Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network

Authors

  • Tariq Mahmood Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan
  • Talab Hussain Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan
  • Maqsood Ahmed Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.53560/PPASA(60-2)668

Keywords:

High Energy Physics, Artificial Neural Network, Quantum Computing, Quantum Circuits, Quantum Neural Network

Abstract

According to recent research on the brain and cognition, the microtubule level activities in the brain are in accordance with the quantum mechanical concepts. Consciousness is the emergent phenomenon of the brain’s subsystems and the quantum neural correlates. Based on the global work-space theory and traditional neural networks, investigations in machine consciousness and machine intelligence are reporting new techniques.  In this study, a novel approach using circuit-based quantum neural network is proposed and simulated. This approach satisfies all the criteria of quantum computing and is tested for the exclusive OR (XOR) gate’s nonlinear learning. As a result of the use of quantum gates, various quantum circuits, such as quantum adders and subtractors, are also created and included in the designing and simulation of circuit of the quantum neural networks. Moreover, it is also argued that the proposed circuit of quantum neural network may also be tested and implemented on real quantum computer hardware. The present study also stresses the applicability of techniques of machine learning algorithms such as quantum and classical neural networks to various challenges of High Energy Physics.

References

B.J. Baars. A Cognitive Theory of Consciousness. Cambridge, MA: Cambridge University Press (1988).

B.J. Baars. The conscious access hypothesis: origins and recent evidence. Trends in Cognitive Sciences 6(1): 47-52 (2002).

R. Prakash, O. Prakash, S. Prakash, P. Abhishek, and S. Gandotra. Global workspace model of consciousness and its electromagnetic correlates. Ann Indian Acad Neurol:146-153 (2006).

B.J. Baars. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research 150: 45-53 (2005).

B.J. Baars. The Global Workspace Theory of Consciousness. The Blackwell Companion to Consciousness, Second Edition, John Wiley & Sons Ltd: 227-242 (2017).

W.M. Qazi, K. Ahmed, Y. Saeed, A. Athar, and M. A. Saeed. Cybernetics Approach towards the Development of Cognitive Model for Machine. International Conference on Intelligence and Information Technology (2010).

W.M. Qazi, and K. Ahmad. Building Conscious Cybernetic Entities using QuBIC Model and Framework Based on Unified Theory of Mind. The 11th Islamic Countries Conference on Statistical Sciences (ICCS-11), Lahore, (2011).

I. Aleksander. Designing Conscious Systems, Cogn Comput 1: 22–28, (2009).

B.J. Baars, and S. Franklin. An Architectural Model of Conscious and Unconcious Brain Functions: Global Workspace Theory and IDA. Neural Networks 20: 955-961 (2007).

S. Frankin, and F. G. Patterson, The LIDA Architecture: Adding New Modes of Learning To An Intelligent, Autonomous, Software Agent. Society for Design and Process Science, USA (2006).

S. Franklin. Building life-like conscious software agents. AI Communication :183-193 (2000).

D. Gamez. The Development and Analysis of Conscious Machines. University of ESSEX (2008).

S.R. Hameroff. The Brain is Both Neurocomputer and Quantum Computer. Cognitive Science 31: 1035-1045 (2007).

Y. Kinouchi. A Logical Model of Consciousness on a Neural Network System with a Simple Abstract Brain-like Structure. Nokia Workshop on Machine Consciousness (2008).

J.A. Starzyk, and D.K. Prasad. A Computational Model of Machine Consciousness. International Journal of Machine Consciousness 3: 255-281 (2011).

R. Sun. The Importance of Cognitive Architectures: An Analysis Based on CLARION. Journal of Experimental and Theoretical Artificial Intelligence 19(2): 159-193 (2007).

R. Sun. Motivational Representations within a Computational Cognitive Architecture. Cognitive Computation 1: 91-103 (2009).

J.G. Taylor. CODAM: A Neural Network Model of Consciousness. Neural Network 20: 983-992 (2007).

