic Stresses

Authors

  • Amjid Khan Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
  • Fouzia Bibi Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
  • Sohail Ahmad Jan Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
  • Zabta Khan Shinwari Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan

DOI:

https://doi.org/10.53560/PPASB(60-3)905

Keywords:

Abiotic stress, Dof, Transcription factor, Salinity stress, Crop improvement

Abstract

For the survival of the rapidly growing global population, plant species must exhibit tolerance towards climate change. Plants possess mechanisms to respond to stress by changing their biological processes and stimulating stress-responsive genes. The Dof (TFs) family, which binds to DNA with a single finger, reflects a plant-specific group of TFs that play an important part in regulating plants that are facing different types of abiotic stresses which may influence their growth and development. Discovery of this family has made a significant impact on the field of plant sciences. However, the characterization of Dof transcription factors in crop plants is currently limited reported. Several Dof transcription factors (TFs) of plants have been shown in nature. The transcription factors TaDofs, StDof, MnDofs, JrDof3TF, Va/VvDofs, GhDof1, OsDof1, SmeDof, ZmDof, CsDof, DcDof, CaDofs, ThDof, BraDof, and AcDof are important for abiotic stressors such heat, cold, salt, drought, and heavy metals. In addition, Dof transcription factors play a role in the regulation of factors related to yield and quality. Nevertheless, some outstanding issues remain. The review article provides a summary of the role of various stress-responsive Dof transcription factors in response to abiotic stresses. Additionally, this study investigates the limitations and possible opportunities associated with Dof transcription factors in the development of crops that are capable of withstanding climate change. Therefore, it is recommended to conduct comprehensive research on Dof transcription factors (TFs) across many different transcription factors fields to find their potential novel functionality, which will be beneficial to our retention of the delicate biological processes in plants.

References

S. Lindemose, C. O’Shea, M.K. Jensen and K. Skriver. Structure, function and networks of transcription factors involved in abiotic stress responses. International journal of molecular sciences 14(3): 5842-5878 (2013).

B. Yu, F. Ming, Y. Liang, Y. Wang, Y. Gan, Z. Qiu, S. Yan and B. Cao. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. International Journal of Molecular Sciences 23(3): 1817 (2022).

M. Raices and M.A. D’Angelo. Nuclear pore complexes and regulation of gene expression. Current opinion in cell biology 46: 26-32 (2017).

K. Rybak, P.T. See, H.T. Phan, R.A. Syme, C.S. Moffat, R.P. Oliver and K.C. Tan. A functionally conserved Zn2Cys6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host‐specific virulence of two major Pleosporales fungal pathogens of wheat. Molecular plant pathology 18(3): 420-434 (2017).

Z. Zhang, L. Yuan, X. Liu, X. Chen and X. Wang. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 639: 137-148 (2018).

X. Sun, J.T. Matus, D.C.J. Wong, Z. Wang, F. Chai, L. Zhang, T. Fang, L. Zhao, Y. Wang and Y. Han. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. Journal of experimental botany 69(7): 1749-1764 (2018).

M.K. Udvardi, K. Kakar, M. Wandrey, O. Montanari, J. Murray, A. Andriankaja, J.-Y. Zhang, V. Benedito, J.M. Hofer and F. Chueng. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology 144(2): 538-549 (2007).

Z. Wang, Y. Wang, Q. Tong, G. Xu, M. Xu, H. Li, P. Fan, S. Li and Z. Liang. Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17d gene. Planta 253(2): 1-14 (2021).

H. Xin, W. Zhu, L. Wang, Y. Xiang, L. Fang, J. Li, X. Sun, N. Wang, J.P. Londo and S. Li. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PloS one 8(3): e58740 (2013).

J.-K. Zhu. Abiotic stress signaling and responses in plants. Cell 167(2): 313-324 (2016).

H. Qamar, M. Ilyas, S.A. Jan, H.S.B. Mustafa, A. Arshad, M.S. Yar, M. Ahmed, S. Hussain, R. Wells, and H. Khurshid. Recent trends in molecular breeding and biotechnology for the genetic improvement of Brassica species against drought stress. Fresenius Environ. Bull 29(1): 19-25 (2020).

