Functional Food Plants and their Potential Antiviral and Immunomodulatory Properties: the Covid-19 Perspective

Food as a potential weapon against Covid-19

Authors

  • Misbahud Din Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
  • Fatima Zia Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
  • Ali Talha Khalil Department of Pathology, Lady Reading Hospital, Peshawar, Pakistan
  • Muhammad Ali Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan , Pakistan Academy of Sciences, Islamabad, Pakistan
  • Zabta Khan Shinwari Pakistan Academy of Sciences, Islamabad, Pakistan , Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan

Keywords:

Medicinal plants, Antivirals, Immunity boosters, Covid-19

Abstract

The pandemic of coronavirus disease (Covid-19) which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is continuously hitting the world and millions of individuals have been affected so far. Limited therapeutic options are available for the treatment of Covid-19 while scientists around the globe are working hard to make the vaccines clinically available to the maximum human population. Alarmingly, SARS-CoV-2 variants of SRAS-CoV-2 are emerging in different regions of the world, hence threatening the efficacy of the clinically available vaccines. In such a scenario, the utilization of medicinal plants or traditional medicine could be the most preferred choice along with the precautionary measure to be adopted against the Covid-19. The current article has summarized few important food plants that have previously exhibited promising immunomodulatory or antiviral activities. These medicinal plants could be suggested for boosting the immune system and could be utilized against their utilization against SARS-CoV-2. It could be concluded that medicinal plants especially Allium sativum, Curcuma longa, and
Allium cepa along with other plants/herbs/spices could not only be used against SARS-CoV-2 but also other viral, bacterial, or other parasitic diseases other prevalent diseases prevalent in the region.

References

M. Asghar and M. Din. The expected second wave of COVID-19. International Journal of Clinical Virology 4: 109-110 (2020).

S. Su, G. Wong, W. Shi, J. Liu, A. C. Lai, J. Zhou, W. Liu, Y. Bi, and G. F. Gao. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in microbiology 24 (6) 490-502 (2016).

N. S. Zhong, B. J.Zheng, Y. M. Li, L. L. M. Poon, Z. H. Xie, K. H. Chan, and Y. Guan. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. The Lancet 362(9393) 1353-1358 (2003).

A. Waris, A. U. Khan, M. Ali, A. Ali, and A. Baset. COVID-19 outbreak: current scenario of Pakistan. New Microbes and New Infections 35 100681 (2020).

A. Waris, M. Ali, A. U. Khan, A. Ali, and A. Baset. A comprehensive study of sars-cov-2: From 2019-ncov to covid-19 outbreak. Microbiology and Biotechnology Letters 48 (3) 252-266 (2020).

R. A. Fouchier, T. Kuiken, M. Schutten, G. Van Amerongen, G. J. Van Doornum, B. G. Van Den Hoogen, M. Peiris, W. Lim, K. Stöhr and A.D.

Osterhaus. Koch’s postulates fulfilled for SARS virus. Nature 423 (6937) 240-240 (2003).

S. S. Wong and K. Y. YUEN. Antiviral therapy for respiratory tract infections. Respirology 13 (7) 950-971 (2008).

A. Annamalay and P. Le Souëf. Viral-bacterial interactions in childhood respiratory tract infections, in Viral Infections in Children 1 193-214 (2017).

A. M. Zaki, S. Van Boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine 367 (19) 1814-1820 (2012).

H. Han, L. Yang, R. Liu, F. Liu, K.-l. Wu, J. Li, X.-h. Liu, and C.-l. Zhu. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clinical Chemistry and Laboratory Medicine 58(7) 1116-1120 (2020).

X. Xu, P. Chen, J. Wang, J. Feng, H. Zhou, X. Li, W. Zhong, and P. Hao. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences 63 (3) 457-460 (2020).

S. W. Li, C. Y. Wang, Y. J. Jou, S. H. Huang, L. H. Hsiao, L. Wan, Y. J. Lin, S. H. Kung, and C. W. Lin. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. International journal of molecular sciences 17 (5) 678 (2016).

