Different Chitinolytic Bacillus Species to Minimize Termites Attack on Agroforestry: A Review
Different Chitinolytic Bacillus Species to Minimize Termites
Keywords:
Termites, Chitinase, Bacillus species, Chi gene, AgroforestryAbstract
Termites are known to be the most damaging pest around the world specifically in the tropical region. Pakistan is also suffering from this issue. The chemical pesticides and insecticides are broadly used for the control of insects and pests. These chemicals are diversely affecting the environment and beneficial organisms including humans. We aim to find an effective, harmless, and helpful strategy to control the termite’s attack on plants and agroforestry. In this study, we use the online databases of PUBMED, NCBI, Google Scholar, and PMC for the collection of data. In this scenario, we select the microbiological control method which has economic importance as well. Our focus point is to determine chitinolytic bacterial species that have the potential for microbiological control of termites in agroforestry. In this study, we select four (4) Chitinase-producing Bacillus species which include Brevibacillus laterosporus, Bacillus licheniformis, Paenibacillus, and Bacillus thuringiensis which are known for Chitinase production. A comparative study will be done between these species to find the best termiticidal activity. We also identified the genes responsible for Chitinase production. If we overexpress these genes by using CRISPR Cas-9 technology, we will get the maximum amount of Chitinase enzymes which will be sprayed on plants. Additionally, another possibility is if we transfer these genes to plants’ genome, it will produce Chitinase enzymes for their self-defense against termites.
References
D .G. Debelo, and E.G. Degaga. Study on termite damage to different species of tree seedlings in the Central Rift Valley of Ethiopia. African Journal of Agricultural Research, 12(3), 161-168. (2017).
M. N. Alam, M. A. Alam, M. Abdullah, M. Begum, and T. Ahmed. Effects of insecticides on sugarcane termites in Modhupur Tract. Bangladesh Journal of Agricultural Research, 37(2), 295-299 (2012).
S. Kumar, A. Chandra, and K.C. Pandey. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. Journal of Environmental Biology, 29(5), 641-653 (2008).
Y.S. Rakshiya, M.K. Verma, and S.S. Sindhu. Efficacy of antagonistic soil bacteria in management of subterranean termites (Isoptera). Research in Environment and Life Sciences, 9, 949-955 (2016).
M. Qasim. Termites and microbial biological control strategies. South Asia Journal of Multidisciplinary Studies, 1(6) (2015).
A. Al-Sawalmih. Crystallographic texture of the arthropod cuticle using synchrotron wide angle X-ray diffraction. Von der Fakultat fur Georessourcen und Materialtechnik der Rheinisch-Westfalischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Master of Science, 152 (2007).
T. Stein. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, 56(4), 845-857 (2005).
L. Prasanna, V.G. Eijsink, R. Meadow, and S. Gåseidnes. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Applied microbiology and biotechnology, 97(4), 1601-1611 (2013).
I.B. Slimene, O. Tabbene, D. Gharbi, B. Mnasri, J.M. Schmitter, M.C. Urdaci, and F. Limam. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Applied biochemistry and biotechnology, 175(7), 3494-3506 (2015).
V. Gohel, A. Singh, M. Vimal, P. Ashwini, and H.S. Chhatpar. Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5(2), 54-72. 11 (2006).
B. Henrissat. Classification of chitinases modules. Exs, 87, 137-156 (1999).
P.A. Felse, T. Panda. Production of microbial chitinases: a revisit. Bioprocess Engineering 23:127–134 (2000).
R.S. Patil, V. Ghormade, and M.V. Deshpande. Chitinolytic enzymes: an exploration. Enzyme and microbial technology, 26(7), 473-483 (2000).
R. Cohen-Kupiec, and I. Chet. The molecular biology of chitin digestion. Current opinion in biotechnology, 9(3), 270-277 (1998).
E. Saks, and U. Jankiewicz. Chitinolytic activity of bacteria. Postepy biochemii, 56(4), 427-434 (2010).
N. Dahiya, R. Tewari, and G.S. Hoondal. Biotechnological aspects of chitinolytic enzymes: a review. Applied microbiology and biotechnology, 71(6), 773-782 (2006).