Z.K. Shinwari, S.A. Jan, K. Nakashima and K. Yamaguchi-Shinozaki. Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnology Reports 14: 151-162 (2020).

Z.K. Shinwari, F. Tanveer and I. Iqrar. Role of microbes in plant health, disease management, and abiotic stress management. Microbiome in Plant Health and Disease: Challenges and Opportunities 231-250 (2019).

T. Mahmood, T. Tahir, F. Munir, and Z.K. Shinwari. Characterization of regulatory elements in OsRGLP2 gene promoter from different rice accessions through sequencing and in silico evaluation. Computational Biology and Chemistry 73: 206-212 (2018).

M. Cai, J. Lin, Z. Li, Z. Lin, Y. Ma, Y. Wang and R. Ming. Allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane. PloS one 15(1): e0227716 (2020).

A.L. Arce, J.V. Cabello and R.L. Chan. Patents on plant transcription factors. Recent Patents on Biotechnology 2(3): 209-217 (2008).

H. Li, W. Huang, Z.-W. Liu, Y.-X. Wang and J. Zhuang. Transcriptome-based analysis of Dof family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). International Journal of Genomics 2016: (2016).

J. Ma, M.-Y. Li, F. Wang, J. Tang and A.-S. Xiong. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics 16(1): 1-15 (2015).

D. Golldack, I. Lüking and O. Yang. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant cell reports 30(8): 1383-1391 (2011).

Z. Wu, J. Cheng, J. Cui, X. Xu, G. Liang, X. Luo, X. Chen, X. Tang, K. Hu and C. Qin. Genome-wide identification and expression profile of Dof transcription factor gene family in pepper (Capsicum annuum L.). Frontiers in Plant Science 7: 574 (2016).

Z.-J. Wu, X.-H. Li, Z.-W. Liu, H. Li, Y.-X. Wang and J. Zhuang. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Functional & integrative genomics 15(6): 741-752 (2015).

Y. Huang, M.-Y. Li, F. Wang, Z.-S. Xu, W. Huang, G.-L. Wang, J. Ma and A.-S. Xiong. Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Molecular biology reports 42(5): 893-905 (2015).

M. Noguero, R.M. Atif, S. Ochatt and R.D. Thompson. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science 209: 32-45 (2013).

J. Venkatesh and S.W. Park. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato. Plant Physiology and Biochemistry 94: 73-85 (2015).

A. Skirycz, S. Jozefczuk, M. Stobiecki, D. Muth, M.I. Zanor, I. Witt and B. Mueller‐Roeber. Transcription factor AtDOF4; 2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytologist 175(3): 425-438 (2007).

C.-l. Wen, Q. Cheng, L. Zhao, A. Mao, J. Yang, S. Yu, Y. Weng and Y. Xu. Identification and characterisation of Dof transcription factors in the cucumber genome. Scientific Reports 6(1): 1-11 (2016).

X. Cai, Y. Zhang, C. Zhang, T. Zhang, T. Hu, J. Ye, J. Zhang, T. Wang, H. Li, and Z. Ye. Genome‐wide analysis of plant‐specific Dof transcription factor family in tomato. Journal of Integrative Plant Biology 55(6): 552-566 (2013).

A. Skirycz, A. Radziejwoski, W. Busch, M.A. Hannah, J. Czeszejko, M. Kwaśniewski, M.I. Zanor, J.U. Lohmann, L. De Veylder and I. Witt. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. The Plant Journal 56(5): 779-792 (2008).

A.R. Corrales, L. Carrillo, P. Lasierra, S.G. Nebauer, J. Dominguez‐Figueroa, B. Renau‐Morata, S. Pollmann, A. Granell, R.V. Molina and J. Vicente‐Carbajosa. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant, cell & environment 40(5): 748-764 (2017).

M. Ewas, E. Khames, K. Ziaf, R. Shahzad, E. Nishawy, F. Ali, H. Subthain, M.H. Amar, M. Ayaad and O. Ghaly. The tomato DOF daily fluctuations 1, TDDF1 acts as flowering accelerator and protector against various stresses. Scientific Reports 7(1): 1-16 (2017).

