Showcasing the Internationally Prioritized Medicinal Plants to Counteract the Pandemics – Potential Remedies for COVID-19 and other Forms of SARS

Internationally Prioritized Medicinal Plants to Counteract the COVID-19


  • Shujaul Mulk Khan Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan , Pakistan Academy of Sciences, Islamabad Pakistan
  • Abdullah Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Khadija Rehman Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Ujala Ijaz Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Shahab Ali Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Sadia Jehangir Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Amjad Ur Rehman Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan , Department of Botany, University of Swabi, Pakistan
  • Sara Shehzadi Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
  • Zeeshan Ahmad Department of Plant Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan


Ethno-medicines, COVID-19, Pandemic, Potential Remedies


Indigenous communities throughout the globe respond to COVID-19 by their traditional medicinal systems
as primary health care. Our lab was part of an international study that discusses the outcomes of a rapid response, preliminary survey during the first phase of the pandemic among social and community contacts in five metropolises heavily affected by the COVID-19 health crisis (Wuhan, Milan, Madrid, New York, and Rio de Janeiro) and in twelve rural areas or countries initially less affected by the pandemic (Appalachia, Jamaica, Bolivia, Romania, Belarus, Lithuania, Poland, Georgia, Turkey, Pakistan, Cambodia, and South Africa). Primarily, people have relied on teas and spices (“food-medicines”) to prevent and mitigate its symptoms. Urban diasporas and rural households seem to have repurposed homemade plant-based remedies that they use on daily basis to treat the flu and other respiratory problems and hence consider among the healthy foods. The most remarkable shift in many areas has been increased in the consumption of ginger and garlic, followed by onion, turmeric, lemon, chamomile, black tea, nettle, chili pepper, and apple. This study serves as a baseline for future systematic ethnobotanical studies countering COVID-19
and other vicious types of viruses. It aims to inspire in-depth research on how use patterns of plant-based foods and
beverages, both “traditional” and “new,” are changing during and after the COVID-19 pandemic. Our reflections in this study call attention to the importance of ethnobiology, ethnomedicine, and ethno-gastronomy research into domestic health care strategies for improving community health. Some of these economically important plants are suggested to be extensively analyzed experimentally, for active ingredients, phytochemicals, and the precursor of vaccines and probable remedy of SARS including COVID-19.


D. Silveira., J. M. Prieto-Garcia., F. Boylan., O. Estrada., Y. M. Fonseca-Bazzo., C. M. Jamal, and M. Heinrich. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Frontiers in Pharmacology 11: 1479. (2020).

T. Liang. Handbook of COVID-19 prevention and treatment. The First Affiliated Hospital, Zhejiang University School of Medicine. Compiled According to Clinical Experience 68 (2020).

J. Wong., Q. Y. Goh., Z.Tan., S.A. Lie., Y.C. Tay., S.Y. Ng, and C.R. Soh. Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Canadian Journal of Anesthesia/Journal canadien d’anesthésie, 67(6) (2020).

R. V. Nugraha., H. Ridwansyah., M. Ghozali., A. F. Khairani, and N. Atik. Traditional herbal medicine candidates as complementary treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. Evidence-Based Complementary and Alternative Medicine, (2020).

J.J. Vanden Eynde. “COVID-19: A Brief Overview of the Discovery Clinical Trial.” Pharmaceuticals (Basel, Switzerland) 13 (4) (2020).

A. Gul. Covid‐19 pandemic: Current scenario and public risk perception in Pakistan. Journal of Public Affairs (2021).

A. Timoshyna., X. Ling, and K. Zhang. “COVID-19—The Role of Wild Plants in Health Treatment and Why Sustainability of Their Trade

Matters.” Traffic (2020).

S. Garcia. “Pandemics and Traditional Plant-Based Remedies. A Historical-Botanical Review in the Era of COVID19.” Frontiers in plant science 11 (2020).

T.Capell., M. Richard., Twyman., V. ArmarioNajera., Ma. K-C. Julian., S. Schillberg, and P. Christou. “Potential applications of plant

biotechnology against SARS-CoV-2.” Trends in plant science (2020).

