Bacterial Biofilms and Ethylenediamine-N,N’-disuccinic acid (EDDS) as Potential Biofilm Inhibitory compound

EDDS as biofilm inhibitory compound

Authors

  • Nimerta Kumari Institute of Microbiology, University of Sindh, Jamshoro, Pakistan
  • Shabnam Rathore Department of Agriculture Chemistry, Agriculture Research Institution, Tando Jam, Pakistan
  • Bushra Bano Patoli Institute of Microbiology, University of Sindh, Jamshoro, Pakistan
  • Atif Ahmed Patoli Institute of Microbiology, University of Sindh, Jamshoro, Pakistan

Keywords:

Biofilm inhibition, EDDS, ion chelation, Staphylococcus aureus, Pseudomonas aeruginosa

Abstract

Bacterial biofilms are populations of microorganisms that stick to some surfaces and are embedded in self-secreted extracellular polymeric matrixes. These synergistically controlled sessile cells exhibit different proteome than their planktonic counterpart and are often difficult to treat. They make a different mechanism to escape the antimicrobial activity and host defenses. Biofilms on indwelling prosthetic devices are a major problem in the medical field because they could lead to recurrent and systemic infections. Biofilms also result in bio-corrosion in industries and their remediation often causes environmental problems. The goal of this study is to find antimicrobial and biofilm inhibition activity of non-toxic and biodegradable economical iron-chelating compound EDDS against Staphylococcus aureus SA113 and Pseudomonas aeruginosa PAO1 strains. Broth microdilution assay was performed to find the inhibitory concentration of EDDS and biofilm assay performed in the micro-well plate to determine the biofilm inhibitory concentration of EDDS against SA113 and PAO1. The results show that a higher concentration of EDDS is required to suppress the growth of SA113 a gram-positive bacterium compare to gram-negative PAO1 strain. EDDS successfully inhibited the biofilm formation of both SA113 and PAO1 at very low concentration and significant biofilm inhibition (p<0.05) was observed at 0.78 mM and 1.56 mM EDDS concentration for PAO1 and SA113 respectively. Biodegradable ion-chelator EDDS is a good biofilm inhibitor compound for both S. aureus SA113 and P. aeruginosa PAO1 strains.

References

G. O’Toole, H. B. Kaplan, and R. Kolter. Biofilm formation as microbial development. Annual Review of Microbiology 54, 49-79 (2000).

J. W. Costerton, G. G. Geesey, and K. J. Cheng. How bacteria stick. Scientific American 238, 86-95 (1978).

H. C. Slavkin. Biofilms, microbial ecology and Antoni Van Leeuwenhoek. The Journal of the American Dental Association 128(4) 492-495 (1997).

R. M. Donlan, and J. W. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews 15(2) 167-193 (2002).

L. Hall-Stoodley, J. W. Costerton, and P. Stoodley. Bacterial biofilms: from the Natural environment to infectious diseases. Nature Reviews Microbiology 2(2) 95-108 (2004).

C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley. Survival strategies of infectious biofilms. Trends in microbiology 13, 34-40 (2005).

National Institute of Health, Pakistan. NIH “Research on microbial biofilms (PA-03-047)” NIH, National Heart, Lung, and Blood Institute 2002-12-20. http://grants.nih.gov/grants/guide/pa-files/PA-03-047.html, (2002).

D. Xu, R. Jia, Y. Li, and T. Gu. Advances in the treatment of problematic industrial biofilms. World Journal of Microbiology and Biotechnology 33(5) 97 (2017).

D. G. Davies, G. G. Geesey. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied Environmental Microbiology 61(3) 860-867 (1995).

I. Francolini, and G. Donelli. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunology & Medical Microbiology 59; (3) 227-238 (2010).

Raad, II et al. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Current opinion in infectious diseases 21; (4) 385-392 (2008).

M. R. Parsek, and E. P. Greenberg. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in microbiology 13(1) 27-33 (2005).