L. Duo-Chuan. Review of fungal chitinases. Mycopathologia, 161(6), 345-360 (2006).
K. Suzuki, N. SuGAwARA, M. Suzuki, T. Uchiyama, F., Katouno, N. Nikaidou, and T. Watanabe. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Bioscience, biotechnology, and biochemistry, 66(5), 1075-1083 (2002).
S.L. Wang, and W.T. Chang. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Applied and environmental microbiology, 63(2), 380-386 (1997).
G.J. Joo. Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnology letters, 27(19), 1483-1486 (2005).
A. Kavitha, and M. Vijayalakshmi. Partial purification and antifungal profile of chitinase produced by Streptomyces tendae TK-VL_333. Annals of microbiology, 61(3), 597-603 (2011).
D. Koga, A. Isogai, S. Sakuda, S. Matsumoto, A. Suzuki, S. Kimura, and A. Ide. Specific inhibition of Bombyx mori chitinase by allosamidin. Agricultural and biological chemistry, 51(2), 471-476 (1987).
E.J. De Oliveira, L. Rabinovitch, R.G. Monnerat, L.K.J. Passos, and V. Zahner. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied Environmental Microbioogy., 70(11), 6657-6664 (2004).
C.A. Laubach. Spore-bearing bacteria in water. Journal of bacteriology, 1(5), 505 (1916).
M.Y. Suslova, I.A. Lipko, E.V. Mamaeva, and V.V. Parfenova. Diversity of cultivable bacteria isolated from the water column and bottom sediments of the Kara Sea shelf. Microbiology, 81(4), 484-491 (2012).
G.F. White. The cause of European foulbrood. US Dep. Agric. The Cause of European Foul Brood 157, 1-15 (1912).
D.K. Roy, G.P. Singh, A. Sahay, D.N. Sahay, N. Suryanarayana. Leaf surface microflora for tasar crop improvement. Indian Silk, 45, 19-21 (2006).
M.F. Fangio, S.I. Roura, and R. Fritz. Isolation and identification of Bacillus spp. and related genera from different starchy foods. Journal of food science, 75(4), M218-M221 (2010).
C. Yu, G. Hongwei, Z.Yanming, D. Mingjun, W. Zhenxing, Z. Laihua, D. Qing, X. Biao, L. Chengzhu, Y. Zhiqin, and X. Xizhi. Analysis of the bacterial diversity existing on animal hide and wool: Development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates. Journal of AOAC International, 95(6), 1750-1754 (2012).
L. Ruiu, A. Satta, and I. Floris. Emerging entomopathogenic bacteria for insect pest management. Bull Insectol, 66(2), 181-186 (2013).
M. Djukic, A. Poehlein, A. Thürmer, and R. Daniel. Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates (2011).
S., Vikas, P.K. Singh, M. Samriti, R. Manish, K. Suresh, and P.B. Patil. Genome sequence of Brevibacillus laterosporus strain GI-9. Journal of Bacteriology, 194(5) (2012).
M.V. Orlova, T.A. Smirnova, L.A. Ganushkina, V.Y. Yacubovich, and R.R. Azizbekyan. Insecticidal activity of Bacillus laterosporus. Applied Environmental Microbiology, 64(7), 2723-2725 (1998).
X. Huang, B. Tian, Q. Niu, J. Yang, L. Zhang, and K. Zhang. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Research in Microbiology, 156(5-6), 719-727 (2005).
G.W. Warren. Vegetative insecticidal proteins: Novel proteins for control of corn pests. In Advances in Insect Control: The Role of Transgenic Plants; Carozzi, N.B., Koziel, M.G., Eds.; Taylor & Francis: London, UK; 109-121 (1997).
H.E. Schnepf, K.E Narva, B.A. Stockhoff, S.F. Lee, M. Walz, and B. Sturgis. Mycogen Corp, Pesticidal toxins and genes from Bacillus laterosporus strains. U.S. Patent 6,605,701 (2003).
N. Logan, P. De Vos. Bacillus. In: P De VosGM GarrityD JonesNR KriegW Ludwig. Bergey’s Manual of Systematic Bacteriology. Heidelberg: Springer. 21-128 (2009).
