Antiviral Pills against SARS-CoV-2 Virus to Combat Future Epidemic Threats in Pakistan

Antiviral Pills to Combat Future Epidemics in Pakistan

Authors

DOI:

https://doi.org/10.53560/PPASB(60-sp1)797

Keywords:

SARS-CoV-2, Antiviral pills, Paxlovid, Molnupiravir, Epidemic, Pakistan

Abstract

Antiviral pills are oral medications that treat infections through the inhibition of the viral growth and replication cycle. Paxlovid by Pfizer and Molnupiravir by Merck are the two pills effective for high-risk SARS-CoV-2 patients. Paxlovid works by inhibiting the replication cycle of SARS-CoV-2 using cysteine residues in-vitro. These cysteine residues inhibit the main protease of the virus by functioning as reversible covalent inhibitors. Molnupiravir works by introducing a high rate of mutations in the viral RNA causing the virus to become biologically unstable and non-functional. Both antiviral drugs can bridge the gap in the preparedness for viral outbreaks in low-income countries like Pakistan by mitigating the chances of fatality and inpatient treatment in high-risk, unvaccinated individuals. Pakistan has been plagued by various epidemics over the years however SARS-CoV-2 outbreak caused many deaths along with an economic crisis. The country lacks the resources to endure high inpatient treatment rates in case of SARS-CoV-2 infections, which is why the need for antiviral pills like Paxlovid and Molnupiravir is empirical to overcome epidemics and viral outbreaks. This work outlines the antiviral pills and their efficacy against SARS-CoV-2 with a focus on how these drugs can overcome significant gaps in epidemic preparedness and response in Pakistan. We aim to highlight how antiviral pills against SARS-CoV-2 can ensure resilience to future epidemic threats in Pakistan.

References

S. Tripathy, B. Dassarma, S. Roy, H. Chabalala, M. G. Matsabisa. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. International Journal of Antimicrobial Agents 56: 2 (2020).

F. Wu, S. Zhao, B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, M.L. Yuan, Y.L. Zhang, F.H. Dai, Y. Liu, Q.M. Wang, J.J. Zheng, L. Xu, E.C. Holmes, and Y.Z. Zhang. A new coronavirus associated with human respiratory disease in China. Nature 579: 265–269 (2020).

European Centre for Disease Prevention and Control. Outbreak of acute respiratory syndrome associated with a novel coronavirus, China: first local transmission in the EU/EEA – third update. ECDC: Stockholm (2020).

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395: 497–506 (2020).

K. Yuki, M. Fujiogi, and S. Koutsogiannaki. Covid-19 pathophysiology: A Review. Clinical Immunology 215 (2020).

E. Mathieu, H. Ritchie, E.O. Ospina, M. Roser, J. Hasell, C. Appel, C. Giattino and L. R. Guirao. A global database of COVID-19 vaccinations. Nature Human Behaviour 5: 947–953 (2021).

H. Fan, F. Lou, J. Fan, M. Li, Y. Tong. The emergence of powerful oral anti-covid-19 drugs in the post-vaccine era. The Lancet Microbe 3:2 (2022)

Emergency use authorization, U.S. Food and Drug Administration (2023). https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization (accessed 27 October 2022).

S. Rahman, M. Din, S. Khan, L. Yar, F. Zia, M. Idrees, and M. Ali. COVID-19 Vaccines: Pakistan’s Perspective: COVID-19 Vaccines: Pakistan’s Perspective. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences 58: 11-17 (2021).

M. Kozlov. Why scientists are racing to develop more covid antivirals. Nature 601: 496–496 (2022).

D.R. Owen, C.M.N. Allerton, A.S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R.D. Cardin, A. Carlo, K.J. Coffman, A. Dantonio, L. Di, H. Eng, R. Ferre, K.S. Gajiwala, S.A. Gibson, S.A. Greasley, B.L. Hurst, E.P. Kadar, A.S. Kalgutkar, J.C. Lee, J. Lee, W. Liu, S. W. Mason, S. Noell, J.J. Novak, R.S. Obach, K. Ogilvie, N.C. Patel, M. Petterson, D.K. Rai, M.R. Resse, M.F. Sammons, J.G. Sathish, R.S.P . Singh, C.M. Steppan, A.E. Stewart, J. B. Tuttle, L. Updyke, P.R. Verhoest, L. Wei, Q. Yang, and Y. Zhu. An oral SARS-COV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 374: 1586–1593 (2021).

L. Zhang, D. Lin, Y. Kusov, Y. Nian, Q. Ma, J. Wang, A. V. Brunn, P. Leysenn, K. Lanko, J. Neyts, A. D. Wilde, E. J. Snijder, H. Liu and R. Hilgenfeld. Α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structurebased design, synthesis, and activity assessment. Journal of Medicinal Chemistry 63: 4562–4578 (2020).

H.A. Rothan, and S.N. Byrareddy. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity 109 (2020).

A. Parasher. Covid-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgraduate Medical Journal 97: 312–320 (2020).

F. Sanchez, J.G. Calvo, G. Mery, Y.E. Garcia, P. Vasquez, L.A. Barboza, M.D. Perez and T. Rivas. A multilayer network model of covid-19: Implications in public health policy in Costa Rica. Epidemics 39 (2022).

M. Imran, M.K. Arora, S.M.B. Ashdaq, S.A. Khan, S.I. Alaqel, M.K. Alshammar, M.M. Alshehri, A.S. Alshrari, A.M. Ali, A.M. Al Shammeri, B.D. Alhazmi, A.A. Harshan, Md. T. Alam, and Abida. Discovery, development, and patent trends on Molnupiravir: A prospective oral treatment for covid-19. Molecules 26:19 (2021).

