Unit Xgamma Distribution: Its Properties, Estimation and Application
Unit-Xgamma Distribution
DOI:
https://doi.org/10.53560/PPASA(59-1)636Keywords:
Unit-Xgamma Moments Risk Measures Estimation Data AnalysisAbstract
A new one-parameter model for unit-interval datasets is introduced. The proposed distribution is termed “Unit Xgamma distribution.” Some mathematical properties of the new distribution are derived. We also characterize it using truncated moments and a hazard function. Maximum likelihood, least-squares, weighted least-squares, Anderson- Darling, Cramer-von Mises, and maximum product spacing are among the five estimation methods used to estimate the parameter. A Monte Carlo simulation was used to test the efficacy of these developed estimators. The flexibility of the proposed distribution was assessed using water capacity data. The proposed unit Xgamma distribution can be used for bounded datasets as an alternative to the well-known competitive distributions available in the literature.
References
A. K. Gupta and S. Nadarajah, Handbook of beta distribution and its applications. CRC press, 2004.
P. Kumaraswamy, “A generalized probability density function for double-bounded random processes,” J. Hydrol., vol. 46, no. 1–2, pp. 79–88, 1980.
M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, and F. Alqallaf, “The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval,” Commun. Stat. - Theory Methods, vol. 48, no. 14, pp. 3423–3438, 2019.
K. Modi and V. Gill, “Unit Burr-III distribution with application,” J. Stat. Manag. Syst., vol. 0510, pp. 1–14, 2019.
J. Mazucheli, A. F. Menezes, and S. Dey, “Unit- Gompertz distribution with applications,” Statistica, vol. 79, no. 1, pp. 25–43, 2019.
J. Mazucheli, A. F. B. Menezes, and S. Chakraborty, “On the one parameter unit-Lindley distribution and its associated regression model for proportion data,” J. Appl. Stat., vol. 46, no. 4, pp. 700–714, 2019.
J. Mazucheli, A. F. B. Menezes, and S. Dey, “Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution,” Commun. Stat. - Theory Methods, vol. 47, no. 15, pp. 3767–3778, 2018.
J. Mazucheli, A. F. B. Menezes, A. F. B. Menezes, S. Dey, A. F. B. Menezes, and S. Dey, “The unit- Birnbaum-Saunders distribution with applications,” Chil. J. Stat., vol. 9, no. 1, pp. 47–57, 2018.
J. Mazucheli, A. F. B. Menezes, and M. E. Ghitany, “The unit-Weibull distribution and associated inference,” J. Appl. Probab. Stat, vol. 13, pp. 1–22, 2018.
A. F. B. Menezes, J. Mazucheli, and S. Dey, “The unit-logistic distribution: Different methods of estimation,” Pesqui. Operacional, vol. 38, no. 3, pp. 555–578, 2018.
M. Ahsan-ul-Haq, S. Hashmi, K. Aidi, P. L. Ramos, and F. Louzada, “Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test,” Ann. Data Sci., 2020.
R. A. R. Bantan et al., “Some new facts about the unit-rayleigh distribution with applications,” Mathematics, vol. 8, no. 11, pp. 1–23, 2020.
C. Chesneau, “Study of a unit power-logarithmic distribution,” Open J. Math. Sci., vol. 5, no. 1, pp. 218–235, 2021.
M. Ahsan-ul-Haq, M. Albassam, M. Aslam, and S. Hashmi, “Statistical Inferences on Odd Fréchet Power Function Distribution,” J. Reliab. Stat. Stud., vol. 14, no. 1, pp. 141–172, 2021.
M. Korkmaz and C. Chesneau, “On the unit Burr-XII distribution with the quantile regression modeling and applications,” Comput. Appl. Math., vol. 40, no. 1, pp. 1–26, 2021.
R. A. R. Bantan, C. Chesneau, F. Jamal, M. Elgarhy, W. Almutiry, and A. A. Alahmadi, “Study of a Modified Kumaraswamy Distribution,” Mathematics, vol. 9, no. 21, p. 2836, 2021.
A. Krishna, R. Maya, C. Chesneau, and M. R. Irshad, “The Unit Teissier Distribution and Its Applications,” Math. Comput. Appl., vol. 27, no. 1, p. 12, 2022.
G. Martínez-Flórez, R. Tovar-Falón, and C. Barrera-Causil, “Inflated Unit-Birnbaum-Saunders Distribution,” Mathematics, vol. 10, no. 4, p. 667, 2022.
M. S. Eliwa, M. Ahsan-ul-haq, A. Al-bossly, and M. El-morshedy, “A Unit Probabilistic Model for Proportion and Asymmetric Data : Properties and Estimation Techniques with Application to Model Data from SC16 and P3 Algorithms,” Mathematical Problems in engineering 2022.
S. Sen, S. S. Maiti, and N. Chandra, “The xgamma distribution: Statistical properties and application,” J. Mod. Appl. Stat. Methods, vol. 15, no. 1, pp. 774– 788, 2016.
A. Z. Afify, A. M. Gemeay, and N. A. Ibrahim, “The heavy-tailed exponential distribution: risk measures, estimation, and application to actuarial data,” Mathematics, vol. 8, no. 8, p. 1276, 2020.
N. M. Alfaer, A. M. Gemeay, H. M. Aljohani, and A. Z. Afify, “The extended log-logistic distribution: inference and actuarial applications,” Mathematics, vol. 9, no. 12, p. 1386, 2021.
Z. Ahmad, E. Mahmoudi, M. Alizadeh, R. Roozegar, and A. Z. Afify, “The exponential TX family of distributions: properties and an application to insurance data,” J. Math., vol. 2021, 2021.
W. Glänzel, “A characterization theorem based on truncated moments and its application to some distribution families,” in Mathematical statistics and probability theory, Springer, 1987, pp. 75–84.
A. Z. Afify and O. A. Mohamed, “A new three- parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications,” Mathematics, vol. 8, no. 1, p. 135, 2020.
A. Al Mutairi, M. Z. Iqbal, M. Z. Arshad, B. Alnssyan, H. Al-Mofleh, and A. Z. Afify, “A New Extended Model with Bathtub-Shaped Failure Rate: Properties, Inference, Simulation, and Applications,” Mathematics, vol. 9, no. 17, p. 2024, 2021.
A. Z. Afify, H. M. Aljohani, A. S. Alghamdi, A. M. Gemeay, and A. M. Sarg, “A New Two-Parameter Burr-Hatke Distribution: Properties and Bayesian and Non-Bayesian Inference with Applications,” J. Math., vol. 2021, 2021.
S. Nadarajah and S. Kotz, “Moments of some J-shaped distributions,” J. Appl. Stat., vol. 30, no. 3, pp. 311–317, 2003.