H. Qin, J. Wang, X. Chen, F. Wang, P. Peng, Y. Zhou, Y. Miao, Y. Zhang, Y. Gao, and Y. Qi. Rice Os DOF 15 contributes to ethylene‐inhibited primary root elongation under salt stress. New Phytologist 223(2): 798-813 (2019).

Y. Zhou, Y. Cheng, C. Wan, J. Li, Y. Yang and J. Chen. Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon. PeerJ 8: e8358 (2020).

N. Suzuki, R.M. Rivero, V. Shulaev, E. Blumwald and R. Mittler. Abiotic and biotic stress combinations. New Phytologist 203(1): 32-43 (2014).

L.N. Tolosa and Z. Zhang. The role of major transcription factors in solanaceous food crops under different stress conditions: current and future perspectives. Plants 9(1): 56 (2020).

J. Wu, L. Chen, M. Chen, W. Zhou, Q. Dong, H. Jiang and B. Cheng. The DOF-domain transcription factor ZmDOF36 positively regulates starch synthesis in transgenic maize. Frontiers in Plant Science 10: 465 (2019).

L. Zhang, B. Liu, G. Zheng, A. Zhang, and R. Li. Genome-wide characterization of the SiDof gene family in foxtail millet (Setaria italica). Biosystems 151: 27-33 (2017).

G. Yang, L. Yu, Y. Wang, C. Wang and C. Gao. The translation initiation factor 1A (TheIF1A) from Tamarix hispida is regulated by a Dof transcription factor and increased abiotic stress tolerance. Frontiers in plant science 8: 513 (2017).

X. Cai, C. Zhang, W. Shu, Z. Ye, H. Li, and Y Zhang. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications 474(4): 736-741 (2016).

R. Shahzad, S. Jamil, S. Ahmad, A. Nisar, Z. Amina, S. Saleem, M.Z. Iqbal, R.M. Atif and X. Wang. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi Journal of Biological Sciences 28(4): 2323-2341 (2021).

S.M. Azam, Y. Liu, Z.U. Rahman, H. Ali, C. Yan, L. Wang, S. Priyadarshani, B. Hu, X. Huang and J. Xiong. Identification, characterization and expression profiles of Dof transcription factors in pineapple (Ananas comosus L). Tropical plant biology 11(1): 49-64 (2018).

L.M. Shaw, C.L. McIntyre, P.M. Gresshoff, and G.P. Xue. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Functional & integrative genomics 9(4): 485-498 (2009).

Y. Liu, N. Liu, X. Deng, D. Liu, M. Li, D. Cui, Y. Hu and Y. Yan. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC genomics 21(1): 1-18 (2020).

Y. Zhai, J. Chen, J. He, J. Zhang, W. Sha, H. Yu, Y. Zhao, T. Ma, T. Sun, and M. Zhang. Isolation, characterization and functional validation of a soybean transcription factor, GmDof4. 2 improves drought tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture (PCTOC) 1-11 (2022).

W. Huang, Y. Huang, M.-y. Li, F. Wang, Z.-s. Xu and A.-s. Xiong. Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress. Biotechnology Letters 38(1): 145-155 (2016).

N. Gandass and P. Salvi. Intrinsically disordered protein, DNA binding with one finger transcription factor (OsDOF27) implicates thermotolerance in yeast and rice. Frontiers in Plant Science 13: (2022).

J. Xu and H. Dai. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant growth regulation 80(3): 315-322 (2016).

X. Cao, W. Wan, H. Mao, D. Yin, X. Deng, H. Yan and L. Ren. Genome-Wide Identification and Expression Analysis of Dof Transcription Factors in Lotus (Nelumbo nucifera Gaertn.). Plants 11(15): 2057 (2022).

A. Song, T. Gao, P. Li, S. Chen, Z. Guan, D. Wu, J. Xin, Q. Fan, K. Zhao, and F. Chen. Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Frontiers in plant science 7: 199 (2016).

T. Luo, Y. Song, H. Gao, M. Wang, H. Cui, C. Ji, J. Wang, L. Yuan, and R. Li. Genome-wide identification and functional analysis of Dof transcription factor family in Camelina sativa. BMC genomics 23(1): 1-17 (2022).

