Yield Decline and Resistance Development in Sucking Pests of Cotton in the Context of Unwise Spraying Techniques

Authors

  • Saleem Ashraf Institute of Agricultural Extension Education and Rural Development, University of Agriculture Faisalabad, Pakistan
  • Khalid Mahmood Ch. Institute of Agricultural Extension Education and Rural Development, University of Agriculture Faisalabad, Pakistan
  • Ijaz Ashraf Institute of Agricultural Extension Education and Rural Development, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.53560/PPASB(61-2)826

Keywords:

Sucking Pests, Resistance, Susceptibility, Bollworms, Ecosystem, Biopesticides

Abstract

Over 100 countries are producing cotton, which provides raw materials to the industry and employment opportunities for the people. Limiting the cost of production, conserving the ecosystem, and improving the cotton yield are key ingredients of sustainable cotton production. The inception of transgenic cotton (Bt varieties) improved yields, curtailed pesticide uses and promoted environmental safety. Over the years, Bt varieties of cotton have lost resistance against bollworms, and yield is declining. Unwise application of pesticides is associated with the development of resistance to sucking pests of cotton. The present review was conducted to undertake (i) the background of cotton production in the world, (ii) varietal development in cotton, (iii) problems (increasing susceptibility) in Bt varieties (iv) reliance on pesticides, and (v) myths of pesticides applications followed by pesticides knowledge among farmers. The cotton varieties which are resistant against sucking pests should be introduced. In addition, the promotion of biopesticides and fostering the adoption of Integrated Pest Management Approaches could be effective for the management of sucking pests. Farmers must be trained in site-specific and accurate spraying techniques by agricultural extension and plant protection departments. Accurate spraying techniques will not only improve pest control but also help in curtailing the environmental pollution being caused by the excessive use of pesticides in cotton.

References

M.A. Khan, A. Wahid, M. Ahmad, M.T. Tahir, M. Ahmed, S. Ahmad, and M. Hasanuzzaman. World cotton production and consumption: An overview. In: Cotton production and uses. S. Ahmad, and M. Hasanuzzaman (Eds). Springer, Singapore pp. 1-7 (2020).

L. Meyer, and T. Dew. Cotton and wool outlook: December 2022. US Department of Agriculture, Economic Research Service (2022).

https://www.ers.usda.gov/webdocs/outlooks/105429/cws-22k.pdf?v=5324.1

F. Shuli, A.H. Jarwar, X. Wang, L. Wang, and Q. Ma. Overview of the cotton in Pakistan and its future prospects. Pakistan Journal of Agricultural Research 31: 396-407 (2018).

OECD. OECD-FAO Agricultural Outlook 2022-2031. Food and Agriculture Organization (FAO) of the United Nations (2022).

https://www.oecd-ilibrary.org/docserver/f1b0b29c-en.pdf?expires=1722581785&id=id&accname=guest&checksum=5A136EEC5F26156B8A781223D0691956

M.Y. Ali, S. Saleem, M.N. Irshad, A. Mehmood, M. Nisar, and I. Ali. Comparative study of different irrigation system for cotton crop in district Rahim Yar Khan, Punjab, Pakistan. International Journal of Agricultural Extension 8: 131-138 (2020).

G. Brookes. Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crops and Food 13: 262-289 (2022).

S. Ahmad, S. Akhtar, S. Bhatti, S. Imran, M.S. Akhtar, G. Mustafa, A.R. Aslam, C. Liu, S. Noreen, and M.A. Khan. Assessment of the impact of climate change on the productivity of cotton: empirical evidence from cotton zone, southern Punjab, Pakistan. International Journal of Agricultural Extension 9:143-162 (2021).

Government of Pakistan. Economic Survey of Pakistan, Finance Division Islamabad, Pakistan (2018).

https://www.finance.gov.pk/survey/chapters_19/Economic_Survey_2018_19.pdf

A.W. Rana, A. Ejaz, and S.H. Shikoh. Cotton Crop: A Situational Analysis of Pakistan. PACE Working Paper. Pakistan Agricultural Capacity Enhancement Program (PACE), International Food Policy Research Institute – Pakistan (IFPRI) (2020).

https://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/133702/filename/133913.pdf

Government of Pakistan. Economic Survey of Pakistan, Finance Divison Islamabad, Pakistan (2009).

https://www.finance.gov.pk/survey/chapter_10/02_Agriculture.pdf

ISAAA. Global status of commercialized biotech/GM crops: Brief No. 54. USA: ISAAA NY; (2018).

https://www.isaaa.org/resources/publications/briefs/54/

USDA-FAS. Cotton outlook 2019.

https://www.usda.gov/sites/default/files/documents/2019-aof-cotton-outlook.pdf

G.H. Abro, T.S. Syed, G.M. Tunio, and M.A. Khuhro. Performance of Transgenic Bt Cotton Against Insect Pest Infestation. Biotechnology (Faisalabad) 3: 75-81 (2003).

