Analytical Techniques for Elemental Analysis: LIBS, LA-TOF-MS, EDX, PIXE, and XRF: A Review
DOI:
https://doi.org/10.53560/PPASA(61-2)676Keywords:
Calibration Free-LIBS, LA-TOF-MS, PIXE, XRF, EDXAbstract
This contribution presents the applications of laser-induced breakdown spectroscopy (LIBS) for qualitative and quantitative elemental analysis of several samples such as geological ores, cement, and industrial materials. A combination of LIBS with the laser ablation time‒of‒flight mass spectrometer (LA-TOF-MS) assists in elemental quantification and isotopic abundance analysis. Different elemental components such as aluminum (Al), calcium (Ca), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), sodium (Na), rubidium (Rb), silicon (Si), strontium (Sr), and titanium (Ti) in cement varieties, as well as rare earth metals, lanthanum (La), cerium (Ce), and neodymium (Nd) in geological ore samples, and cobalt (Co), chromium (Cr), nickel (Ni), iron (Fe), and molybdenum (Mo) in industrial standard material samples, have been precisely identified and their relative weight percentages estimated using CF-LIBS and LA-TOF-MS diagnostic techniques. To ensure the reliability of LIBS for the elemental analysis of industrial materials, a comparative study with other compatible techniques, including EDX, PIXE, and XRF, utilizing different excitation sources is presented. The results suggest that LIBS offers unique advantages, enabling rapid elemental analysis in circumstances where other techniques may face certain limitations.
References
R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, and V. Sturm. LIBS analyses for industrial applications–an overview of developments from 2014 to 2018. Journal of Analytical Atomic Spectrometry 33(6): 945-956 (2018).
A. Fayyaz, U. Liaqat, K. Yaqoob, R. Ahmed, Z.A. Umar, and M.A. Baig. Combination of laser-induced breakdown spectroscopy, and time–of–flight mass spectrometry for the quantification of CoCrFeNiMo high entropy alloys. Spectrochimica Acta Part B: Atomic Spectroscopy 198: 106562 (2022).
G.S. Senesi. Laser-Induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth-Science Reviews 139: 231-267 (2014).
V. Palleschi. Laser-induced breakdown spectroscopy: Principles of the technique and future trends. ChemTexts 6: 1-16 (2020).
S.S. Harilal, B. O’Shay, M. Tillack, and M.V. Mathew. Spectroscopic characterization of laser-induced tin plasma. Journal of Applied Physics 98(1): 013306-7 (2005).
E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Müller, U. Panne, and I. Gornushkin. A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochimica Acta Part B: Atomic Spectroscopy 62(12): 1287-1302 (2007).
D. A. Cremers, and L. J. Radziemski (Eds.). Handbook of laser-induced breakdown spectroscopy. John Wiley & Sons (2013).
Z. Wang, M.S. Afgan, W. Gu, Y. Song, Y. Wang, Z. Hou, W. Song, and Z. Li. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC Trends in Analytical Chemistry 143: 116385 (2021).
G. Guo, G. Niu, Q. Shi, Q. Lin, D. Tian, and Y. Duan. Multi-element quantitative analysis of soils by laser induced breakdown spectroscopy (LIBS) coupled with univariate and multivariate regression methods. Analytical Methods 11(23): 3006-3013 (2019).
S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang. Laser-induced plasma temperature. Spectrochimica Acta Part B: Atomic Spectroscopy 97: 13-33 (2014).
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Applied spectroscopy 53(8): 960-964 (1999).
Q. Abbass, N. Ahmed, R. Ahmed, and M.A. Baig. A comparative study of calibration free methods for the elemental analysis by laser induced breakdown spectroscopy. Plasma Chemistry and Plasma Processing 36: 1287-1299 (2016).
K.S. Singh, and A.K. Sharma. Spatially resolved behavior of laser-produced copper plasma along expansion direction in the presence of static uniform magnetic field. Physics of Plasmas 23(12): 122104 (2016).
S.S. Harilal, B.E. Brumfield, N.L. LaHaye, K.C. Hartig, and M.C. Phillips. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis. Applied Physics Reviews 5(2): 021301 (2018).
Z. Wang, C. Yan, J. Dong, T. Zhang, J. Wei, and H. Li. Acidity analysis of iron ore based on calibration-free laser-induced breakdown spectroscopy (CF-LIBS) combined with a binary search algorithm (BSA). RSC Advances 6(80): 76813-76823 (2016).
J. Peng, W. Xie, J. Jiang, Z. Zhao, F. Zhou, and F. Liu. Fast quantification of honey adulteration with laser-induced breakdown spectroscopy and chemometric methods. Foods 9(3): 341 (2020).
A. Safi, B. Campanella, E. Grifoni, S. Legnaioli, G. Lorenzetti, S. Pagnotta, F. Poggialini, L. Ripoll-Seguer, M. Hidalgo, and V. Palleschi. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a ‘black box’approach and how to avoid them. Spectrochimica Acta Part B: Atomic Spectroscopy 144: 46-54 (2018).
D. Diaz, A. Molina, and D.W. Hahn. Laser-induced breakdown spectroscopy and principal component analysis for the classification of spectra from gold-bearing ores. Applied Spectroscopy 74(1): 42-54 (2020).
P. Inakollu, T. Philip, A.K. Rai, F.Y. Yueh, and J.P. Singh. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochimica Acta Part B: Atomic Spectroscopy 64(1): 99-104 (2009).
J.B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I.L. Hecho. Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis. Analytical and Bioanalytical Chemistry 385: 256-262 (2006).
Z.A. Umar, U. Liaqat, R. Ahmed, and M.A. Baig. Detection of lead in soil implying sample heating and laser-induced breakdown spectroscopy. Applied Optics 60(2): 452-458 (2021).