L. Zheng, G. Liu, X. Meng, Y. Liu, X. Ji, Y. Li, X. Nie and Y. Wang. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant molecular biology 82(4): 303-320 (2013).

Y. Chen and J. Cao. Comparative analysis of Dof transcription factor family in maize. Plant Molecular Biology Reporter 33(5): 1245-1258 (2015).

H. Wang, S. Zhao, Y. Gao, and J. Yang. Characterization of Dof transcription factors and their responses to osmotic stress in poplar (Populus trichocarpa). PLoS One 12(1): e0170210 (2017).

Y. Su, W. Liang, Z. Liu, Y. Wang, Y. Zhao, B. Ijaz and J. Hua. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology 218: 222-234 (2017).

Q. Wei, W. Wang, T. Hu, H. Hu, W. Mao, Q. Zhu and C. Bao. Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). PeerJ 6: e4481 (2018).

T. Li, X. Wang, D. Elango, W. Zhang, M. Li, F. Zhang, Q. Pan, and Y. Wu. Genome-wide identification, phylogenetic and expression pattern analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.). PeerJ 10: e14087 (2022).

H. Nan, R.A. Ludlow, M. Lu, and H. An. Genome-wide analysis of Dof genes and their response to abiotic stress in rose (Rosa chinensis). Frontiers in Genetics 12: 538733 (2021).

T. Guo, S. Wang, T. Zhang, L. Xu, Y. Li, Y. Chao, and L. Han. Expression of the Medicago truncatula MtDof32 transcription factor regulates plant growth and enhances abiotic stress tolerances in transgenic Arabidopsis. Environmental and Experimental Botany 183: 104339 (2021).

A. AghaKouchak, A. Farahmand, F. Melton, J. Teixeira, M. Anderson, B.D. Wardlow and C. Hain. Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics 53(2): 452-480 (2015).

G. Li, W. Xu, P. Jing, X. Hou, and X. Fan. Overexpression of VyDOF8, a Chinese wild grapevine transcription factor gene, enhances drought tolerance in transgenic tobacco. Environmental and Experimental Botany 190: 104592 (2021).

A.R. Corrales Ducuara, S.G. Nebauer, L. Carrillo Gil, P. Fernandez Nohales, J. Marqués, B. Renau Morata, A. Granel, S. Pollmann, J. Vicente Carbajosa and R.V. Molina. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany 65(4): 995-1012 (2013).

Z. Fang, W. Jiang, Y. He, D. Ma, Y. Liu, S. Wang, Y. Zhang, and J. Yin. Genome-wide identification, structure characterization, and expression profiling of Dof transcription factor gene family in wheat (Triticum aestivum L.). Agronomy 10(2): 294 (2020).

A. Raza, J. Tabassum, A.Z. Fakhar, R. Sharif, H. Chen, C. Zhang, L. Ju, V. Fotopoulos, K.H. Siddique, and R.K. Singh. Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology 1-28 (2022).

T. Zhang and Y. Zhou. Plant transcription factors and salt stress, Plant Transcription Factors. Elsevier, pp. 369-381 (2023).

L. Cheng, S. Li, J. Hussain, X. Xu, J. Yin, Y. Zhang, X. Chen, and L. Li. Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Molecular biology reports 40(6): 4033-4045 (2013).

A.-R. Corrales, S.G. Nebauer, L. Carrillo, P. Fernández-Nohales, J. Marqués, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa and R.-V. Molina. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of experimental botany 65(4): 995-1012 (2014).

Q.Y. Zhou, A.G. Tian, H.F. Zou, Z.M. Xie, G. Lei, J. Huang, C.M. Wang, H.W. Wang, J.S. Zhang, and S.Y. Chen. Soybean WRKY‐type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant biotechnology journal 6(5): 486-503 (2008).

T. Finatto, V.E. Viana, L.G. Woyann, C. Busanello, L.C.d. Maia and A.C.d. Oliveira. Can WRKY transcription factors help plants to overcome environmental challenges?, Genetics and molecular biology 41: 533-544 (2018).

P. Albertos, G. Dündar, P. Schenk, S. Carrera, P. Cavelius, T. Sieberer and B. Poppenberger. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. The EMBO journal 41(3): e108664 (2022).

