Mathematical Analysis on Conducting Sphere Embedded in Non Integer Dimensional Space
Mathematical Analysis on Conducting Sphere Embedded in Non Integer Dimensional Space
DOI:
https://doi.org/10.53560/PPASA(59-1)756Keywords:
Fractional dimensional space, Laplacian equation, Analytical solution, Separation variable methodAbstract
We have derived an analytical solution in low frequency using the idea of a fractional Laplacian equation. Fractional dimensional (FD) space has importance in describing the complex physics phenomena. Here, the Laplacian equation in spherical coordinated (r,θ,0) is expressed in fractional dimensional space using Gegenbauer polynomials. The analytical solution is obtained by the separation variable method. The general solution is a product of angular and radial solutions and is independent of ϕ due to azimuthal symmetry. The classical solution is retained by setting fractional parameter α=3. Further, numerical results are discussed for different values of α and compared with available literature.
References
C.G. Bollini, J.J. Giambiagi, Dimensional renormalization: The number of dimensions as a regularizing parameter, Nuovo Cimento B 12 (1972) 2026.
J.F. Ashmore, On renormalization and complex space-time dimensions, Commun. Math. Phys. 29 (1973) 177-187.
K.G. Wilson, Quantum field-theory models in less than 4 dimension, Phys. Rev. D 7 (10) (1973) 2911- 2926.
F.H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. Math. Phys. 18 (6) (1977) 1224-1234.
X.F. He, Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43 (3) (1991) 2063-2069.
C.M. Bender, S. Boettcher, Dimensional expansion for the Ising limit of quantum field theory, Phy. Rev. D 48 (10) (1993) 4919-4923.
C.M. Bender, K.A. Milton, Scalar Casimir effect for a D-dimension sphere, Phys. Rev. D 50 (10) (1994) 6547-555.
V.E. Tarasov, Fractional generalization of Liouville equations, Chaos 14 (2004) 123-127.
V.E. Tarasov, Electromagnetic fields on fractals, Modern Phys. Lett. A 21 (20) (2006) 1587-1600.
A. Zeilinger, K. Svozil, Measuring the dimension of space-time, Phys. Rev. Lett. 54 (1985) 2553-2555.
C. Palmer, P.N. Stavrinou, Equations of motion in a noninteger-dimensionspace, J. Phys. A 37 (2004) 6987-7003.
J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley, New York, 1999.
Julius Adams Stratton, Electromagnetic Theory, 640 Pages, 1941, Wiley-IEEE Press.
T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th ed., 2007.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, pages 1184-1185, New York: McGraw-Hill, 1953.
S. Muslih, D. Baleanu, Fractional multipoles in fractional space, Nonlinear Anal. 8 (2007) 198-203.
Dumitru Baleanu, Alireza K. Golmankhaneh, Ali K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Analysis: Real World Applications 11 (2010) 288-292.
V.E. Tarasov, Gravitational field of fractals distribution of particles, Celestial Mech. and Dynam. Astronom. 94 (2006) 1-15.