PACRA. Pesticides. Sector study by Pakistan Credit Rating Agency (2023).

https://www.pacra.com/index.php/view/storage/app/Pesticides%20-%20PACRA%20Research%20-%20Feb%272023_1677423830.pdf

U. Shahbaz, X. Yu, and M.A. Naeem. Role of Pakistan government institutions in adoption of Bt cotton and benefits associated with adoption. Asian Journal of Agricultural Extension, Economics and Sociology 29: 1-11 (2019).

M. Luqman, G.M. Shah, M.A.S. Raza, N. Shahid, and M. Hassan. Performance of Bt cotton varieties under Khanewal conditions. Bulgarian Journal of Agricultural Science 21: 105-108 (2015)

C. James. Global Review of Commercialized Transgenic Crops: 2001 Feature: Bt Cotton. The International Service for the Acquisition of Agri-biotech Applications (2002).

https://www.isaaa.org/resources/publications/briefs/26/download/isaaa-brief-26-2002.pdf

C. James. Global Status of Commercialized Biotech/GM Crops: The International Service for the Acquisition of Agri-biotech Applications Brief No. 39 (2008).

https://www.isaaa.org/resources/publications/briefs/39/executivesummary/pdf/Brief%2039%20-%20Executive%20Summary%20-%20English.pdf

R. Ahsan, and Z. Altaf. Development, Adoption and performance of Bt cotton. Pakistan Journal of Agricultural Research 22: 73-85 (2009).

A. Razzaq, M.M. Zafar, A. Ali, A. Hafeez, W. Batool, Y. Shi, W. Gong, and Y. Yuan. Cotton germplasm improvement and progress in Pakistan. Journal of Cotton Research 4: 1-14 (2021).

M. Arshad, R.R. Khan, A. Aslam, and W. Akbar. Transgenic Bt cotton: Effects on target and non-target insect diversity. In: Past, Present and Future Trends in Cotton Breeding, M.U. Rahman and Y. Zafar (Eds.). IntechOpen pp. 155-174 (2018).

M. Qaim, A. Subramanian, G. Naik, and D. Zilberman. Adoption of Bt Cotton and Impact Variability: Insights from India. Review of Agricultural Economics 28: 48-58 (2006).

R. Bennett, U. Kambhampati, S. Morse, and Y. Ismael. Farm-Level Economic Performance of Genetically Modified Cotton in Maharashtra, India. Review of Agricultural Economics 28(1): 59-71 (2006).

A. Subramanian, and M. Qaim. The Impact of Bt Cotton on Poor Households in Rural India. Journal of Development Studies 46: 295-311 (2010).

S. Kouser, and M. Qaim. Impact of Bt cotton on pesticide poisoning in smallholder agriculture: A panel data analysis. Ecological Economics 70: 2105-2113 (2011).

F.J. Perlak, M. Oppenhuizen, K. Gustafson, R. Voth, S. Sivasupramaniam, D. Heering, B. Carey, R.A. Ihrig, and J.K. Roberts. Development and commercial use of Bollgard cotton in the USA - early promises versus today's reality. The Plant Journal 27: 489-501 (2001).

G. Traxler, S. Godoy-Avila, J. Falck-Zepeda, and J. de Jesús Espinoza-Arellano. Transgenic Cotton in Mexico: A Case Study of the Comarca Lagunera. In: The Economic and Environmental Impacts of Agbiotech, N. Kalaitzandonakes (ed.). Springer Boston, MA, US pp: 183-202 (2003).

Y. Ismael, R. Bennett, and S. Morse. Farm-Level Economic Impact of Biotechnology: Smallholder Bt Cotton Farmers in South Africa. Outlook on Agriculture 31: 107-111 (2002).

C.E. Pray, J. Huang, R. Hu, and S. Rozelle. Five years of Bt cotton in China - the benefits continue. The Plant Journal 31: 423-430 (2002).

M. Qaim, and D. Zilberman. Yield Effects of Genetically Modified Crops in Developing Countries. Science 299: 900-902 (2003).