B. Benarba and A. Pandiella. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology 11(1189) (2020).

A. Ahmad, A. Husain, M. Mujeeb, S. A. Khan, A. K. Najmi, N. A. Siddique, Z. A. Damanhouri, and F. Anwar. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific journal of tropical biomedicine 3 (5) 337-352 (2013).

F. Yang, Y. Zhang, A. Tariq, X. Jiang, Z. Ahmed, Z. Zhihao, M.Idrees, A. Azizullah, Adnan, M. and R. W. Bussman. Food as medicine: A possible preventive measure against coronavirus disease (COVID‐19). Phytotherapy Research 34 (12) 3124-3136 (2020).

S. A. Devi, M. Umasankar, and S. Babu. A comparative study of antioxidant properties in common Indian spices. IRJP 3 (5) 465-468 (2012).

V. V. Panpatil, S. Tattari, N. Kota, C. Nimgulkar,and K. Polasa. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic. Journal of Pharmacognosy and phytochemistry 2 (3) 143-148 (2013).

K. Patra, S. Jana, D. P. Mandal, and S. Bhattacharjee. Evaluation of the antioxidant activity of extracts and active principles of commonly consumed Indian spices. Journal of Environmental Pathology, Toxicology and Oncology 35 (4) (2016).

N. A. Singh, P. Kumar, and N. Kumar. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID-19. Phytotherapy Research ( doi: 10.1002/ptr.7019) (2021).

M. Sharifi-Rad, T. H. Roberts, K.R. Matthews, C.F. Bezerra, M.F. B. Morais‐Braga,H.D. Coutinho, F. Sharopov, B. Salehi, Z. Yousaf, M. Sharifi‐Rad and M. del Mar Contreras. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial activity. Phytotherapy Research 32 (11) 2131-2145 (2018).

S. A. Abdullah, M. Salman, M. Din, K. Khan, M. Ahmad, F. H. Khan, and M. Arif. Dengue outbreaks in Khyber Pakhtunkhwa (KPK), Pakistan in 2017: an integrated disease surveillance and response system (IDSRS)-based report. Polish journal of microbiology 68 (1) 115 (2019).

M. Din, M. Asghar, and M. Ali. COVID-19 and dengue coepidemics: A double trouble for overburdened health systems in developing

countries. Journal of medical virology 93 (2) 601-602 (2021).

M. Din, M. Asghar, and M. Ali. Delays in polio vaccination programs due to COVID-19 in Pakistan: a major threat to Pakistan’s long war against polio virus. Public Health 189 1-2 (2020).

I. Haq, R. Ullah, M. Din, S. Ahmad, F. Anwar, M. Ali, and H. U. Khan. Unrecognized HIV infection in asymptomatic volunteer blood donors at district Peshawar, Khyber Pakhtunkhwa, Pakistan. New Microbes and New Infections 35 100685 (2020).

F. Anwar, M. Tayyab, M. Salman, Abdullah, M. Din, J. Khan, and I. Haq. Dengue outbreak 2018 in district Shangla KPK; clinical features and laboratory markers of dengue virus infection. Future Virology 15 (10) 693-699 (2020).

M. Din, F. Anwar, M. Ali, M. Yousaf, and B. Ahmad. Chemiluminescent-microparticle-immunoassaybased detection and prevalence of human immunodeficiency virus infection in Islamabad, Pakistan. Archives of Virology 1-6 166(2) 581-586 (2021).

M. Nawaz, M. Din, A. Khan, A. Khan, M. Ali, S. U. Din, and K. Aslam. Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan. Journal of Parasitic Diseases 44 (4) 725-729 (2020).

M. Din, H. Ali, M. Khan, A. Waris, S. Ullah, M. Kashif, S. Rehman, and M. Ali. Impact of COVID‐19 on polio vaccination in Pakistan: a concise overview. Reviews in medical virology 31(4) e2190 (2020).

A. Wadood, M. Ghufran, S. B. Jamal, M. Naeem, A. Khan, and R. Ghaffar. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem Anal Biochem 2 (4) 1-4 (2013).

M. Sanchez, F. Lodi, R. Vera, I. C. Villar, A. Cogolludo,R. Jimenez, L. Moreno,M. Romero, J. Tamargo, F. Perez-Vizcaino, and J. Duarte. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of

p47phox induced by angiotensin II in rat aorta. The Journal of nutrition 137 (4) 910-915 (2007).

