Resolving Economic Dispatch with Uncertainty Effect in Microgrids Using Hybrid Incremental Particle Swarm Optimization and Deep Learning Method
Resolving Economic Dispatch with Uncertainty Effect in Microgrids
DOI:
https://doi.org/10.53560/PPASA(58-sp1)762Keywords:
Conventional Thermal Generator, Economic Dispatch, Low Voltage Distribution, Power System Operation, Probabilistic, Renewable EnergyAbstract
Microgrids are one example of a low voltage distributed generation pattern that can cover a variety of energy, such as conventional generators and renewable energy. Economic dispatch (ED) is an important function and a key of a power system operation in microgrids. There are several procedures to find the optimum generation. The first step is to find every feasible state (FS) for thermal generator ED. The second step is to find optimum generation based on FS using incremental particle swarm optimization (IPSO), FS is assumed that all units are activated. The third step is to train the input and output of the IPSO into deep learning (DL). And the last step is to compare DL output with IPSO. The microgrids system in this paper considered 10 thermal units and a wind plant with power generation based on probabilistic data. IPSO shows good results by being capable to generate a total generation as the load requirement every hour for 24 h. However, IPSO has a weakness in execution times, from 10 experiments the average IPSO process takes 30 min. DL based on IPSO can make the execution time of its ED function faster with an 11 input and 10 output architecture. From the same experiments with IPSO, DL can produce the same output as IPSO but with a faster execution time. From the total cost side, wind energy is affecting to reduce total cost until USD 22.86 million from IPSO and USD 22.89 million from DL.
References
R.D.Tamas. Antenna and propagation: A sensor 1. R. Effatnejad, H. Hosseini, and H. Ramezani. Solving unit commitment problem in microgrids by harmony search algorithm in comparison with genetic algorithm and improved genetic algorithm. International Journal on Technical and Physical Problems of Engineering, 6(4):61–65 (2014).
T. Logenthiran, and D. Srinivasan. Short term generation scheduling of a microgrid. TENCON 2009 - 2009 IEEE Region 10 Conference (2009). DOI: 10.1109/TENCON.2009.5396184
Y. Zhang, B. Chen, Y. Zhao and G. Pan. Wind speed prediction of IPSO-BP neural network based on lorenz disturbance. IEEE Access, 6: 53168–53179 (2018). DOI: 10.1109/ACCESS.2018.2869981
C.M. Baby, K. Verma, and R. Kumar. Short term wind speed forecasting and wind energy estimation: A case study of Rajasthan. 2017 International Conference on Computer, Communications and Electronics (Comptelix) (2017). DOI: 10.1109/ COMPTELIX.2017.8003978
V. Reddy, S.M. Verma, K. Verma, and R. Kumar. Hybrid approach for short term wind power forecasting. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2018). DOI: 10.1109/ ICCCNT.2018.8494034
H. Quan, D. Srinivasan, and A. Khosravi. Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network-based prediction intervals. IEEE Transactions on Neural Networks and Learning Systems, 26(9):2123–2135 (2015). DOI: 10.1109/ TNNLS.2014.2376696
J. Wang, M. Shahidehpour, and Z. Li. Security- constrained unit commitment with volatile wind power generation. IEEE Transactions on Power System, 23(3):1319–1327 (2008). DOI: 10.1109/ TPWRS.2008.926719
R. Billinton, B. Karki, R. Karki and G. Ramakrishna. Unit commitment risk analysis of wind integrated power systems. IEEE Transactions on Power Systems, 24(2):930–939 (2009). DOI: 10.1109/ TPWRS.2009.2016485
