Assessment of Pesticides Pollution in Water by Studying Biochemical and Molecular Parameters in Fish

Fish as an indicator of water pollution

Authors

  • Shaza Mehboob Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
  • Sajid Abdullah Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
  • Wardah Hassan Department of Zoology, University of Sargodha, Sargodha, Pakistan

Keywords:

Freshwater fish, catalase activity, genotoxicity, biochemical parameters, pesticides mixture

Abstract

Enzymatic antioxidants serve as an important biological defense against oxidative stress. Information on antioxidant defense in fish is meager despite that fish are constantly exposed to environmental stress. Therefore, this study was planned to assess the changes in biochemical and molecular parameters in various tissues of freshwater fish, Ctenopharyngodon idella., in response to long-term exposures to pesticides mixture. Fish were exposed to different sub-lethal concentrations (1/5th of LC50, 1/4th of LC50, 1/3rd of LC50) of pesticides mixture for 60 days. The samples of fish blood and organs viz. gills, liver, kidney, brain, muscles and heart were dissected after every 15 days of exposure to assess the catalase activity and DNA damage. Result of this study revealed that exposure of pesticides mixture result of induced significant decrease in catalase activity in all selected organs of test fish with the increase in exposure duration and the mutagenic potential of the pesticides causes maximum DNA damage after 60 days of pesticides mixture exposure. An exposure of 1/3rd of LC50 to C. idella induced significantly higher number of nuclear abnormalities interms of dumble, blebbed and notched shaped nuclei. The variation in biochemical and molecular variation parameters in different organs of test fish samples in comparison with the control shows the adverse effect of pesticides pollution
on the fish health.

References

Chandran, R. Sivakumar, A. A. Mohandass, S & Aruchami M. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comparative Biochemistry and Physiology 140: 422–426 (2005).

Abd-Alla, E. A. M. Nassar, A. M. Neamat-Allah, A. A. & Aly, S. E. Prevalence of pesticide residues in fish, cheese and human milk. Assiut Veterinary Medical Journal 47: 110–124 (2002).

Mujeeb A. and Shakoori, A. Toxicity of Synthetic Pyrethroid, Fury, Against Different Developmental Stages of Three Strains of Tribolium castaneum (Herbst). Pakistan Journal of Zoology 39(6): 361-366 (2007).

Hussain, R., F. Mahmood, M. Z. Khan, A. Khan & F. Muhammad. Pathological and genotoxic effects of atrazine in male Japanese quail (Coturnix japonica). Ecotoxicology 20: 1–8 (2011).

USEPA. Reregistration Eligibility Decision for Endosulfan. Office of Prevention, Pesticides and Toxic Substances, United States Environmental Protection Agency, EPA., 738: 02-013, Washington D.C. (2002).

Xing, H., X. Wanga, G. Sun, X. Gao, S. Xu & X. Wang. Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinuscarpio L.). Environmental Toxicology and Pharmacology 33: 233-244 (2012).

Yonar, M. E. S. M. Yonar, M. S. Ural & S. M. Düsükcan. Protective role of propolis in chlorpyrifos-induced changes in the hematological parameters and the oxidative/antioxidative status of Cyprinuscarpio. Food Chemistry Toxicology 50:2703-2708 (2012).

Richterova, Z. & Z. Svobodova. Pyrethroids influence on fish. Slovenian Veterinary and Research 49:63-72 (2012).

Khan, A. M., M. Sultana, R. Raina, N. Dubey & P. K. Verma. Effect of sub-acute oral exposure of bifenthrin on biochemical parameters in crossbred goats. Proc. Nat. Acad. Sci. India Sect. B Biol. Sci.,83: 232-328 (2013).

Bagchi, D. J. M. Balmoori, X. Bagchi, C. B. Williams &S. J. Stohs. Comparative effects of TCDD, endrin, naphthalene and chromium (IV) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicology 175: 73-82 (2002).