L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O. W. Liew, W. Zhu, C.M. Puah, X. Shen and h. Jiang. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: structure–activity relationship studies reveal salient pharmacophore features. Bioorganic & medicinal chemistry 14 (24) 8295-8306 (2006).

L. Chiang, W. Chiang, M. Liu, and C. Lin. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. Journal of Antimicrobial Chemotherapy 52 (2) 194-198 (2003).

M. Bakay, . Mucsi, I. Beladi, and M. Gabor. Antiviral flavonoids from Alkena orientalis. Acta Microbiologica 15 223-232 (1968).

S. Pareek, N. A. Sagar, S. Sharma, and V. Kumar. Onion (Allium cepa L.). Fruit and vegetable phytochemicals: Chemistry and human health 2 1145-1162 (2017).

Y. Tsuchiya, M. Shimizu, Y. Hiyama, K. Itoh, Y. Hashimoto, M. Nakayama, T. Horie, and N. Morita. Inhibitory effect of flavonoids on fungal diseases. Chemical and Pharmaceutical Bulletin 33 3881-3890 (1985).

K. Hayashi, T. Hayashi, M. Arisawa, and N. Morita. Antiviral agents of plant origin. Antiherpetic activity of acacetin. Antiviral Chemistry and chemotherapy 4 (1) 49-53 (1993).

J.L. Castrillo and L. Carrasco. Action of 3-methylquercetin on poliovirus RNA replication. Journal of virology 61 (10) 3319-3321 (1987).

R. Vrijsen, L. Everaert, L. Van Hoof, A. Vlietinck, D. V. Berghe, and A. Boeye. The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesis. Antiviral research 7 (1) 35-42 (1987).

K. Zandi, B.-T. Teoh, S.-S. Sam, P.-F. Wong, M. R. Mustafa, and S. AbuBakar. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology journal 8 (1) 1-11 (2011).

S. Kumar and A. K. Pandey. Chemistry and biological activities of flavonoids: an overview. The scientific world journal 2013 162750 (2013).

T. N. Kaul, E. Middleton Jr, and P. L. Ogra. Antiviral effect of flavonoids on human viruses. Journal of medical virology 15 (1) 71-79 (1985).

K. Kell, A. Manadi, Z. Adiyasora, R. Kunaera, I. Akad, and S. Naun. Bioflavonoids and health effects in man. Chemical Abstracts. 107 36667 (1987).

G. Anywar, E. Kakudidi, R. Byamukama, J. Mukonzo, A. Schubert, and H. Oryem-Origa. Medicinal plants used by traditional medicine

practitioners to boost the immune system in people living with HIV/AIDS in Uganda. European Journal of Integrative Medicine 35 101011 (2020).

G. Kuttan. Immunomodulatory effect of some naturally occuring sulphur-containing compounds. Journal of ethnopharmacology 72 (1-2) 93-99 (2000).

B. Sahoo and B. Banik. Medicinal plants: Source for immunosuppressive agents. Immunology: Current Research 2 106 (2018).

H. Ishikawa, T. Saeki, T. Otani, T. Suzuki, K. Shimozuma, H. Nishino, S. Fukuda, and K. Morimoto. Aged garlic extract prevents a decline

of NK cell number and activity in patients with advanced cancer. The Journal of nutrition 136 (3) 816S-820S (2006).

F. Clement, S. N. Pramod, and Y. P. Venkatesh. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. International Immunopharmacology 10 (3) 316-324 (2010).

H. Gupta, M. Gupta, and S. Bhargava. Potential use of turmeric in COVID‐19. Clinical and experimental Dermatology 45 (7) 902-903 (2020).

H. Gopinath and K. Karthikeyan. Turmeric: A condiment, cosmetic and cure. Indian Journal of Dermatology, Venereology, and Leprology 84 (1) 16 (2018).

Y. Lai, Y. Yan, S. Liao, Y. Li, Y. Ye, N. Liu, F. Zhao, and P. Xu. 3D-quantitative structure–activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Archives of pharmacal research 43 (5) 489-502 (2020).