N.-H. Ghori, T. Ghori, M. Hayat, S. Imadi, A. Gul, V. Altay and M. Ozturk. Heavy metal stress and responses in plants. International journal of environmental science and technology 16(3): 1807-1828 (2019).

S. Kumar, S.H. Shah, Y. Vimala, H.S. Jatav, P. Ahmad, Y. Chen and K.H. Siddique. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science 13: 972856 (2022).

J. Lü, M. Yang, Q. Meng, K. Zhuang and N. Ma. Chloroplast metalloproteinase SlL2 reduces the thermotolerance of tomato by decreasing the content of SlCDJ1. Protoplasma 1-13 (2023).

V. Martinez, M. Nieves-Cordones, M. Lopez-Delacalle, R. Rodenas, T.C. Mestre, F. Garcia-Sanchez, F. Rubio, P.A. Nortes, R. Mittler and R.M. Rivero. Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules 23(3): 535 (2018).

Y. Huang, J. An, S. Sircar, C. Bergis, C.D. Lopes, X. He, B. Da Costa, F.-Q. Tan, J. Bazin and J. Antunez-Sanchez. HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nature Communications 14(1): 469 (2023).

N. Lohani, A.A. Golicz, M.B. Singh, and P.L. Bhalla. Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Functional & integrative genomics 19(3): 515-531 (2019).

G. Yang, X. Gao, K. Ma, D. Li, C. Jia, M. Zhai and Z. Xu. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC plant biology 18(1): 1-14 (2018).

A. Arenas-M, F.M. Castillo, D. Godoy, J. Canales and D.F. Calderini. Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. Plants 11(1): 59 (2021).

M. Kim, V. Schulz, L. Brings, T. Schoeller, K. Kühn and E. Vierling. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. New Phytologist 232(5): 2026-2042 (2021).

L. Wobbe. The molecular function of plant mTERFs as key regulators of organellar gene expression. Plant and Cell Physiology 61(12): 2004-2017 (2020).

P.K. Papolu, M. Ramakrishnan, Q. Wei, K.K. Vinod, L.-H. Zou, K. Yrjala, R. Kalendar and M. Zhou. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC Plant Biology 21(1): 1-19 (2021).

G. He, W. Tian, L. Qin, L. Meng, D. Wu, Y. Huang, D. Li, D. Zhao and T. He. Identification of novel heavy metal detoxification proteins in Solanum tuberosum: Insights to improve food security protection from metal ion stress. Science of The Total Environment 779: 146197 (2021).

J. Li, M. Zhang, J. Sun, X. Mao, J. Wang, H. Liu, H. Zheng, X. Li, H. Zhao and D. Zou. Heavy metal stress-associated proteins in rice and Arabidopsis: genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Frontiers in Genetics 11: 477 (2020).

C. Huo, L. He, T. Yu, X. Ji, R. Li, S. Zhu, F. Zhang, H. Xie and W. Liu. The Superoxide Dismutase Gene Family in Nicotiana tabacum: Genome-Wide Identification, Characterization, Expression Profiling and Functional Analysis in Response to Heavy Metal Stress. Frontiers in Plant Science 13 (2022).

D. Hwarari, Y. Guan, B. Ahmad, A. Movahedi, T. Min, Z. Hao, Y. Lu, J. Chen and L. Yang. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. International Journal of Molecular Sciences 23(3): 1549 (2022).

F.N. Ritonga and S. Chen. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5): (2020) 560.

M. Manna, T. Thakur, O. Chirom, R. Mandlik, R. Deshmukh and P. Salvi. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172(2): 847-868 (2021).

G.K. Rai, G. Jamwal, G. Rai and M. Singh. Understanding Transcription Factors in Plant Response to Drought Stress. Indian Journal of Agricultural Biochemistry 34(2): 116-125 (2021).

Published

2023-09-04

How to Cite

Amjid Khan, Fouzia Bibi, Sohail Ahmad Jan, & Zabta Khan Shinwari. (2023). Role of Dof Transcription Factors under Abiotic Stresses. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 60(3). https://doi.org/10.53560/PPASB(60-3)905

Issue

Section

Review Articles