N. F. Clark, and W. A. Taylor-Robinson. “COVID-19 Therapy: Could a Chlorophyll Derivative Promote Cellular Accumulation of Zn2+ Ions to Inhibit SARS-CoV-2 RNA Synthesis?.” Frontiers in plant science 11 (2020).

I. Vandebroek., A. Pieroni., J. R. Stepp., N. Hanazaki., A. Ladio., R.R. Alves., D. Picking., R. Delgoda., A. Maroyi., T. V. Andel, and C. L. Quave. Reshaping the future of ethnobiology research after the COVID-19 pandemic. Nature Plants 6(7) (2020).

J. Huang., G. Tao., J. Liu., J. Cai., Z. Huang, and J.X. Chen. Current prevention of COVID-19: Natural products and herbal medicine. Frontiers in Pharmacology 11. (2020).

G.Tao., F. Dagher., A. Moballegh, and R. Ghose., Role of oxidative stress in the efficacy and toxicity of herbal supplements. Current Opinion in Toxicology(2020).

A. Pandey., M. K. Khan., Hamurcu, and M. S.Gezgin. Natural Plant Products: A Less Focused Aspect for the COVID-19 Viral Outbreak. Frontiers in plant science 1 (2020).

X. Xiong., P.Wang., K. Su., W.C. Cho, and Y. Xing. Chinese herbal medicine for coronavirus disease 2019: A systematic review and meta-analysis. Pharmacological Research 2 (2020).

A.G. Omokhua-Uyi, and J. V. Staden. Natural product remedies for COVID-19: A focus on safety South African Journal of Botany (2021).

A. Pieroni, I. Vandebroek., J. Prakofjewa., R.W.Bussmann., N. Y. Paniagua-Zambrana., A. Maroyi., L. Torri., D. M. Zocchi., A. T. Dam., S. M. Khan, and H. Ahmad. Taming the pandemic? The importance of homemade plant-based foods and beverages as community responses to COVID-19.

J. S. Chang., K. C. Wang., C.F. Yeh., D.E. Shieh, and L. C. Chiang. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology 145(1) (2013a).

R. K. Mishra., A. Kumar, and A. Kumar. Pharmacological activity of Zingiber officinale. International Journal of pharmaceutical and

chemical sciences 1(3) (2012).

S. Khaerunnisa., H. Kurniawan., R. Awaluddin., S. Suhartati, and S. Soetjipto. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study (2020).

G. E. Batiha., A. M. Beshbishy., L. Wasef., Y.H. Elewa., A. A. Al-Sagan., A. El-Hack, and H. Prasad Devkota. Chemical constituents and

pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), (2020).

R. Rouf., S.J.Uddin., D.K.Sarker., M.T. Islam., E.S.Ali., J.A. Shilpi, and S.D. Sarker. Anti-viral potential of garlic (Allium sativum) and it’s

organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology (2020).

H. Khan., M. Hussain., G. Jellani., S. Tariq., T. Naseeb, and S.N. Mahmood. Evaluation of garlic genotypes for yield and yield components in Islamabad, Pakistan environment. 55(1) , 22-26. (2018).

M.N. Sohail., A. Karim., M. Sarwar, and A. M. Alhasin. Onion (Allium cepa L.): An alternate medicine for Pakistani population. International journal of Pharmacology, 7(6), 736-744. (2011).

K. Rajagopal., P. Varakumar., A. Baliwada, and G. Byran. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Future journal of pharmaceutical sciences, 6(1), 1-10 (2020).

F. Babaei., M. Nassiri-Asl, and H. Hosseinzadeh. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food science & nutrition, 8(10): 5215-5227 (2020).

R. Saeed., A. Bashir., S. Khan., K. Bakhsh, and M.J. Qasim, An Economic Assessment Of Turmeric Production In Punjab-Pakistan. 33(1): 85-99 (2017).

M. Klimek-Szczykutowicz., A. Szopa, and H. Ekiert, Citrus limon (Lemon) phenomenon—a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants,

(1): p. 119.(2020).

M.I. Siddique, and E.J.Garnevska, Citrus value chain (s): A Survey of Pakistan citrus Industry. 2018. 37.

D.L. McKay, and J.B. Blumberg. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(8): 619-633. (2006).