S. M. Richart, Y.-L. Li, Y. Mizushina, Y.-Y. Chang, T.-Y. Chung, G.-H. Chen, J. T.-C. Tzen, K.-S. Shia, and W.-L. Hsu. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on antiinfluenza virus infection. Journal of food and drug analysis 26 (3) 1015-1023 (2018).

A. R. Shivashankara, S. Rao, T. George, S. Abraham, M. D. Colin, P. L. Palatty, and M. S. Baliga, Tea (Camellia sinensis L. Kuntze) as Hepatoprotective Agent: A Revisit, in Dietary Interventions in Liver Disease. 2019, Elsevier. p. 183-192.

C. Chattopadhyay, N. Chakrabarti, M. Chatterjee, S. Mukherjee, K. Sarkar, and A. R. Chaudhuri. Black tea (Camellia sinensis) decoction shows immunomodulatory properties on an experimental animal model and in human peripheral mononuclear cells. Pharmacognosy research 4 (1) 15 (2012).

S. Kumar, J. Kamboj, and S. Sharma. Overview for various aspects of the health benefits of Piper longum linn. fruit. Journal of acupuncture and meridian studies 4 (2) 134-140 (2011).

D. Y. Chen, J. H. Shien, L. Tiley, S. S. Chiou, S. Y. Wang, T. J. Chang, Y. J. Lee, K. W. Chan, and W. L. Hsu. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry 119 (4) 1346-1351 (2010).

L. Greiner, T. Stahly, and T. Stabel. Quantitative relationship of systemic virus concentration on growth and immune response in pigs. Journal of animal science 78 (10) 2690-2695 (2000).

A. Andres, S. M. Donovan, and M. S. Kuhlenschmidt. Soy isoflavones and virus infections. The Journal of nutritional biochemistry 20 (8) 563-569 (2009).

S. Y. Lyu, J. Y. Rhim, and W. B. Park. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of pharmacal research 28 (11) 1293-1301 (2005).

G. M. Parvez. Pharmacological activities of mango (Mangifera Indica): A review. Journal of Pharmacognosy and phytochemistry 5 (3) 1 (2016).

U. Chattopadhyay, L. Chaudhuri, and S. Ghosal. Immunostimulatory activity of mangiferin, a naturally occurring xanthone-c-glucoside. Pharmaceutical research 3 (5) 307-308 (1986).

N. Makare, S. Bodhankar, and V. Rangari. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. Journal of

ethnopharmacology 78 (2-3) 133-137 (2001).

S. Shailajan, S. Menon, S. Kulkarni, and B. Tiwari. Standardized extract of Mangifera indica L. leaves as an antimycobacterial and immunomodulatory agent. Pharmacognosy Communications 6 (3) (2016).

S. Guha, S. Ghosal, and U. Chattopadhyay. Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring

glucosylxanthone. Chemotherapy 42 (6) 443-451 (1996).

M. Zheng and Z. Lu. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chinese Medical Journal 103 (2) 160-165 (1990).

X. Zhu, J. Song, Z. Huang, Y. Wu, and M. Yu. Antiviral activity of mangiferin against herpes simplex virus type 2 in vitro. Zhongguo yao li xue bao= Acta Pharmacologica Sinica 14 (5) 452-45 (1993).

R. L. Jarret, M. L. Wang, and I. J. Levy. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species. Journal of agricultural and food chemistry 59 (8) 4019-4024 (2011).

M. Din, R. Nelofer, M. Salman, F. H. Khan, A. Khan, M. Ahmad, F. Jalil, J. U. Din, and M. Khan. Production of nitrogen fixing Azotobacter (SR4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnology Reports 22 e00323 (2019).

W. Zheng, T. Zhao, W. Feng, W. Wang, Y. Zou, D. Zheng, M. Takase, Q. Li, H. Wu, L. Yang, and X. Wu, X. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus. Carbohydrate polymers 106 335-342 (2014).

S. C. Sheu and M. H. Lai. Composition analysis and immuno-modulatory effect of okra (Abelmoschus esculentus L.) extract. Food Chemistry 134 (4) 1906-1911 (2012).

