Some Properties of Harmonic Univalent Functions in a Conic Domain.
Some Properties of Harmonic Univalent Functions
Keywords:
Harmonic and univalent functions, Coefficients inequalities,, Radius of starlikenessAbstract
We investigate a new subclass of harmonic functions satisfying condition: Whereand.We also determine the coefficients inequalities, growth and distortion bounds, radius of star likeness for the analytic part of the harmonic functions . For specific values of parameters involved, our findings may be related to the previously known results.
References
Ali, R.M., B. A. Stephen & K.G. Subramanian, Subclasses of harmonic mappings defined by convolution. Applied Mathematics Letters, 23: 1243-1247(2010).
Avci,Y. & E. Zlotmiewicz. On harmonic univalent mappings, Annales Universitaits Mariae Curie-Sklodowska Sectio A, 44: 1-7(1990)
Choquet, G. Sur un type de transformation analyticquegénéralisant la representation conforme et définie au au moyen de fonctionsharmoniques, Bulletin of Mathematical Science, 89: 156–165(1945).
Clunie, J. & T. Sheil-Small, Harmonic univalent functions, Annales Academiae Scientiarum Fennicae, Series. A, I Math, 9: 3-25 (1984).
Dorff, M. Minimal graphs in over convex domain. Proceedings of American Society of Mathematics, 132:491–498 (2003).
Duren, P. L. A survey of harmonic mappings in the plane, Cambridge University Publishers, United Kingdom, 9780511546600, (2004),
Duren, P. L. Harmonic mappings in the plane, Cambridge University Press, UK, (2004).
Dziok, J. Classes of Janowski harmonic functions, Journal of Applied Analysis, 21(2): (2015).
Frasin, B.A. On the analytic part of harmonic univalent functions, Bulletin of the Korean Mathematical Society, 42: 563-569(2005).
Jahangiri, J.M. Harmonic functions starlike in the unit disk. Journal of Mathematical Analysis & Appication, 235: 470-477(1999).
Makinde, D.O. & A.O.A folabi, On a Subclass of harmonic univalent functions, Transaction Journal of Science & Technology, 2: 1-11(2012).
Noor, K.I., B. Malik, & S.Z.H. Bukhari, Harmonic functions defined by a generalized fractional differential operator, Journal of Advance Mathematical Studies, 2(1): 41-52(2009).
Öztürk, M., S. Yalçin & M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Applied Mathematics and Computation, 152: 449-459 (2004).
Sharma, P., O.P. Ahuja & V.K. Gupta, Univalent harmonic functions with domains convex in horizontal (vertical) directions, Acta Universitatis, Apulensis, 40: 199-219(2014).
Sheil-Small, T. Constants for planar harmonic mappings. Journal of London Mathematical Society, 42:237-248 (1990).
Silverman, H. Univalent functions with negative coefficients. Proceedings of American Mathematical Society, 51: 109-116 (1975).
Silverman, H. Harmonic univalent functions with negative coefficients. Journal of Mathematical Analysis & Applications, 220: 283-289 (1998).
Silverman, H. & E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand Journal of Mathematics, 28: 275-284(1999).