J.F. Restrepo, and F.D. Galiana. Assessing the yearly impact of wind power through a new hybrid deterministic/stochastic unit commitment. IEEE Transactions on Power Systems, 26(1):401–410 (2011). DOI: 10.1109/TPWRS.2010.2048345
Q.P. Zheng, J. Wang, and A.L. Liu. Stochastic optimization for unit commitment–A review. IEEE Transactions on Power Systems, 30(4):1913–1924 (2015). DOI: 10.1109/TPWRS.2014.2355204
P. Pinson, H. Madsen, and H.A. Nielsen. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy, 12(1):51–62 (2009).DOI: 10.1002/we.284
M.N. Heris, B.M. Ivatloo, and G.B. Gharehpetian. A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives, Renewable and Sustainable Energy Reviews, 81(2):2128–2143 (2018). DOI: 10.1016/j. rser.2017.06.024
B. Zhao, C.X. Guo, B.R. Bai, and Y.J. Cao. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power & Energy Systems, 28(7):482–490 (2006). DOI: 10.1016/j.ijepes.2006.02.011
Y.K. Wu, H.Y. Chang, and S.M. Chang. Analysis and comparison for the unit commitment problem in a large-scale power system by using three meta- heuristic algorithms. Energy Procedia, 141:423–427 (2017).DOI: 10.1016/j.egypro.2017.11.054
T. Logenthiran, and D. Srinivasan. Particle swarm optimization for unit commitment problem. 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (2010).DOI: 10.1109/PMAPS.2010.5528899
C.P. Cheng, C.Y. Liu, and G.C. Liu. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems, 15(2):707–714 (2000).DOI: 10.1109/59.867163
P.H. Chen. Two-level hierarchical approach to unit commitment using expert system and elite PSO. IEEE Transactions on Power Systems, 27(2):780– 789 (2011).DOI: 10.1109/TPWRS.2011.2171197
V.Arora, and S. Chanana. Solution to unit commitment problem using Lagrangian relaxation and Mendel's GA method. 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES) (2016). DOI: 10.1109/ICETEESES.2016.7581372
A. Haydlaar, A. Musyafa, A. Soeprijanto, M. Syaiin, G. Suhardjito, B. Herijono, R.Y. Adhitya,
H. A. Widodo, and E. A. Zuliari. Optimization of power coefficient (Cp) in variable low rated speed wind turbine using increamental particle swarm optimization (IPSO). 2017 International Symposium on Electronics and Smart Devices (ISESD) (2017). DOI: 10.1109/ISESD.2017.8253305
M.A.M.d. Oca, T. Stutzle, K.V.d. Enden, and M. Dorigo. Incremental social learning in particle swarms. IEEE Trans Syst Man Cybern B Cybern, 41(2):368–384 (2011).DOI: 10.1109/ tsmcb.2010.2055848
M.A.M.d. Oca, K.V.d. Enden, and T. Stützle. Incremental particle swarm-guided local search for continuous optimization. Conference: Proceedings of the 5th International Workshop on Hybrid Metaheuristics (2008). DOI: 10.1007/978-3-540- 88439-2_6
M.A.M.d. Oca, and T. Stützle. Towards incremental social learning in optimization and multiagent systems. GECCO '08: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, p.1939–1944 (2008). DOI: 10.1145/1388969.1389004
EMD International. Wind prospecting, implemented for the Ministry of Energy and Mineral Resources, Indonesia, and ESP3. The Environmental Support Programme 3 (ESP3)/ Danida (2017) http:// indonesia.windprospecting.com (accessed 01 May 2019).
UPC Renewables Asia I Ltd. Sidrap Wind Farm Project Phase 1. Project Report (2016).https://www. upcrenewables.com/indonesia/ (accessed 01 May 2019).
M. Syai’in, and A. Soeprijanto. Combination of generator capability curve constraint and statistic- fuzzy load clustering algorithm to improve nn-opf performance. Journal of Electrical Systems - Paris, 8(2):198–208 (2012).