T. Lim, Abelmoschus esculentus, in Edible Medicinal And Non Medicinal Plants. 2012, Springer. p. 160-167.

H. Chen, H. Jiao, Y. Cheng, K. Xu, X. Jia, Q. Shi, S. Guo, M. Wang, L. Du, and F. Wang. In vitro and in vivo immunomodulatory activity of okra (Abelmoschus esculentus L.) polysaccharides. Journal of medicinal food 19 (3) 253-265 (2016).

N. Singh, M. Tailang, and S. Mehta. A review on herbal plants as immunomodulators. International Journal of Pharmaceutical Sciences and Research 7 (9) 3602 (2016).

A. Ali and A. C. Banerjea. Curcumin inhibits HIV1 by promoting Tat protein degradation. Scientific reports 6 (1) 1-9 (2016).

C. Admas. Ginger fights multiple viral infections. The Journal of Plant Medicines (2020).

N. Dorra, M. El-Berrawy, S. Sallam, and R. Mahmoud. Evaluation of antiviral and antioxidant activity of selected herbal extracts. Journal of High Institute of Public Health 49 (1) 36-40 (2019).

Y. Shen, L. N. Jia, N. Honma, T. Hosono, T. Ariga, and T. Seki. Beneficial effects of cinnamon on the metabolic syndrome, inflammation, and pain, and mechanisms underlying these effects–a review. Journal of traditional and complementary medicine 2 (1) 27-32 (2012).

Z. A. Damanhouri and A. Ahmad. A review on therapeutic potential of Piper nigrum L. Black Pepper): The King of Spices. Med. Aromat. Plants 3 161 (2014).

A. Yashin, Y. Yashin, X. Xia, and B. Nemzer. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 6 (3) 70 (2017).

N. Priya and P. Kumari. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum

and Piper nigrum on human cell lines. Int J Pharm

Sci Rev Res 44 (1) 197-202 (2017).

W. J. Shin, K. H. Lee, M. H. Park, and B. L. Seong.

Broad‐spectrum antiviral effect of Agrimonia pilosa

extract on influenza viruses. Microbiology and immunology 54 (1) 11-19 (2010).

I. Zgorniak-Nowosielska, J. Grzybek, N. Manolova, J. Serkedjieva, and B. Zawilińska. Antiviral activity of Flos verbasci infusion against influenza and Herpes simplex viruses. Archivum immunologiae et therapiae experimentalis 39 (1-2) 103-108 (1991).

B. H. Fang, L. C. Qiu, J. X. Chen, L. Z. Chen, Z. L. Cheng, and Z. L. Chen. The anti-influenza H9N2 virus effects of active compounds from Radix Glycyrrhizae [J]. Guangdong Agricultural Sciences 3 (2007).

Y. Yang, M. S. Islam, J. Wang, Y. Li, and X. Chen. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARSCoV-2): a review and perspective. International journal of biological sciences 16 (10) 1708 (2020).

J. He, W. B. Qi, L. Wang, J. Tian, P. R. Jiao, G. Q. Liu, W. C. Ye, and M. Liao. Amaryllidaceae alkaloids inhibit nuclear‐to‐cytoplasmic export

of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza and other respiratory viruses 7 (6) 922-931 (2013).

C. Fiore, M. Eisenhut, R. Krausse, E. Ragazzi, D. Pellati, D. Armanini, and J. Bielenberg. Antiviral effects of Glycyrrhiza species. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 22 (2) 141-148 (2008).

A. L. Liu, H. D. Wang, S. M. Lee, Y. T. Wang, and G. H. Du. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their

in vitro anti-viral activities. Bioorganic & medicinal chemistry 16 (15) 7141-7147 (2008).

F. Wei, S. C. Ma, L. Y. Ma, P. P. H. But, R. C. Lin, and I. A. Khan. Antiviral Flavonoids from the Seeds of Aesculus c hinensis. Journal of natural Products 67 (4) 650-653 (2004).

D. Chattopadhyay, M. Chawla-Sarkar, T. Chatterjee, R. S. Dey, P. Bag, S. Chakraborti, and M. T. H. Khan. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnology 25 (5) 347-368 (2009).