Yonar, M. E. & F. Sakin. Ameliorative effect of lycopene on antioxidant status in Cyprinuscarpio during pyrethroiddeltamethrin exposure. Pesticide Biochemistry and Physiology 99: 226-231 (2011).

A. Jabłonska-Trypuc. Pesticides as inducers of oxidative stress, Reactive Oxygen Species 3: 96–110 (2017).

Hernandez-Moreno D, F. Soler, M. P. Miguez & M. Perez-López. Brain acetylcholinesterase,malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tincatinca, to carbofuran or deltamethrin. Science of the Total Environment 408: 4976-83 (2010).

Sanchez, W., O. Palluel, L. Meunier, M. Coquery, J. M. Porcher & S. Ait-Aissa. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental Toxicology and Pharmacology 19: 177-183 (2005).

Hussain, R., F. Mahmood, A. Khan, M.T. Javed, S.Rehan & T. Mehdi. Cellular and biochemical effects induced by atrazine on blood of male Japanese quail (Coturnix Japonica). Pesticide Biochemistry and Physiology 103: 38–42 (2012).

Saleh, K & M.A.A. Sarhan. Clastogenic analysis of chicken farms using micronucleus test in peripheral blood. Journal of Applied Sciences Research 3:1646–1649 (2007).

Sankar, P., A.G. Telang & A. Manimaran.Curcumin protects against cypermethrin-induced genotoxicity in rats. Environmental Toxicology and Pharmacology 30: 289–291 (2010).

Sharaf, S., A. Khan, M.Z. Khan, F. Aslam, M. K. Saleemi & F. Mahmood. Clinico-hematological and micronuclear changes induced by cypermethrin in broiler chicks: Their attenuation with vitamin E and selenium. Experimental and Toxicologic Pathology 62: 333–341 (2010).

Kocaman, A.Y & M. Topaktaş. Genotoxic effects of a particular mixture of acetamiprid and α-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes. Environmental Toxicology 25: 157– 168 (2010).

Lackner, R. Oxidative stress in fish by environmental pollutants. Fish Ecotoxicology 203-224 (1998).

Oruc, E. O. Z. & D. Usta. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinuscarpio. Environmental. Toxicology. Pharmacology 23: 48-55 (2007).

A.P.H.A (American Public Health Association). Standard method for examination of water and wastewater (20th Edition). New York, p. 1193 (1998).

Chance, M. & A. C. Mehaly. Assay of catalase and peroxidase. Methods Enzymology 2: 764-817 (1997).

Baršienė J., J. LazutkaŠyvokienė, V. Dedonytė, A. Rybako- vas, A. Bjornstad&O.K. Andersen. Analysis of micronuclei in blue mussels and fish from the Baltic and the North Seas. Environmental Toxicology 19: 365–371 (2004).

Fenech, M. & L. R. Ferguson. Vitamins/minerals and genomic stability in humans. Editorial Mutation Research 475: 1-6 (2001).

Steel, R. G. D., J. H. Torrie& D. Dicky. Principles and procedures of statistics: A biochemical approach,3rd Ed. McGraw Hill Book Co. Inc. New York pp 352-358 (1997).

Hai D.Q, S.I. Vargas, B.Matkovic. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology 96: 234-244 (1997).

Crestani M, C. Menezes, L. Glusczak , D. Miron D, R. Spanevello, A. Silveira, F. F. Gonçalves, R.Zanella & V. L.Loro. Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere 67:2305-11 (2007).

Pandey S, I. Ahmad, S. Parvez, B. Bin-Hafeez, R.Haque & S. Raisuddin. Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Archives of Environmental Contamination and Toxicology 41:345-52 (2001).

Blahova J, L. Plhalova, M. Hostovský, L. Divisova, R. Dobsikova, I. Mikulikova, S. Stepanova & Z.Svobodova. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food and Chemical Toxicology 61:82-5 (2013).