E. Mocanu, P.H. Nguyen, and M. Gibescu. Deep learning for power system data analysis. Big Data Application in Power Systems, 125–158 (2018). DOI: 10.1016/b978-0-12-811968-6.00007-3
A.K. Ozcanli, F. Yaprakdal, M. Baysal. Deep learning methods and applications for electrical power systems: A comprehensive review. International Journal of Energy Research, 44(10):7136–7157 (2020).DOI: 10.1002/er.5331
Y. Hong, Y. Zhou, Qibin Li, W. Xu, and X. Zheng, A deep learning method for short-term residential load forecasting in smart grid. IEEE Access, 8: 55785–55797 (2020) DOI: 10.1109/ ACCESS.2020.2981817
Q. Chen, M. Xia, T. Lu, X. Jiang, W. Liu, and Q. Sun short-term load forecasting based on deep learning for end-user transformer subject to volatile electric heating loads. IEEE Access 7: 162697–162707(2019). DOI: 10.1109/ ACCESS.2019.2949726
A. Gensler, J. Henze, B. Sick, N. Raabe. Deep Learning for solar power forecasting — An approach using auto encoder and LSTM neural networks. in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2016). DOI: 10.1109/ SMC.2016.7844673
R. Zhang, M. Feng, W. Zhang, S. Lu and F. Wang. Forecast of solar energy production - A deep learning approach. 2018 IEEE International Conference on Big Knowledge (ICBK), 2018, pp. 73–82, DOI: 10.1109/ICBK.2018.00018.
H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng. A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198:111799. DOI: 10.1016/j.enconman.2019.111799.
F.A. Khalil, M. Asif, S. Anwar, S. ul Haq, and F. Illahi. Solar tracking techniques and implementation in photovoltaic power plants: A review. Proceedings of the Pakistan Academy of Sciences A. Physical and Computational Sciences, 54(3):231–241 (2017).
H.E. Gelani, N. Mashood, D. Faizan and H. Haseeb. Efficiency comparison of alternating current (AC) and direct current (DC) distribution system at residential level with load characterization and daily load variation. Proceedings of the Pakistan Academy of Sciences A. Physical and Computational Sciences, 54(2):111–118 (2017).
K. Abdullah, A.S. Uyun, R. Soegeng, E. Suherman, H. Susanto, R.H. Setyobudi, J. Burlakovs, and Z. Vincēviča-Gaile. Renewable energy technologies for economic development. E3S Web of Conference, 188(00016):1–8 (2020).DOI:10.1051/ e3sconf/202018800016
R. H. Setyobudi, E. Yandri, M.F.M. Atoum, S. M. Nur, I. Zekker, R. Idroes, T.E. Tallei, P.G. Adinurani, Z. Vincēviča-Gaile, W. Widodo, L. Zalizar, N. Van Minh, H. Susanto, R.K. Mahaswa, Y.A. Nugroho, S.K Wahono, and Z. Zahriah. Healthy-smart concept as standard design of kitchen waste biogas digester for urban households. Jordan Journal of Biological Sciences, 14(3):613–620 (2021).
B. Novianto., K. Abdullah., A.S. Uyun., E. Yandri., S.M. Nur., H. Susanto., Z. Vincēviča-Gaile., R.H. Setyobudi, and Y. Nurdiansyah. Smart micro-grid performance using renewable energy. E3S Web of Conferences, 188(00005):1–11 (2020).DOI: 10.1051/e3sconf/202018800005
A. Dolatabadi, M. Jadidbonab, and B. Mohammadi- ivatloo, Short-term scheduling strategy for wind- based energy hub: A hybrid stochastic/IGDT approach, IEEE Transactions on Sustainable Energy 10 (1): 438–448 (2019). DOI: 10.1109/ TSTE.2017.2788086.
Y. Lin, M. Yang, C. Wan, J. Wang, and Y. Song, A multi-model combination approach for probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy 10(1): 226–237 (2019). DOI: 10.1109/TSTE.2018.2831238.
Y. Wang, N. Zhang, C. Kang, M. Miao, R. Shi and Q. Xia. An efficient approach to power system uncertainty analysis with high-dimensional dependencies. IEEE Transactions on Power Systems, 33 (3): 2984–2994 (2018).DOI: 10.1109/ TPWRS.2017.2755698.
M.I. Khan, and M. Amir. Design and stability analysis of a proposed microgrid for on campus diesel and photovoltaic power sources. Proceedings of the Pakistan Academy of Sciences A. Physical and Computational Sciences: 58(1): 47–60 (2021). DOI: 10.53560/PPASA(58-1)723