Y. Li, L. S. Ooi, H. Wang, P. P. But, and V. E. Ooi. Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 18 (9) 718-722 (2004).

B. Glatthaar-Saalmüller, F. Sacher, and A. Esperester. Antiviral activity of an extract derived from roots of Eleutherococcus senticosus. Antiviral research 50 (3) 223-228 (2001).

V. Pongthanapisith, K. Ikuta, P. Puthavathana, and W. Leelamanit. Antiviral protein of Momordica charantia L. inhibits different subtypes of Influenza A. Evidence-Based Complementary and Alternative Medicine 2013 729081 (2013).

M. Farahani. Anti-Herpes Simplex Virus Effect of Camellia sinesis, Echiumamoenum and Nerium oleander. Journal of Applied & Environmental Microbiology 2 (4) 102-105 (2014).

K. Kitazato, Y. Wang, and N. Kobayashi. Viral infectious disease and natural products with antiviral activity. Drug Discovenes & Therapeutics 1 (1) 14-22 (2007).

T. Nagai, R. Moriguchi, Y. Suzuki, T. Tomimori, and H. Yamada. Mode of action of the anti-influenza virus activity of plant flavonoid, 5, 7, 4′-trihydroxy8-methoxyflavone, from the roots of Scutellaria baicalensis. Antiviral research 26 (1) 11-25 (1995).

M. J. Hour, S. H. Huang, C. Y. Chang, Y. K. Lin, C.-Y. Wang, Y.-S. Chang, and C.-W. Lin. Baicalein, ethyl acetate, and chloroform extracts of Scutellaria baicalensis inhibit the neuraminidase activity of pandemic 2009 H1N1 and seasonal influenza A viruses. Evidence-Based Complementary and Alternative Medicine 2013 750803 (2013).

S. C. Ma, J. Du, P. P. H. But, X. L. Deng, Y. W. Zhang, V. E. C. Ooi, H. X. Xu, S. H. S. Lee, and S. F. Lee. Antiviral Chinese medicinal herbs

against respiratory syncytial virus. Journal of ethnopharmacology 79 (2) 205-211 (2002).

S. Zorofchian Moghadamtousi, H. Abdul Kadir, P. Hassandarvish, H. Tajik, S. Abubakar, and K. Zandi. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international 2014 186864 (2014).

H. Kai, M. Obuchi, H. Yoshida, W. Watanabe, S. Tsutsumi, Y. K. Park, K. Matsuno, K. Yasukawa, and M. Kurokawa. In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). Journal of Functional Foods 8 214-223 (2014).

J. Ito, F. R. Chang, H. K. Wang, Y. K. Park, M. Ikegaki, N. Kilgore, and K. H. Lee. Anti-AIDS agents. 48. Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. Journal of natural Products 64 (10) 1278-1281 (2001).

E. De Clercq. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal research reviews 20 (5) 323-349 (2000).

M. Rajbhandari, R. Mentel, P. Jha, R. Chaudhary, S. Bhattarai, M. Gewali, N. Karmacharya, M. Hipper, and U. Lindequist. Antiviral activity of some plants used in Nepalese traditional medicine. EvidenceBased Complementary and Alternative Medicine 6(4) 517-522 (2009).

S. Q. Wang, Q. S. Du, K. Zhao, A. X. Li, D. Q. Wei, and K. C. Chou. Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids 33 (1) 129-135 (2007).

E. G. Oh, K. L. Kim, S. B. Shin, K.T. Son, H.J. Lee, T. H. Kim, E.J. Cho, D.K. Kim, E.W. Lee and M.S. Lee. Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Science and Biotechnology 22 (2) 593-598 (2013).

Downloads

Published

2021-08-10

How to Cite

Din, M. ., Zia, F. ., Khalil, A. T. ., Ali, . M., & Shinwari, Z. K. (2021). Functional Food Plants and their Potential Antiviral and Immunomodulatory Properties: the Covid-19 Perspective : Food as a potential weapon against Covid-19 . Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(S), 1–10. Retrieved from http://ppaspk.org/index.php/PPAS-B/article/view/466