K. Sgarbas. The Road to Quantum Artificial Intelligence. 11th Panhellenic Conference in Informatics (2007).

B. Aoun, and M. Tarifi. Quantum Artificial Intelligence, Quantum Information Processing, ArXiv:quant-ph/0401124 (2004).

W.M. Qazi. Modeling Cognitive Cybernetics From Unified Theory Of Mind Using Quantum Neuro-Computing For Machine Consciousness (2012).

L. Fei, D. Xiaoliang, Z. Shengmei, and Z. Baoyu. A Learning Algorithm for Quantum Neuron. ISCP'04 Proceedings (2004).

A. Ezhov, and D. Ventura. Quantum Neural Networks (2000).

M.A. Nielsen, and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press (2000).

D. Deutch. Quantum Theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London 400: 97–117 (1985).

K. Raedit, K. Michielsen, H. Raedt, B. Trieu, G. Arnold, M. Richter, T. Lippert, H. Watanabe, and N. Ito. Massively Parallel Quantum Computer Simulator, Computer Physics Communication 176: 121-136 (2007).

L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 79: 325–328 (1997).

R.C. Jaeger. Microelectronic Circuit Design. McGraw-Hill. 226–233. ISBN 0-07-032482-4 (1997).

M.M. Mano, and M.D. Ciletti, Digital Design. Pearson (1927).

T. Mahmood. Neural Network Based Study of Charmonium Spectrum. PhD Thesis, submitted to Centre for High Energy Physics, University of the Punjab, Lahore-Pakistan (2022).

CERN, Physics at CERN, [Online]. Available: https://home.cern/science/physics. [Accessed 20 September 2019].

A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, and T. wongjirad. Machine learning at the energy and intensity frontiers of particle physics. Nature 560: 41-48 (2018).

CERN, CERN accelerating science, [Online]. Available: https://home.cern/science/physics/standard-model. [Accessed 24 September 2019].

B.H. Denby, Neural network and cellular automata in experimental high energy physics. Computational physics communication 49: 429-448 (1988).

C. Peterson, T. Rognvaldsson, and L. Lonnblad. JETNET 3.0: a versatile artificial neural network package. Computational Physics Communication 81: 185-220 (1994).

P. Baldi, K. Crammer, T. Faucett, P. Sadowski, and D. Whiteson. Parametrized neural networks for high energy physics. Europian Physical Journal C 76(05): (2016).

G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová. Machine learning and the physical sciences. arXiv:1903.10563, (2019).

H. Mutuk. Energy levels of one-dimensional anharmonic oscillator via neural network. Modern Physics Letters A 34(12): 1950088 (2019).

H. Mutuk. A Neural Network Study of Blasius Equation. Neural Processing Letters 51: 2179-2194 (2018).

H. Mutuk. Cornell Potential: A Neural Network Approach. Hindawi: Advances in High Energy Physics 2019(3): 1-9 (2019).

H. Mutuk. Neural Network Study of Hidden-Charm Pentaquark Resonances. arXiv:1904.09756v3 [hep-ph], (2019).

H. Mutuk. Mass Spectrum of Exotic X (5568) State via Artificial Neural Network. arXiv:1901.01154 (2019).

D. Collaboration. Classification of hadronic decays of Z0 into b and c quark pairs using neural network. Physics Letters B 295(3-4):383-395 (1992).

H. Kolansoki. Application of artificial neural networks in particle physics. Nuclear Instruments and Methods in Physics Research Section A: 14-20 (1995).

A. collaboration, and I. Caprini. A neural network clustering algorithm for the ATLAS silicon pixel detector. Journal of Instrumentation 9(09): (2014).

C. Peterson. Track finding with neural networks. Nuclear Instruments and Methods in Physics Research Section A: 279(3): 537-545 (1989).

L. Lonnblad, C. Peterson, and T. Rognvaldsson. Finding gluon jets with a neural trigger. Physics Review Letters 65: 1321-1324 (1990).

H. Bruce, M. Denby, F. B. Campbell, N. Chriss, C. Bowers, and F. Nesti. Neural networks for triggering, IEEE Transactions on Nuclear Science 37(2): 248-254 (1990).

R. Frhwirth, M. Regler, R. K. Bock, H. Grote, and D. Notz. Data analysis techniques for high energy physics. Cambridge monographs (1990).