J.Y.Pang., K.J. Zhao., J.B.Wang., Z.J. Ma, and X.H. Xiao.Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. Journal of Zhejiang University-SCIENCE B, 15(6), 533-539. Z (2014).

B. Rehman., N. Akmal., M. A. Khan, and S. Rani. Economics of tea production in Pakistan. Asian Journal of Agriculture and Rural Development, 2(393-2016-23828), 506-513. (2012).

S. Gottfried. How to Strengthen Your Immune System Against Covid-19.

H. A. Boone., A. Čustović, S. Hotić, D. Latinović, and A. Sijerčić. “How to Fight COVID-19 Using a Healthy Lifestyle Approach.” (2020).

M. Moslemifard. Hospital diet for COVID-19, an acute respiratory infectious disease: An evidencebased Protocol of a Clinical Trial. Caspian Journal of Internal Medicine. 11(Suppl 1): p. 466.(2020).

W.A. Wannes, and M.S. Tounsi. Can medicinal plants contribute to the cure of Tunisian COVID-19 patients? Journal of Medicinal Plants, 8(5). 218-226 (2020).

F. A. Khan., T. Mahmood., M. Ali., A. Saeed. and A.J. Maalik. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Natural Product Research 28(16), 1267-1274. (2014).

F. Fratianni., A. Sada., L. Cipriano., A. Masucci. and F. Nazzaro. Biochemical characteristics, antimicrobial and mutagenic activity in organically and conventionally produced Malus domestica, Annurca. The Open Food Science Journal, 1(1). (2007).

R. R. He., M. Wang., C.Z. Wang., B.T. Chen., C. N. Lu., X. S. Yao, H. Kurihara. Protective effect of apple polyphenols against stress-provoked influenza viral infection in restraint mice. Journal of Agricultural and Food Chemistry, 59(8), 3730-3737.

J. H. J. Martin., S. Crotty., P.Warren, and P.N. Nelson. Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the anti-viral properties of phytoestrogens. Phytochemistry, 68(3) 266-274(2007).

O. Sytar., M. Brestic., S. Hajihashemi., M. Skalicky., J. Kubeš., L. Lamilla-Tamayo., U. Ibrahimova., S. Ibadullayeva, and M. Landi. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules. 26(3):727 (2021).

Q. Mao., Q, Xu., Y. X., S.Y.Cao., R.Y.Gan., H. Corke, and H. B. Li. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185. (2019).

R.A. Onyeagba., O.C. Ugbogu., C. U. Okeke, and O. Iroakasi. Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). African Journal of Biotechnology, 3(10), 552-554. (2004).

F.R. Carrasco., G. Schmidt., A. Romero., J.L.Sartoretto., S.M. Caparroz‐Assef., C.A. Bersani‐Amado, and R.K.N.Cuman. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor‐and cell‐mediated responses. Journal of Pharmacy and Pharmacology, 61(7), 961-967.37. (2009).

A.D. Talpur., M. Ikhwanuddin, and A.M. Bolong. Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. 400: 46-52. (2013).

E.J. Nya. and B.J. Austin. Use of dietary ginger, Zingiber officinale Roscoe, as an immunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). 32(11): 971-977(2009).

R. Rouf., S.J.Uddin., D.K.Sarker., M.T. Islam., E.S.Ali., J.A. Shilpi, and S.D. Sarker. Anti-viral potential of garlic (Allium sativum) and it’s

organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology. (2020).

P. Saravanan., V. Ramya., H. Sridhar., V. Balamurugan, and S.J.G. Umamaheswari, Antibacterial activity of Allium sativum L. on pathogenic bacterial strains. Global veterinaria. 4(5), 519-522. (2010).

J. C. Harris., S.L. Cottrell., S. Plummer, and D. Lloyd, Antimicrobial properties of Allium sativum (garlic). Applied microbiology and biotechnology. 57(3), 282-286. (2001).

B.G. Hughes, and L.D. Lawson. Antimicrobial effects of Allium sativum L.(garlic), Allium ampeloprasum L.(elephant garlic), and Allium cepa L.(onion), garlic compounds and commercial garlic supplement products.. 5(4): p. 154-158.(1991).

