Stability of Graphene on the Si (111) Surface: Insights from Reactive Molecular Dynamics Simulations
DOI:
https://doi.org/10.53560/PPASA(60-2)823Keywords:
Graphene, Thermal Stability, Si (111) Surface, Dome-shaped Configuration, Reactive Molecular Dynamics SimulationsAbstract
The remarkable characteristics of graphene render it well-suited for a diverse range of applications, particularly in the realm of electronic devices. After the synthesis process, the two-dimensional material known as graphene is then transferred onto a substrate. Silicon (Si) is considered a suitable choice for this purpose. Therefore, it has become essential to investigate the stability of graphene on silicon surfaces. This study utilized reactive molecular dynamics simulations to investigate the thermal stability of graphene on a Si (111) substrate across a temperature range of 300 to 1500 K. The results demonstrate the exceptional stability of graphene on this particular surface. This phenomenon can be explained by the restricted intermolecular interactions between the carbon atoms in graphene and the silicon atoms on the substrate surface. The study findings indicate that graphene exhibits a dome-shaped configuration on the Si (111) surface. In this configuration, only the carbon atoms located at the periphery of the graphene structure interact with the silicon atoms present on the underlying substrate.
References
Y. Liu, M. Xu, X. Zhu, M. Xie, Y. Su, N. Hu, Z. Yang, and Y. Zhang. Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68: 399–405 (2014).
R. Arifin, Y. Shibuta, K. Shimamura, and F. Shimojo. First principles molecular dynamics simulation of graphene growth on Nickel (111) surface. IOP Conference Series: Materials Science and Engineering 128: 012032 (2016).
R. Arifin, Y. Shibuta, K. Shimamura, F. Shimojo, and S. Yamaguchi. Ab Initio Molecular Dynamics Simulation of Ethylene Reaction on Nickel (111) Surface. Journal of Physical Chemistry C 119: 3210–3216 (2015).
R. Arifin, Y. Shibuta, K. Shimamura, and F. Shimojo. First principles calculation of CH4 decomposition on nickel (111) surface. The European Physical Journal B 88: 303 (2015).
Y. Shibuta, R. Arifin, K. Shimamura, T. Oguri, F. Shimojo, and S. Yamaguchi. Ab initio molecular dynamics simulation of dissociation of methane on nickel(111) surface: Unravelling initial stage of graphene growth via a CVD technique. Chemical Physics Letters 565: 92–97 (2013).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov. Electric Field Effect in Atomically Thin Carbon Film. Science 306: 666-669 (2004).
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T. J. Booth, T. Stauber, N.M.R Peres and A.K. Geim. Fine Structure Constant Defines Visual Transparency of Graphene. Science 320: 1308–1308 (2008).
A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials 6: 183–191 (2007).
S.H. Abro, F.Hussain, M.Sohail, D.Tariq, K. Jawed, R. Sanwal, and M.N. Alghamdi. Development and Synthesis of Composite Electrode (rGO/G/PANI) for Capacitor from Burnout Battery Powder: Composite Electrode (rGO/G/PANI) for Capacitor. Proceedings of the Pakistan Academy of Sciences: A 57: 41–50 (2021).
A.Béraud, M.Sauvage, C.M. Bazan, M. Tie, A. Bencherif, and D. Bouilly. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst 146: 403–428 (2021).
K. Murali, N. Abraham, S. Das, S. Kallatt, and K. Majumdar. Highly Sensitive, Fast Graphene Photodetector with Responsivity >106 A/W Using a Floating Quantum Well Gate. ACS Applied Materials & Interfaces 11: 30010–30018 (2019).
L. Song, F.Q. Zhao, S.Y. Xu, X.H. Ju, and C.C. Ye. Onset of catalytic activity of graphene nanosheets in reaction with energetic materials evaluated by ReaxFF molecular dynamics simulation. Surfaces and Interfaces 31: 102024 (2022).
S.H. Abro, A. Chandio, I.A. Channa, and A.S. Alaboodi. Design, Development and Characterization of Graphene Sand Nano-Composite for Water Filtration. Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences 63A: 118–122 (2020).
D.V. Smovzh, I.A. Kostogrud, E.V. Boyko, and M.A. Morozova. Graphene transfer from a copper surface to a silicon substrate. Journal of Physics: Conference Series 1675: 012098 (2020).
Z. Khanam, I. Riaz, A. Rasheed, and R. Jalil. Fabrication and Identification of Graphene Layers on Silicon Dioxide and Flexible PMMA Substrates: Graphene fabrication. Proceedings of the Pakistan Academy of Sciences: A 53: 431–445 (2021).
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324: 1312–1314 (2009).
S. Xu, L. Zhang, B. Wang, and R.S. Ruoff. Chemical vapor deposition of graphene on thin-metal films. Cell Reports Physical Science 2: 100372 (2021).
L. Tai, D. Zhu, X. Liu, T. Yang, L. Wang, R. Wang, S. Jiang, Z. Chen, Z. Xu, and X. Li. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition. Nano-Micro Letters 10: 20 (2017).
B. Javvaji, B.M. Shenoy, D.R. Mahapatra, A. Ravikumar, G.M. Hegde, and M.R. Rizwan. Stable configurations of graphene on silicon. Applied Surface Science 414: 25–33 (2017).
Q. Zhang, Y. Zhao, X. Ma, Y. Zhao, X. Pang. Study on bonding mechanism of graphene on silicon substrate. Modern Physics Letters B 32: 1850265 (2018).
A.C.T. van Duin, W.A. Goddard, M.M. Islam, H. van Schoot, T. Trnka, and A.L. Yakovlev. ReaxFF 2022.1 (2022) http://www.scm.com (accessed 22 January 2023)
A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard. ReaxFF: A reactive force field for hydrocarbons. Journal of Physical Chemistry A 105: 9396–9409 (2001).
K. Chenoweth, A.C.T. van Duin, and W.A. Goddard. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A 112: 1040–1053 (2008).
F.A. Soria, W. Zhang, P.A. Paredes-Olivera, A.C.T. van Duin, and E.M. Patrito. Si/C/H ReaxFF Reactive Potential for Silicon Surfaces Grafted with Organic Molecules. Journal of Physical Chemistry C 122: 23515–23527 (2018).
S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics 52: 255–268 (1984).
S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81: 511–519 (1984).
W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 31: 1695 (1985).
A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 18: 015012 (2010).
T. Takai, T. Halicioǧlu, and W.A. Tiller. Adsorption, potential maps and diffusion of Si, C, and SiC on A Si(111) surface. Surface Science 164: 327–340 (1985).
A.Z. Alzahrani. Structural and Electronic Properties of Graphene upon Molecular Adsorption: DFT Comparative Analysis. In: Graphene Simulation. J.R. Gong (ed.). IntechOpen, Rijeka, Croatia, pp. 21-38 (2011).
M. Igami, S. Okada, and K. Nakada. Electronic and geometric structures of fluorine adsorbed graphene. Synthetic Metals 121: 1233-1234 (2001).