G. Brackman and T. Coenye. Quorum Sensing Inhibitors as Anti-Biofilm Agents. Current Pharmaceutical Design 21; 5-11 (2015).

V. G. Preda, O. Sandulescu. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova) 7(3) e100 (2019).

L. M. Vega et al. Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. International Biodeterioration & Biodegradation 91, 82-87 (2014).

J. Wen, K. Zhao, T. Gu, I. Raad. Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World Journal of Microbiology and Biotechnology 26, 1053-1057 (2009).

E. Banin, K. M. Brady, E. P. Greenberg. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appllied Environmental Microbiology 72, 2064-2069 (2006).

R. M. G.-S.-B. A. I. H. SPINNER. Chelating polymers. I. The synthesis and acid dissociation behavior of several N-(p-vinylbenzenesulfony1)-substituted diaminopolyacetic acid monomers, monomeric analogues, and related intermediates. Canadian Journal of Chemistry 48, (1970).

A. H. J. a. K. D. Ingram. Comparison of the Antibacterial Activity of Chelating Agents Using the Agar Diffusion Method International Journal of Poultry Science 9, 1023-1026 (2010).

I. Raad et al. In Vitro and Ex Vivo Activities of Minocycline and EDTA against Microorganisms Embedded in Biofilm on Catheter Surfaces. Antimicrobial Agents and Chemotherapy 47, 3580-3585 (2003).

R. S. Issam Raad. Chelators in combination with biocides: treatment of microbially induced biofilm and corrosion. . US patent 6,267,979, (2001).

N. Zwicker, U. Theobald, H. Zähner, H. P. Fiedler. Optimization of fermentation conditions for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. Journal of Industrial Microbiology and Biotechnology 19, 280-285 (1997).

R. Takahashi, K. Yamayoshi, N. Fujimoto, M. Suzuki. Production of (S,S)-Ethylenediamine-N,N’-disuccinic Acid from Ethylenediamine and Fumaric Acid by Bacteria. Bioscience, Biotechnology and Biochemistry 63, 1269-1273 (1999).

C. n. R. B. Nata´lia J. S. Costaa, Juliana S. Kuribayashib, Maristela M. de Camargob, Leandro H. Andradea, Edna Kagoharaa, and Breno P. Espo’sito. Antimicrobial Activity of Ethylenediaminedisuccinate Metal Complexes. Chemistry and Biodiversity 5, 2156-2159 (2008).

J. S. Jaworska, D. Schowanek, T. C. J. Feijtel. Environmental risk assessment for trisodium (S,S)-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38, 3597-3625 (1999).

D. Schowanek et al. Biodegradation of (S,S), (R,R) and mixed stereoisomers of Ethylene Diamine Disuccinic Acid (EDDS), a transition metal chelator. Chemosphere 34, 2375-2391 (1997).

M. S. a. T. E. Rikiya Takahashi. Naoshi Fujimoto. Biodegradabilities of Ethylenediamine-N,N’ – disuccinic Acid (EDDS) and other Chelating Agents. Bioscience. Biotechnology and Biochemistry 61, 1957-1997 (1997).

Natália J. S. Costa et al. Biological Activity of Metal-edds (ethylenediaminedisuccinate) Complexes in K562 and PBMC Cells. Journal of the Brazilian Chemical Society 19, 123-130 (2008).

P. C. Vandevivere, H. Saveyn, W. Verstraete, T. C. J. Feijtel, D. R. Schowanek. Biodegradation of Metal−(S,S)-EDDS Complexes. Environmental Science & Technology 35, 1765-1770 (2001).

J. H. Toney, M. L. Koh. Inhibition of Xylella Fastidiosa Biofilm Formation via Metal Chelators. Journal of the Association for Laboratory Automation 11, 30-32 (2006).

J. U. Vogel et al. Antiviral and immunomodulatory activity of the metal chelator ethylenediaminedisuccinic acid against cytomegalovirus in vitro and in vivo. Antiviral research 55, 179-188 (2002).