A.K. Yetgin., K. Canlı, and E.M. Altuner. Comparison of antimicrobial activity of Allium sativum cloves from China and Taşköprü, Turkey


M. Bahmani., J. Abbasi., A. Mohsenzadegan., S. Sadeghian, and M.G. Ahangaran. Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide. Comparative clinical pathology, 22(2), 165-168. (2013).

W.D. Liu. Jiang, and W.J.B.T. Hou. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.).. 76(1): p. 9-13. (2001)

R.S.A.Harazem., El. Rahman, and A.J. El-Kenawy. Evaluation of Antiviral Activity of Allium Cepa and Allium Sativum Extracts Against Newcastle Disease. Virus.. 61(1). (2019).

W. Dorsch. and J. Ring. Anti-inflammatory substances from onions could be an option for treatment of COVID-19—a hypothesis. Allergo journal international, 29(8), 284-285.(2020).

Y.L. Ma., D.Y. Zhu., K.Thakur., C.H. Wang., H. Wang., Y.F. Ren, and Z.J. Wei. Antioxidant and antibacterial evaluation of polysaccharides

sequentially extracted from onion (Allium cepa L.). International journal of biological Macromolecules, 111, 92-101. (2018).

M.Goodarzi., S.Nanekarani, and N.J.T.D. Landy, Effect of dietary supplementation with onion (Allium cepa L.) on performance, carcass traits and intestinal microflora composition in broiler chickens.. 4: p. S297-S301.( 2014).

H.J.Yasin, and H.S. Bufler. Dormancy and sprouting in onion (Allium cepa L.) bulbs. I. Changes in carbohydrate metabolism. 82(1): p. 89-96(2007).

K. Downes., G.A. Chope, and L. A.Terry. Postharvest application of ethylene and 1-methylcyclopropene either before or after curing affects onion (Allium cepa L.) bulb quality during long term cold storage. Postharvest biology and technology, 55(1), 36-44.(2010).

T.T.Oliveira., K.M.Campos., A.T. Cerqueira-Lima., T.C.B. Carneiro., E. S. Velozo., I.C.A.R. Melo, and C.A.Figueiredo. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. DARU Journal of Pharmaceutical Sciences, 23(1), 1-12. (2015).

M. Marotti, and R.J.J. Piccaglia. Characterization of flavonoids in different cultivars of onion (Allium cepa L.). 67(3): 1229-1232. (2002).

S.Glińska., B.J.E. Gabara, and E.Safety. The effects of the anthocyanin-rich extract from red cabbage leaves on Allium cepa L. root tip cell ultrastructure. 74(1) 93-98. (2011).

S. Z. Moghadamtousi., H.A. Kadir., P. Hassandarvish., H. Tajik., S. Abubakar, and K. Zandi. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed research international (2014).

J. H. Kim., H. S.Yoo., J.C. Kim., C.S.Park., M.S. Choi., M. Kim, and J. K. Ahn. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of ethnopharmacology, 124(2), 189-196. (2009).

R.K.Verma., P. Kumari., R. K. Maurya., V. Kumar.,R.B.Verma, and R.K. Singh. Medicinal properties of turmeric (Curcuma longa L.): A review. International journal of chemical studies, 6(4), 1354-1357 (2018).

M. Ichsyani., A. Ridhanya., M. Risanti., H. Desti., R. Ceria., D.H. Putri, and B. E. Dewi. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. In IOP Conference Series: Earth and Environmental Science (Vol. 101, No. 1, p. 012005). IOP Publishing. (2017).

M. Jalaluddin., I. Jayanti., I. M. Gowdar., R. Roshan., R.R. Varkey, and A. Thirutheri. Antimicrobial activity of Curcuma longa L. extract on periodontal pathogens. Journal of pharmacy & bioallied sciences, 11(Suppl 2), S203. (2019).

M.H.Boskabady., F. Shakeri, and F. Naghdi. The effects of Curcuma Longa L. and its constituents in respiratory disorders and molecular mechanisms of their action, Studies in Natural Products Chemistry. Elsevier. 239-269.(2020)

C. A. C. Araujo and L. L. Leon. Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz, 96(5), 723-728. (2001).

A. H. Gilani., A. J. Shah., M. N. Ghayur, and K. Majeed. Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life sciences, 76(26), 3089-3105. (2005).

