A Polarization Dependent Electromagnetic Band Gap based Circularly Polarized Low Profile Dipole Antenna for WLAN Application
Circularly Polarized Low Profile Dipole Antenna for WLAN Application
Keywords:
WLAN, PDEBG, CP, axial ratio, dipole antenna, low profileAbstract
This paper presents circularly polarized dipole antenna operating at 5.8 GHz for WLAN applications. Normally dipole antenna radiates linearly polarized waves. Radiation of circularly polarized (CP) wave has been achieved through integration of a novel PDEBG with the antenna. PDEBG are artificial structures that show diversity in reflection phase depending on the polarization state of incident plane wave. This polarization dependent reflection phase feature of PDEBG is realized by modifying its rectangular unit geometry. It has been observed that proposed dipole antenna has an axial ratio less than 3 dB in frequency range from 5.58 GHz to 5.93 GHz (AR BW= 5.98%). The proposed PDEBG structure has 6.02% wider frequency bandwidth for linear to circular polarization and an overall size reduction of 15% as compared to previously proposed PDEBG structures. The proposed PDEBG can be used for reconfigurable polarization surfaces.
References
Li, Z. & Y. Rahmat-Samii. PBG, PMC, and PEC ground planes: Acase study for dipole antenna. In: IEEE Antennas and Propagation Society International Symposium, p. 2258-2261 (2000).
Yang, F. & Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Transactions on Antennas Propagation 51(10): 2691-2703 (2003).
Yang, F.& Y. Rahmat-Samii. A low profile circularly polarized curl antenna over electromagnetic band-gap (EBG) surface.Microwave Optical Technology Letter 31(3): 165-168 (2001).
Bao, X.L., G. Ruvio, M.J. Ammann & M. John. A novel GPS patch antenna on fractal Hi-Impedance surface Substrate. IEEE Antenna and Wireless Propagation Letters 5(1): 323-326 (2006).
Baggen, R., M. Martínez-Vázquez & J. Leiss. Low profile GALILEO antenna using EBG technology. IEEE Transactions on Antennas and Propagation 56(3): 667-674 (2008).
Gupta, G. & A.R. Harish. Circularly polarized antenna using a double layered via-less high impedance surface. Microwave and Optical Technology Letters 58: 340-343 (2016).
Liang, B., B. Sanz-Izquierdo, E.A. Parker & J.C. Batchelor. A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation. IEEE Transactions on Antennas and Propagation 63(1): 33-40 (2015).
Yang, F., & Y. Rahmat-Samii. A low profile single dipole antenna radiating circularly polarized waves. IEEE Transaction on Antennas and Propagation 53(9): 3083–3086 (2005).
Haun, Yiv & S.W. Qu. A Novel Dual-Band Circularly Polarized Antenna Based on Electromagnetic Band-Gap Structure. IEEE Antennas and Wireless Propagation Letters 12:1149-1152 (2013).
Doumanis, E., G. Goussetis, J.-L. Gomez-Tornero, R. Cahill, & V. Fusco. Anisotropic impedance surfaces for linear to circular polarization. IEEE Transactions on Antennas and Propagation 60(1): 212–219 (2012)
Peng, L., Cheng-Li Ruan & Zhi-Qiang Li. A novel compact and polarization-dependent mushroomtype EBG using CSRR for dual/triple-band applications. IEEE Microwave and Wireless Component Letters 20(9): 489-491 (2010).
Uysal, A. & C. Isık. A circularly polarized antenna with electromagnetic band gap structures. In:Computational Electromagnetics International Workshop (CEM), p. 1-2 (2015).
Sievenpiper, D., L. Zhang, R.F. Broas, N.G. Alexopolous & E. Yablonovitch. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theoryand Techniques 47(11): 2059-2073 (1999).
Mckinzie, W.E., & R. Fahr. A low profile polarization diversity antenna built on anartificial magnetic conductor. In: IEEE Antennas and Propagation Society International Symposium, p.762-765 (2002).
Nakano, H., S. Okuzawa, K. Ohishi, H. Mimaki & J. Yamauchi. A curl antenna. IEEE Transactions on Antennas and Propagation 41(11): 1570-1575 (1993).
Yang, F. & Y. Rahmat-Samii.Polarization dependent electromagnetic band gap (PDEBG) structures: Designs and applications. Microwave Optical Technology Letters 41(6): 439-444 (2004).