Oruc¸ E. O. and D. Usta. 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinuscarpio. Environ. Toxicol. Pharmacol., 23: 48-55 (2007)

Torre, F. R. L. Ferrari & A. Salibian. Freshwater pollution biomarker: response of brain acetylcholinesterase activity in two fish species. Comparative. Biochemistry. Physiology 131: 271- 280 (2002).

Sayeed, I., S. Parvez, S. Pandey, B. Bin-Hafeez, R.Haque& S. Raisuddin. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology Environmental Safety 56: 295-301 (2003).

Kamalaveni, K. V. Gopal, U. Sampson & D. Aruna. Effect of pyrethroids and carbohydrate metabolic pathways in common carp, Cyprinuscarpio. Pest Management Science 57: 157-1159 (2009).

Somnuek, C. V. Cheevaporn, C. Saengkul& F.Beamish. Variability in acetyl cholinesterase upon exposure to chlorpyrifos and carbaryl in hybrid catfish. Science Asia 33: 301-305 (2007).

Banaee M. S, A. R. Mirvaghefi& K. Ahmadi. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemical Physiology 99: 1-6 (2001).

Muthukumaravel, K. B. Sivakumar, P.Kumarasamy& M. Govindarajan. Studies on the toxicity of pesticide on the biochemical constituents of the freshwater fish, Labeorohita. International Journal Current Biochemistry 2: 20-26 (2013).

Talapatra, S. N. & A. Nandi. Genotoxicity detection with special reference to micronucleation in the erythrocytes of fish species due to pollution: a mini review. International. Lett. Natural. Science. 12:94-102 (2014).

Pavlica M, G. I. V. Klobucar, N. Vetma, R Erben & D. Papes. Detection of micronuclei in hemocytes of zebra mussel and great ramshorn snail exposed to pentachlorphenol. Mutation Research 465: 145-150 (2000).

Kocaman, A.Y. & M. Topaktaş. Genotoxic effects of a particular mixture of acetamiprid and α-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes. Environmental Toxicology 25: 157–168 (2010).

Saleh, K & M.A.A. Sarhan. Clastogenic analysis of chicken farms using micronucleus test in peripheral blood. Journal of Applied Sciences Research 3:1646–1649 (2007).

Sankar, P., A.G. Telang & A. Manimaran.Curcumin protects against cypermethrin-induced genotoxicity in rats. Environmental Toxicology and Pharmacology 30: 289–291 (2010).

Sharaf, S., A. Khan, M. Z. Khan, F. Aslam, M. K. Saleemi & F. Mahmood. Clinico-hematological and micronuclear changes induced by cypermethrin in broiler chicks: Their attenuation with vitamin E and selenium. Experimental and Toxicologic Pathology 62: 333–341 (2010).

Muranli, F.D.G. & U. Guner. Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mutatation Research of Genetic Toxicology and Environmental Mutagenesis 726: 104–108 (2011).

Sarabia, L., I. Maurer & E. Bustos-Obregón.Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA. Ecotoxicology and Environmental Safety 72: 663–668 (2009).

Fernandes, T.C.C., D.E.C. Mazzeo & M.A. Marin-Morales. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology. 88: 252–259 (2007).

Çavaş, T. & S. Ergene-Gözükara. Micronucleus test in fish cells: a bioassay for in situ monitoring of genotoxic pollution in the marine environment. Environmental and Molecular Mutagenesis. 46:64–70 (2005).

Downloads

Published

2019-12-17

How to Cite

Mehboob, S. ., Abdullah, S. ., & Hassan, W. . (2019). Assessment of Pesticides Pollution in Water by Studying Biochemical and Molecular Parameters in Fish: Fish as an indicator of water pollution. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 56(4), 15–24. Retrieved from https://ppaspk.org/index.php/PPAS-B/article/view/73

Issue

Section

Research Articles