J. F. Fagbemi., E. Ugoji., T. Adenipekun, and O. Adelowotan. Evaluation of the antimicrobial properties of unripe banana (Musa sapientum L.), lemon grass (Cymbopogon citratus S.) and turmeric (Curcuma longa L.) on pathogens. African Journal

of Biotechnology 8(7).(2009).

E. Khatiwora., V.B. Adsul, R. Torane, and S. Gaikwad. Comparative Anthelmintic Activity Of Citrus Limon L Osbeck And Citrus Limon L Burmf From North Eastern India. Journal of Advanced Scientific Research 11. (2020).

C.A. Ezeabara., C. U. Okeke., C.V.Ilodibia, and B.O. Aziagba. Determination of tannin content in various parts of six citrus species. Journal of Scientific Research and Reports 1384-1392. (2014).

A. T. Selvi., V. Brindha., N.Vedaraman., J. Kanagaraj., V. J. Sundar.,Y. Khambhaty, and P. Saravanan. Eco-friendly curing of hides/skins using phyto based Citrus limon leaves paste. Journal of Cleaner Production 247, 119117. (2020).

A.V. Barros., M. S. Melo, and I. C. Simoni. “Screening of Brazilian plants for antiviral activity against animal herpesviruses.” Journal of Medicinal Plants Research 12, 2261-2265. (2012).

B. Sridharan., S.T. Michael., R. Arya., S. Mohana Roopan., R.N. Ganesh, and Viswanathan, P., Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats. Pharmaceutical biology 54(5) 759-769.(2016).

S. Baruah, and U. Kotoky. Studies on storage behavior of Assam Lemon (Citrus limon Burm). Indian Journal of Agricultural Research 52(2) (2018).

M. L. Chen., D.J.Yang, and S.C. Liu. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. International Journal of Food Science & Technology 46(6), 1179-1185. (2011).

Y.S. Huang, and S.C. Ho. Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chemistry 119(3), 868-873 (2010).

B.A. Arias, and L. Ramón-Laca. Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. Journal of Ethnopharmacology 97(1), 89-95 (2005).

V. Velikova., T. La Mantia., M. Lauteri., M. Michelozzi., I. Nogues, and F. Loreto. The impact of winter flooding with saline water on foliar carbon uptake and the volatile fraction of leaves and fruits of lemon (Citrus× limon) trees. Functional Plant Biology 39(3), 199-213 (2012).

E. M. Ali. Phytochemical composition, antifungal, antiaflatoxigenic, antioxidant, and anticancer activities of Glycyrrhiza glabra L. and Matricaria chamomilla L. essential oils. Journal of medicinal plants research 7(29), 2197-2207 (2013).

Haider, R. Potential Treatment Option For Covid 19 Related Anosmia-Chamomile (Matrricaria Chamomilla) Extract Nasal Irrigation-A Literature Review. International Journal of Medical Science and Diagnosis Research 5(1) (2021).

E.S. Chauhan, and A. Jaya. Chamomile an Ancient Aromatic Plant-A Review. Journal of Ayurveda Medical Sciences 2(4) (2017).

N. T.V. Murthy., V. Agrahari, and H. Chauhan. Polyphenols against Infectious Diseases: Controlled Release Nano-formulations. European Journal of Pharmaceutics and Biopharmaceutics (2021).

L. Karami., M. Modarresi., M. A. Kohanmoo, and F. Zahabi. Polyploidy induction in German chamomile (Matricaria chamomilla L.) by herbicide trifluralin. Nova Biologica Reperta 6(3), 311-319 (2019).

F. Fathi., M. Sadrnia., M. Arjomandzadegan, and H. R. Mohajerani. In vitro and in vivo evaluation of antibacterial and anti-biofilm properties of five ethnomedicinal plants against oral bacteria by TEM. Avicenna Journal of Phytomedicine 11(2), 180-189. (2021).