F. Pourkarim, S.P. Anvarian, and H. Rezaee. Molnupiravir: A new candidate for Covid‐19 treatment. Pharmacology Research & Perspectives 10:1 (2021).

C.X. Li, S. Noreen, L.X. Zhang, M. Saeed, P.F. Wu, M. Ijaz, D.F. Dai, I. Maqbool, A. Madni, F. Akram, M. Naveed, and J.H. Li. A critical analysis of SARS-COV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomedicine & Pharmacotherapy 146 (2022).

B. Malone, and E.A. Campbell. Molnupiravir: Coding for catastrophe. Nature Structural & Molecular Biology 28: 706–708 (2021).

A. Pouramini, F. Kafil, S. Hassanzadeh, S. Saifar, and H. R. Jhantigh. Molnupiravir; an effective drug in treating covid-19? Journal of Preventive Epidemiology 7:1 (2021).

F. Kabinger, C. Stiller, J. Schmitzova, C. Dienemann, G. Kokic, H.S. Hillen, C. Hobrtner, and P. Cramer. Mechanism of Molnupiravir induced SARS-CoV-2 mutagenesis. Nature Structural & Molecular Biology 28: 740–746 (2021).

M. Marzi, M.K. Vakil, M. Bahmanyar, and E. Zarenezhad. Paxlovid: Mechanism of action, synthesis, and in silico study. BioMed Research International 2022 (2022).

R.L. Hoffman, R.S. Kania, M.A. Brothers, J.F. Davies, R.A. Ferre, K.S. Gajiwala, M. He, R.J. Hogan, K. Kozminsk, L.Y. Li, J.W. Lockner, J. Lou, M.T. Marra, L.J. Mitchell Jr., B.W. Murray, J.A. Nieman, S. Noell, S.P. Planken, T. Rowe, K. Ryan, G.J. Smith III, J.E. Solowiej, C.M. Steppan, and B. Taggart. Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. Journal of Medicinal Chemistry 63: 12725–12747 (2020).

M. Pavan, G. Bolcato, D. Bassani, M. Sturlese, and S. Moro. Supervised molecular dynamics (SUMD) insights into the mechanism of action of SARSCOV-2 main protease inhibitor PF-07321332. Journal of Enzyme Inhibition and Medicinal Chemistry 36: 1645–1649 (2021).

K. Anand, J. Ziebuhr, P. Wadhwani, J.R. Mesters, and R. Hilgenfeld. Coronavirus main proteinase (3CL pro) structure: Basis for design of anti-SARS drugs. Science, 300: 1763–1767 (2003).

Y.P. Hung, J.C. Lee, C.W. Chiu, C.C. Lee, P.J. Tsai, I.L. Hsu, and W.C. Ko. Oral nirmatrelvir/ritonavir therapy for covid-19: The dawn in the dark? Antibiotics 11:2 (2022).

J. Hammond, H.L. Tebbe, A. Gardner, P. Abreu, W. Bao, W. Wisemandle, M. Baniecke, V.M. Hendrick, B. Damle, A.S. Campos, R. Pypstra, and J.M. Rusnak. Oral Nirmatrelvir for high-risk, nonhospitalized adults with covid-19. New England Journal of Medicine 386: 1397–1408 (2022).

J.C. Frankel. Antiviral pills could change pandemic’s course. Science 374: 799–800 (2021).

K. Fernando, S. Menon, K. Jansen, P. Naik, G. Nucci, J. Roberts, S. S. Wu, and M. Dolsten. Achieving end-to-end success in the clinic: Pfizer’s learnings on R&D productivity. Drug Discovery Today 27: (2022).

E.G. McDonald, and T.C. Lee. Nirmatrelvirritonavir for COVID-19. CMAJ 194:6 (2022).

B. Malone, and E.A. Campbell. Molnupiravir: Coding for catastrophe. Nature Structural & Molecular Biology 28: 706–708 (2021).

A. Waris, U.K. Atta, M. Ali, A. Asmat, and A. Basit. COVID-19 outbreak: current scenario of Pakistan. New Microbes and New Infections 35 (2020).

M. Kashif. Perceptions and COVID-19 Vaccine Hesitancy among Pakistani Physiotherapists; A Qualitative Insight. Pakistan Journal of Medical and Health Sciences 15: 2302–2313 (2021).

P.O. Oladosu, N. Moses, O.P. Adigwe, and H.O. Egharevba. Potentials of medicinal plants with antiviral properties: The need for a paradigm shift in developing novel antivirals against COVID-19. Journal of Advances in Medicine and Medical Research 35 85–100 (2021).

S. Khiali, E. Khani, S.B. Rouy, and T. E. Maleki. Comprehensive review on Molnupiravir in COVID-19: a novel promising antiviral to combat the pandemic. Future Microbiology 17: 377–391 (2022).

T. Islam, M. Hasan, M.S. Rahman, and Md. R. Islam. Comparative evaluation of authorized drugs for treating Covid‐19 patients. Health Science Reports 5: 4 (2022).

Downloads

Published

2023-01-18

How to Cite

Ayesha Khan, Hadia Batool, & Shaheen Shahzad. (2023). Antiviral Pills against SARS-CoV-2 Virus to Combat Future Epidemic Threats in Pakistan: Antiviral Pills to Combat Future Epidemics in Pakistan. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 60(S), 25–34. https://doi.org/10.53560/PPASB(60-sp1)797