A. Strandlie, and R. Frhwirth. Track and vertex reconstruction: From classical to adaptive methods. Review of Modern Physics 82(2): (2010).

G. Carleo, and M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science 355(6325): 602-606 (2017).

E.I. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural network for solving ordinary and partial differential equations. IEEE transactions on neural networks 9: 987-1000 (1998).

D.W. Berry. High order quantum algorithm for solving linear differential equation. Journal of Physics A: Mathematical and Theoretical 47: (2014).

Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais. Quantum algorithm and circuit design solving the poison equation. New Journal of Physics 15: 013021 (2013).

K.K. Sharma. Quantum Machine Learning in High Energy Physics: the Future Prospects. High Energy Particle Physics 06: (2018).

S. Carrazza. Machine learning challenges in theoretical HEP. Journal of Physics Conference Series 1085: (2017).

A.J. Silva, T. B. Ludermir, and W. R. Oliveira. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks 76: (2016).

F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajon. An artificial neuron implemented on an actual quantum processor. Nature partner journal: Quantum information 5: 8 (2019).

K.H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M.S. Kim. Quantum generalization of feedforward neural networks. npj Quantum Information 3(1): (2017).

P. Rebentrost, T.R. Bromley, C. Weedbrook, and S. Lloyd. Quantum Hopfield neural network. Physical Review A 98: 042308 (2018).

Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik. Quantum Neuron: an elementary building-block for machine learning on quantum computers. arXiv:1711.11240 (2017).

F. Neukart, and S.-A. Moraru. On Quantum Computers and Artificial Neural Networks. Journal of Signal Processing Research 2: 1-11 (2013).

M. Schuld, I. Sinayskiy, and F. Petruccione. The quest for a Quantum Neural Net-work. Quantum Information Processing 13(11): 2567–2586 (2014).

M. Schuld, I. Sinayskiy, and F. Petruccione. Simulating a perceptron on a quantum computer. Physics Letters A 379(7): 660–663 (2015).

N. Wiebe, A. Kapoor and K. M. Svore. Quantum Perceptron Models. Adv. Neural Inf.Process. Syst. (NIPS) 29: 3999–4007 (2016).

S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013).

L. Lamata. Basic protocols in quantum reinforcement learning with super-conducting circuits. Scientific Reports 7(1): 1609 (2017).

J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C.B. Osborn, A. Papageorge, E.C. Peterson, G. Prawiroatmodjo, N. Rubin, C.A. Ryan, D. Scarabelli, M. Scheer, E.A. Sete, P. Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti. Unsupervised Machine Learning on a Hybrid Quantum Computer. arXiv:1712.05771 (2017).

M. Schuld, Xanadu, I. Sinayskiy, and F. Petruccione. Viewpoint: Neural Networks Take on Open Quantum Systems. Physics 12: (2019).

A. Nagy, and V. Savona. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters 122(25): (2019).

M.J. Hartmann, and G. Carleo. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. Physical Review Letters 122: 250502 (2019).

F. Vicentini, A. Biella, N. Regnaul, and C. Ciuti. Variational Neural-Network Ansatz for the Steady States in Open Quantum Systems. Physical Review Letters 122: 250503 (2019).

N. Yoshioka, and R. Hamazaki. Constructing neural stationary states for open quantum many-body systems. Physical Review B 99: 214306 (2019).

C.P.D.S. Gonçalves. Quantum Neural Machine Learning: Theory and Experiments. Applications in Medicine and Biology (2019).

B. Ricks, and D. Ventura. Training a Quantum Neural Network. Advances in neural information processing systems (2004).

X.L. Wang, X.D. Cai, Z.E. Su, M.C. Chen, D. Wu, L. Li, N.L. Liu, C.Y. Lu, and J.W. Pan. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540): 516-9 (2015).

Downloads

Published

2023-06-26

How to Cite

Tariq Mahmood, Talab Hussain, & Maqsood Ahmed. (2023). Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 60(2), 45–54. https://doi.org/10.53560/PPASA(60-2)668

Issue

Section

Research Articles