R. Segal, and L. Pilote. Warfarin interaction with Matricaria chamomilla. Cmaj, 174(9), 1281-1282. (2006).

C. A. Rowe., M. P. Nantz., J.F. Bukowski, and S.S. Percival. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances γδ T cell function: a randomized, double-blind, placebocontrolled study. Journal of the American College of Nutrition 26(5), 445-452.(2007).

H. Vishnoi., R.B. Bodla, and R. Kant. Green Tea (Camellia sinensis) and its antioxidant property: A review. International Journal Pharmaceutical Sciences Research 9(5), 1723-36. (2018).

R. Song., D. Kelman., Johns, K. L, and A. D. Wright. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chemistry 133(3), 707-714.(2012).

I. A. Ross. Camellia sinensis. Medicinal Plants of the World, Volume 3: Chemical Constituents,Traditional and Modern Medicinal Uses. 1-27. (2005).

Z. Bedrood., M. Rameshrad, and H. Hosseinzadeh. Toxicological effects of Camellia sinensis (green tea): A review. Phytotherapy Research 32(7), 1163-1180. (2018).

M. Li., Y. Li., L. Guo., N. Gong., Y. Pang., W. Jiang., T. Xia. Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach. Frontiers in plant science 8, 943. (2017).

A. B. Sharangi., Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)–A review. Food Research International 42(5-6), 529-535. (2009).

L. Zeng., X. Wang., Y. Liao., D. Gu., F. Dong, and Z. Yang. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology 157, 110974. (2019).

M. Taheri, and R. Sariri. Medicinal and pharmaceutical potentialities of tea (Camellia sinensis L.). Pharmacology 1, 487-505. (2011).

J. Balzarini., J. Neyts., D. Schols., M. Hosoya., E.V. Damme., W. Peumans., W, and E. D. Clercq. The mannose-specific plant lectins from

Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral research 18(2), 191-207. (1992).

B.C. Joshi., M. Mukhija, and A. N.Kalia. Pharmacognostical review of Urtica dioica L. International Journal of Green Pharmacy 8(4).


S. Gül., B. Demirci., K.H.C. Başer., H.A. Akpulat, and P. Aksu. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L. Bulletin of environmental contamination and toxicology 88(5) 666-671 (2012).

A. A. H. Said., I. S. E. Otmani., S. Derfoufi, and A. Benmoussa. Highlights on nutritional and therapeutic value of stinging nettle (Urtica

dioica). International Journal of Pharmacy and Pharmaceutical Sciences 7(10), 8-14.(2015).

S. C. Gordts., M. Renders., G. Férir., D. Huskens., E. J. Van Damme., W. Peumans, and D. Schols. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. Journal of Antimicrobial Chemotherapy 70(6), 1674-1685. (2015).

A.V.Anand., B.Balamuralikrishnan., M. Kaviya., K. Bharathi., A. Parithathvi., M.Arun., N. Senthilkumar., S. Velayuthaprabhu., M.

Saradhadevi., N. A. Al-Dhabi, and M. V. Arasu. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules 26(6), p.1775.(2021).

M. R. Flores-Ocelotl., N. H. Rosas-Murrieta., D. A. Moreno., V.Vallejo-Ruiz., J. Reyes-Leyva., F. Domínguez, and G. Santos-López. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC complementary and alternative medicine 18(1), 1-10. (2018).

S. Ayers., Jr. B. Roschek., J. M. Williams, and R.S.Alberte. Pharmacokinetic analysis of antiallergy and anti-inflammation bioactives in a

nettle (Urtica dioica) extract. Online Journal of Pharmacology and Pharmaco Kinetics 5, 6-21. (2008).

L. G. Cuinica, and R.O. Macêdo.Thermoanalytical characterization of plant drug and extract of Urtica dioica L. and kinetic parameters analysis. Journal of Thermal Analysis and Calorimetry 133(1), 591-602. (2018).

F.A. Khan., T. Mahmood., M. Ali., A. Saeed, and A. Maalik. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Natural product research 28(16), 1267-1274. (2014).

H. M. Adamu., O. J. Abayeh., M.O. Agho., A. L. Abdullahi., A. Uba., H. U. Dukku., B. M. Wufem. An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. Journal of ethnopharmacology 99(1), 1-4. (2005).

