Lungs Malignancy evaluation of the pulmonary nodules using deep learning
Lung Malignancy detection
Keywords:
Pulmonary nodules, Lung malignancy, Single shot detector (SSD), LUNA16, Deep learningAbstract
Detection of pulmonary nodules is a dangerous kind of lung cancer that is responsible for majority of deaths every year. Early diagnosis and proper treatment of Pulmonary Nodules significantly improves the patient’s survival rate. In this study, we propose a multi-view convolutional network for pulmonary nodule detection. The main objective of our work is to establish a method that can automatically pre-process, localize and then segment the pulmonary nodules precisely and improve its accuracy. In our proposed method single shot multi-box detector (SSD) precisely localizes the nodules area in the form of bounding boxes and eliminates some clinical artifacts. The proposed approach was evaluated on LUNA 2016 dataset to show the robustness of our work which achieved a sensitivity and precision of 97.47 and 0.97 respectively. The results of the segmented image are also compared with the state-of-the-art methods to demonstrate the performance superiority of the proposed approach.
References
Jacobs, C., E.M. van Rikxoort, T. Twellmann, E.T. Scholten, P.A. de Jong, J.M. Kuhnigk, M. Oudkerk, H.J. de Koning, M. Prokop, C. Schaefer-Prokop, & B. van Ginneken, Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images, Medical Image Analysis,18(2)374-384 (2014).
Ginneken, V.B., S.G. Armato, B de Hoop, van Amelsvoort-van de Vorst, S., Duindam, T., Niemeijer, M., Murphy, K., Schilham, A., Retico, A., M.E. Fantacci, & Camarlinghi. “Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: the ANODE09 study, Medical image Manalysis, 14(6): 707-722 (2010).
Firmino,M., A.H. Morais, R.M. Mendoça, M.R. Dantas, H.R. Hekis. & R., Valentim, Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects, Biomedical engineering online, 13(1) 41 (2014).
LeCun, Y., L. Bottou, Y Bengio. & Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11) 2278-2324 (1998).
Zhang, L., F. Yang, Y.D. Zhang, & Y.J, Zhu, Road crack detection using deep convolutional neural network, International conference on image processing (ICIP) IEEE, 3708-3712 (2016).
Chatfield, K., K. Simonyan, A. Vedaldi, & Zisserman, return of the devil in the details: Delving deep into convolutional nets, arXiv preprint arXiv, 1405.3531 (2014).
Ginneken, V.D., A.A. Setio, C. Jacobs, & Ciompi, Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans, In 2015 IEEE 12th International symposium on biomedical imaging (ISBI) IEEE, 286-289 (2015).
Manos, D., J.M. Seely, J. Taylor, J. Borgaonkar, H.C. Roberts, & Mayo, The Lung Reporting and Data System (LU-RADS): a proposal for computed tomography screening, Canadian Association of Radiologists Journal, 65(2) 121-134 (2014).
Wille, M.M.W., S.J. van Riel, Z. Saghir, A. Dirksen, J.H. Pedersen, C. Jacobs, L.H. Thomsen, E.T. Scholten, L.T. Skovgaard, & van Ginneken, Predictive accuracy of the PanCan lung cancer risk prediction model-external validation based on CT from the Danish lung cancer screening trial. European radiology, 25(10) 3093-3099 (2015).
Setio, A.A.A., C. Jacobs, J. Gelderblom, and van Ginneken, Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical physics, 42(10) 5642-5653 (2015).
Setio, A.A.A., F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S.J. Van Riel, M.M.W. Wille, M. Naqibullah, C.I. Sánchez, and van Ginneken, Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks, IEEE transactions on medical imaging, 35(5) 1160-1169 (2016).
Zhao, Y., G.H. de Bock, R. Vliegenthart, R.J. van Klaveren, Y. Wang, L. Bogoni, P.A. de Jong, W.P. Mali, P.M. van Ooijen, & Oudkerk, Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume, European radiology, 22(10) 2076-2084 (2012).
Choi W.J, & T.S. Choi, Automated pulmonary nodule detection system in computed tomography images: A hierarchical block classification approach, Entropy, 15(2) 507-523 (2013).
Huang, X., J. Shan, & V. Vaidya, Lung nodule detection in CT using 3D convolutional neural networks,”In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) 379-383 (2017).
Dalmış, M.U., S. Vreemann, T. Kooi, R.M. Mann, N. Karssemeijer, & A. Gubern-Mérida, Fully automated detection of breast cancer in screening MRI using convolutional neural networks, Journal of Medical Imaging, 5(1) 014502 (2018).
Pereira, F.R., D. Menotti, & L.F. Oliveira. A 3-D Lung Nodule Candidate Detection by Grouping DCNN 2 D Candidates. Semantic Scholar Journal(online) (2019)
Duggan, N., E. Bae, S. Shen, W. Hsu, A. Bui, E. Jones, M. Glavin, & L. Vese, A technique for lung nodule candidate detection in CT using global minimization methods, In International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 478-491. Springer, Cham (2015).
Ding, J., A. Li, Z. Hu, & L. Wang, Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks, In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 559-567 (2017).
Zhao, Y., L. Zhao, Z. Yan, M. Wolf, & Y. Zhan, A deep-learning based automatic pulmonary nodule detection system, In Medical Imaging 2018: Computer-Aided Diagnosis, International Society for Optics and Photonics 10575-1057537 (2018).
Zhu, W., C. Liu, W. Fan, and X. Xie, Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification. Winter Conference on Applications of Computer Vision (WACV) IEEE, 673-681 (2018).
Dou, Q., H. Chen, Y. Jin, H. Lin, J. Qin, & P.A. Heng, Automated pulmonary nodule detection via 3d convnets with online sample filtering and hybrid-loss residual learning, In International Conference on Medical Image Computing and Computer-Assisted Intervention, 630-638, Springer, Cham (2017).