J. Wen, K. Zhao, T. Gu, I. I. Raad. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration & Biodegradation 63, 1102-1106 (2009).

S. I. a. m. Surdeanu. Two Restriction and Modification Systems in Staphylococcus aweus NCTC8325. Journal of Gerneral Microbiology 96, 277-281 (1976).

B. W. Holloway. Genetic recombination in Pseudomonas aeruginosa. Journal of general microbiology 13, 572-581 (1955).

J. Saising et al. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy 56, 5804-5810 (2012).

L. Leive. Release of lipopolysaccharide by EDTA treatment of E., coli. Biochemical and Biophysical Research Communications 21, 290-296 (1965).

X. Chen, P. S. Stewart. Role of electrostatic interactions in cohesion of bacterial biofilms. Applied Microbiology and Biotechnology 59, 718-720 (2002).

M. H. Turakhia, K. E. Cooksey, W. G. Characklis. Influence of a calcium-specific chelant on biofilm removal. Applied and environmental microbiology 46, 1236-1238 (1983).

W. M. Dunne, Jr., E. M. Burd. The effects of magnesium, calcium, EDTA, and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiology and immunology 36, 1019-1027 (1992).

S. Sarkisova, M. A. Patrauchan, D. Berglund, D. E. Nivens, M. J. Franklin. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. Journal of bacteriology 187, 4327-4337 (2005).

N. M. Abraham, S. Lamlertthon, V. G. Fowler, K. K. Jefferson. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. Journal of Medical Microbiology 61, 1062-1070 (2012).

M. Juda et al. EDTA as a potential agent preventing formation of Staphylococcus epidermidis biofilm on polichloride vinyl biomaterials. Annals of Agriculture and Environmental Medicine 15, 237-241 (2008).

I. Vance, D. R. Thrasher. Reservoir Souring: Mechanisms and Prevention. In Petroleum Microbiology (eds B. Ollivier and M. Magot). doi:10.1128/9781555817589.ch7. American Society of Microbiology (2005).

R. E. W. Hancock. Alterations in outer membrane permeability Annual Review of Microbiology 38, 237-264 (1984).

M. Vaara. Agents that increase the permeability of the outer membrane. Microbiology Review 56, 395-411 (1992).

A. Hinton Jr, K. D. Ingram. Influence of Ethylenediamine-N,N′-Disuccinic Acid (Edds) Concentration on the Bactericidal Activity of Fatty Acids in Vitro*. Journal of Food Safety 32, 102-107 (2012).

A. Proschak, J. Kramer, E. Proschak, T. A. Wichelhaus. Bacterial zincophore (S,S)-ethylenediamine-N,N’-disuccinic acid is an effective inhibitor of MBLs. Journal of Antimicrobial Chemotherapy 73, 425-430 (2018).

S.-C. Choi, C. Zhang, S. Moon, Y.-S. Oh. Inhibitory effects of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) on acyl-homoserine lactone-mediated virulence factor production and biofilm formation in Pseudomonas aeruginosa PAO1. Journal of Microbiology 52, 734-742 (2014).

Morten Hentzer, S. A. R. Arne Heydorn, Kathrin Riedel, and Michael Givskov, Jens Bo Andersen, Leo Eberl, Søren Molin, Thomas B. Rasmussen, Matthew R. Parsek, Niels Høiby, Staffan Kjelleberg. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87–102 (2002).

Downloads

Published

2020-03-17

How to Cite

Kumari, N. ., Rathore, S. ., Patoli, B. B. ., & Patoli, A. A. . (2020). Bacterial Biofilms and Ethylenediamine-N,N’-disuccinic acid (EDDS) as Potential Biofilm Inhibitory compound: EDDS as biofilm inhibitory compound. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 57(1), 85–92. Retrieved from https://ppaspk.org/index.php/PPAS-B/article/view/79

Issue

Section

Research Articles