H. Matsufuji., K. Ishikawa., O. Nunomura., M. Chino, and M. Takeda. Anti‐oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). International Journal of Food Science & Technology 42(12), 1482-1488. (2007).

A. Syeda, and N. A. Fathima. Systemic Review on Phytochemistry and Pharmacological Activities of Capsicum annuum.

J. W. Lampe. Spicing up a vegetarian diet: chemopreventive effects of phytochemicals. The American journal of clinical nutrition

(3).579S-583S. (2003).

N. Gayathri., M. Gopalakrishnan. and T. Sekar. Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. International Journal of Advances in Pharmaceutics, 5(1), 12-20. (2016).

Y. U.K. JiEun., L.E.E. MiYoung., J. A. N. G. HaYoung., K.I.M. SeMi., K. W. O. N. OkKyoung., O. H. SeiRyang, and L.E.E.HyeongKyu. Antiinflammatory and Anti-asthmatic Effects of Capsicum annuum L. on Ovalbumin-induced Lung Inflammation in a Mouse Asthma Model.

A. R. Zimmer., B. Leonardi., D. Miron., E. Schapoval., J.R. de Oliveira, and G. Gosmann, Antioxidant and anti-inflammatory properties

of Capsicum baccatum: from traditional use to scientific approach. Journal of Ethnopharmacology, 139(1), 228-233. (2012).

B. Suárez., A. L. Álvarez., Y. D. García., G. del Barrio, A. P. Lobo and F. Parra. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food chemistry 120(1), 339-342. (2010).

Y. Hamauzu., H. Yasui., T. Inno., C. Kume, and M. Omanyuda. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. Journal of Agricultural and Food Chemistry 53(4), 928-934. (2005).

J. H. J. Martin., S. Crotty., P. Warren, and P.N. Nelson. Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the anti-viral properties of phytoestrogens. Phytochemistry 68(3), 266-274. (2007).

R. R. He., M. Wang., C. Z. Wang., B. T. Chen., C. N. Lu., X.S.Yao., J. X. Chen, and H. Kurihara. Protective effect of apple polyphenols against stressprovoked influenza viral infection in restraint mice. Journal of Agricultural and Food Chemistry 59(8) 3730-3737. (2011).

F. Fratianni., A. Sada., L. Cipriano., A. Masucci, and F. Nazzaro. Biochemical characteristics, antimicrobial and mutagenic activity in organically and conventionally produced Malus domestica, Annurca. The Open Food Science Journal 1(1). (2007).

A. L. Alvarez., S. Melón., K. P. Dalton., I. Nicieza., A. Roque., B. Suárez, and F. Parra. Apple pomace, a by-product from the Asturian cider industry, inhibits herpes simplex virus types 1 and 2 in vitro replication: study of its mechanisms of action. Journal of medicinal food 15(6), 581-587. (2012).

R. K. Woods., E. H. Walters., J. M. Raven., R. Wolfe., P.D. Ireland., F.C. Thien, and M. J. Abramson. Food and nutrient intakes and asthma risk in young adults. The American journal of clinical nutrition 78(3), 414-421. (2003).

G. Graziani., G. D’argenio., C. Tuccillo., C. Loguercio., A. Ritieni., F. Morisco, and Romano, M. Apple polyphenol extracts prevent damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo. Journal of the British Society of Gastroenterology 54(2), 193-200. (2005).

T. Tanaka, and R. Takahashi. Flavonoids and asthma. Nutrients 5(6), 2128-2143. (2013).

S. Rana and S. Bhushan. Apple phenolics as nutraceuticals: assessment, analysis and application. Journal of food science and technology 53(4), 1727-1738. (2016).




How to Cite

Khan, S. M. ., Abdullah, Rehman, K. ., Ijaz, U. ., Ali, S., Jehangir, S., Rehman, A. U. ., Shehzadi, . S., & Ahmad, . Z. (2021). Showcasing the Internationally Prioritized Medicinal Plants to Counteract the Pandemics – Potential Remedies for COVID-19 and other Forms of SARS: Internationally Prioritized Medicinal Plants to Counteract the COVID-19. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(S), 55–67. Retrieved from