E.H. Madslien., H.T. Rønning, T. Lindbäck, B. Hassel, M.A. Andersson, and P.E. Granum. Lichenysin is produced by most B acillus licheniformis strains. Journal of applied microbiology, 115(4), 1068-1080 (2013).
J.M. Whitaker, D.A. Cristol, and M.H. Forsyth. Prevalence and genetic diversity of Bacillus licheniformis in avian plumage. Journal of Field Ornithology, 76(3), 264-270 (2005).
M. Schallmey, A. Singh, and O.P. Ward. Developments in the use of Bacillus species for industrial production. Canadian journal of microbiology, 50(1), 1-17 (2004).
B. Voigt, H. Antelmann, D. Albrecht, A. Ehrenreich, K.H. Maurer, S. Evers, G. Gottschalk, J.M. Van Dijl, T. Schweder, and M. Hecker. Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. Journal of molecular microbiology and biotechnology, 16(1-2), 53-68 (2009).
B. Voigt, T. Schweder, M.J. Sibbald, D. Albrecht, A. Ehrenreich, J. Bernhardt, J. Feesche, K.H. Maurer, G. Gottschalk, J.M. van Dijl, and M. Hecker. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics, 6(1), 268-281 (2006).
C. Alexopoulos, I.E. Georgoulakis, A. Tzivara, S.K. Kritas, A. Siochu, and S.C. Kyriakis. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. Journal of animal physiology and animal nutrition, 88(11‐12), 381-392 (2004).
I.B. Slimene, O. Tabbene, D. Gharbi, B. Mnasri, J.M. Schmitter, M.C. Urdaci, and F. Limam. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Applied biochemistry and biotechnology, 175(7), 3494-3506 (2015).
E.Z. Gomaa. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. The Journal of Microbiology, 50(1), 103-111 (2012).
H. Höfte, and H.R. Whiteley. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology and Molecular Biology Reviews, 53(2), 242-255 (1989).
F. Driss, M. Kallassy‐Awad, N. Zouari, and S. Jaoua. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. Journal of applied microbiology, 99(4), 945-953 (2005).
D. Liu, J. Cai, C.C Xie, C. Liu, and Y.H Chen. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme and Microbial Technology, 46(3-4), 252-256 (2010).
E. N. Grady, J. MacDonald, L. Liu, A. Richman, & Z. C. Yuan. Current knowledge and perspectives of Paenibacillus: a review. Microbial cell factories, 15(1), 203 (2016).
A. K. Singh, A. Singh, and P. Joshi. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. International Journal of Pest Management, 62(3), 222-227 (2016).
A.K. Singh, I. Ghodke, and H.S. Chhatpar. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. Journal of environmental management, 91(2), 358-362 (2009).
PE. Yuli, MT. Suhartono, Y. Rukayadi, JK. Hwang, and YR. Pyun. Characteristics of thermostable chitinase enzymes from the Indonesian Bacillus sp 13.26. Enzyme Microbial Technology 35:147–153 (2004).
M. Khiyami, I. Masmali. Characteristics of thermostable chitinase enzymes of Bacillus licheniformis isolated from Red Palm Weavil Gut. Australian Journal of Basic and Applied Sciences 2(4):943–948 (2008).
WT. Chang, M. Chen, SL. Wang. An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World Journal of Microbiology and Biotechnology 26:945–950 (2010).
S. Li, ZA. Zhao, M. Li, ZR. Gu, C. Bai, WD. Huang. Purifi cation and characterization of a novel chitinase from Bacillus brevis. Acta Biochemicaet Biophysica Sinica 34(6):690–696 (2002).
J.Y. Roh, J.Y. Choi, M.S. Li, B.R. Jin, and Y.H. Je. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of microbiology and biotechnology, 17(4), 547 (2007).
Downloads
Published
How to Cite
Issue
Section
License
Creative Commons Attribution (CC BY). Allows users to: copy the article and distribute; abstracts, create extracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation); include in a collective work (such as an anthology); and text or data mine the article. These uses are permitted even for commercial purposes, provided the user: includes a link to the license; indicates if changes were made; gives appropriate credit to the author(s) (with a link to the formal publication through the relevant DOI); and does not represent the author(s) as endorsing the adaptation of the article or modify the article in such a way as to damage the authors' honor or reputation.