T. Takahashi, B. Thornton, T. Sato, T. Ohki, K. Ohki, and T. Sakka. Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy. Applied Optics 57(20): 5872-5883 (2018).
T. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. Tang, X. Yang, and H. Li. Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods. Journal of Analytical Atomic Spectrometry 30(2): 368-374 (2015).
E. Mal, R. Junjuri, M.K. Gundawar, and A. Khare. Optimization of temporal window for application of calibration free-laser induced breakdown spectroscopy (CF-LIBS) on copper alloys in air employing a single line. Journal of Analytical Atomic Spectrometry 34(2): 319-330 (2019).
F. de Oliveira Borges, J.U. Ospina, G. de Holanda Cavalcanti, E.E. Farias, A.A. Rocha, P.I. Ferreira, G.C. Gomes, and A. Mello. CF-LIBS analysis of frozen aqueous solution samples by using a standard internal reference and correcting the self-absorption effect. Journal of Analytical Atomic Spectrometry 33(4): 629-641 (2018).
J.A. Aguilera, and C. Aragón. Multi-element Saha–Boltzmann and Boltzmann plots in laser-induced plasmas. Spectrochimica Acta Part B: Atomic Spectroscopy 62(4): 378-385 (2007).
A. Mansoori, B. Roshanzadeh, M. Khalaji, and S.H. Tavassoli. Quantitative analysis of cement powder by laser induced breakdown spectroscopy. Optics and Lasers in Engineering 49(3): 318-323 (2011).
J.A. Aguilera, and C. Aragón. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.: Comparison of local and spatially integrated measurements. Spectrochimica Acta Part B: Atomic Spectroscopy 59(12): 1861-1876 (2004).
O. Samek, D.C. Beddows, J. Kaiser, S.V. Kukhlevsky, M. Liska, H.H. Telle, and A.J. Whitehouse. Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples. Optical Engineering 39(8): 2248-2262 (2000).
A. De Giacomo, M. Dell'Aglio, O. De Pascale, S. Longo, and M. Capitelli. Laser induced breakdown spectroscopy on meteorites. Spectrochimica Acta Part B: Atomic Spectroscopy 62(12): 1606-1611 (2007).
D.D. Pace, R.E. Miguel, H.O. Di Rocco, F.A. García, L. Pardini, S. Legnaioli, G. Lorenzetti, and V. Palleschi. Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochimica acta part B: Atomic Spectroscopy 131: 58-65 (2017).
J.M. Gomba, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli. Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces. Spectrochimica Acta Part B: Atomic Spectroscopy 56(6): 695-705 (2001).
Atomic spectra database, NIST (2024). https://dx.doi.org/10.18434/T4W30F.
A. Fayyaz, U. Liaqat, Z.A. Umar, R. Ahmed, and M.A. Baig. Elemental analysis of cement by calibration-free laser induced breakdown spectroscopy (CF-LIBS) and Comparison with laser ablation–time-of-flight–mass spectrometry (LA-TOF-MS), energy dispersive x-ray spectrometry (EDX), x-ray fluorescence spectroscopy (XRF), and proton induced x-ray emission spectrometry (PIXE). Analytical Letters 52(12): 1951-1965 (2019).
N. Ahmed, R. Ahmed, Z.A. Umar, and M.A. Baig. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials. Laser Physics 27(8): 086001 (2017).
Z.A. Umar, U. Liaqat, R. Ahmed, and M.A. Baig. Classification of nephrite using calibration-free laser induced breakdown spectroscopy (CF–LIBS) with comparison to laser ablation–time-of-flight–mass spectrometry (LA–TOF–MS). Analytical Letters 53(2): 203-216 (2020).
A. Jabbar, M. Akhtar, S. Mehmood, N. Ahmed, Z.A. Umar, R. Ahmed, and M.A. Baig. On the detection of heavy elements in the Euphorbia indica plant using laser-induced breakdown spectroscopy and laser ablation time of flight mass spectrometry. Journal of Analytical Atomic Spectrometry 34(5): 954-962 (2019).
N. Ahmed, U. Liaqat, M. Rafique, M.A. Baig, and W. Tawfik. Detection of toxicity in some oral antidiabetic drugs using LIBS and LA-TOF-MS. Microchemical Journal 155: 104679 (2020).
J.O. Thompson, S.T. Alavi, J.R. Walensky, and A.G. Suits. Time of flight mass spectrometry with direct extraction of a uranium plasma. International Journal of Mass Spectrometry 445: 116190 (2019).
K. Ishii. PIXE and its applications to elemental analysis. Quantum Beam Science 3(2)12: 1-14 (2019).
W. Akram, K. Shahzad, A. Awais, I. Ahmad, M. Arif, I. Ahmad, and M. Madhuku. Roadside dust contamination with toxic metals along industrial area in Islamabad, Pakistan. Nuclear Science and Techniques 25(3): 1-6 (2014).
A. Awais, J. Hussain, M. Usman, W. Akram, K. Shahzad, T. Ali, I. Ahmad, and M. Maaza. The charge state distribution of B, C, Si, Ni, Cu and Au ions on 5 MV Pelletron accelerator. Nuclear Science and Techniques 28: 1-5 (2017).
G.N. Pandey, and S.D. Shukla (Eds.). A Textbook of Chemical Technology. Vikas Publishing House, New Delhi (1978).
N. Furman (Ed.). Standard Method of Chemical Analysis (6th ed). Van Nostrand Reinhold Co. New York (1962).
G.H. Jeffery, J. Bassett, J. Mendham, and R.C. Denney, (Eds.). Vogel’s Textbook of Quantitative Chemical Analysis, 5th Edition. Longman Scientific and Technical, Harlow, UK (1989).