V.P. Gandhi, and N. Namboodiri. The adoption and economics of Bt cotton in India: Preliminary results from a study. Indian Institute of Management Ahmedabad, India W.P. No. 2006-09-04 (2006).

https://www.iima.ac.in/sites/default/files/rnpfiles/2006-09-04_vgandhi.pdf

A. Ali, and A. Abdulai. The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan. Journal of Agricultural Economics 61: 175-192 (2010).

R. Mulwa, D. Wafula, M. Karembu, and M. Waithaka. Estimating the potential economic benefits of adopting Bt cotton in selected COMESA countries. AgBioForum 16: 14-26 (2013).

J.L. Hofs, M. Fok, and M. Vaissayre. Impact of Bt cotton adoption on pesticide use by smallholders: A 2-year survey in Makhatini Flats (South Africa). Crop Protection 25: 984-988 (2006).

G. Brookes, and P. Barfoot. Environmental impacts of genetically modified (GM) crop use 1996–2018: impacts on pesticide use and carbon emissions. Crops and Food 11: 4215-41 (2020).

H.C. Sharma, and G. Pampapathy. Influence of transgenic cotton on the relative abundance and damage by target and non-target insect pests under different protection regimes in India. Crop Protection 25: 800-813 (2006).

U. Dutt. Mealybug takes away glory of Bt cotton (2007).

http://www.ens-newswire.com/ens/aug2007/2007-08-24-insdutt.asp.

S. Kaviraju, D. Kumar, N. Singh, and S. Kumar. A Comparative Study on Socio Economic Impact of Bt cotton and Non-Bt cotton Farm Households in Warangal District of Telangana State. International Journal of Current Microbiology and Applied Sciences 7: 1561-1567 (2018).

B.B. Fand, V.S. Nagrare, S.P. Gawande, D.T. Nagrale, B.V. Naikwadi, V. Deshmukh, N. Gokte-Narkhedkar and V.N. Waghmare. Widespread infestation of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechidae) on Bt cotton in Central India: a new threat and concerns for cotton production. Phytoparasitica 47: 313-325 (2019).

K. Najork, S. Gadela, P. Nadiminti, S. Gosikonda, R. Reddy, E. Haribabu, and M. Keck. The Return of Pink Bollworm in India’s Bt Cotton Fields: Livelihood Vulnerabilities of Farming Households in Karimnagar District. Progress in Development Studies 21: 68-85 (2021).

H. Karar, M.J. Arif, M. Arshad, A. Ali, and Q. Abbas. Resistance/susceptibility of different mango cultivars against mango mealybug (Drosicha mangiferae G.). Pakistan Journal of Agricultural Sciences 52(2): 367-377 (2015).

M.M. Rabelo, J.M.L. Matos, S.M. Orozco-Restrepo, S.V. Paula-Moraes, and E.J.G. Pereira. Like Parents, Like Offspring? Susceptibility to Bt Toxins, Development on Dual-Gene Bt Cotton, and Parental Effect of Cry1Ac on a Nontarget Lepidopteran Pest. Journal of Economic Entomology 113: 1234-1242 (2020).

H. Zhang, W. Yin, J. Zhao, L. Jin, Y. Yang, S. Wu, B.E. Tabashnik, and Y. Wu. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS One 6: e22874 (2011).

B.E. Tabashnik, K. Wu, and Y. Wu. Early detection of field-evolved resistance to Bt cotton in China: Cotton bollworm and pink bollworm. Journal of Invertebrate Pathology 110: 301-306 (2012).

K. Najork, J. Friedrich, and M. Keck. Bt cotton, pink bollworm, and the political economy of sociobiological obsolescence: insights from Telangana, India. Agriculture and Human Values 39: 1007-1026 (2022).

I.A. Rajput, A. M. Lodhi, T.S. Syed, G.H. Abro, and I. Khatri. Comparative Biology of Pink Bollworm, Pectinophora gossypiella Saund. on Bt. and Non-Bt. Cotton. Biological Sciences - PJSIR 62: 116-121 (2019).

J. Gore, B. Leonard, G. Church, and D. Cook. Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. Journal of Economic Entomology 95: 763-769 (2002).

A.P. Gutierrez, L. Ponti, H.R. Herren, J. Baumgärtner, and P.E. Kenmore. Deconstructing Indian cotton: weather, yields, and suicides. Environmental Sciences Europe 27(12): 1-17 (2015).

L. Lu, J. Luo, S. Zhang, Q. Yu, L. Ma, X. Liu, C. Wang, X. Ma, Y. Ma, and J. Cui. Efficiency of cotton bollworm (Helicoverpa armigera Hübner) control of different Bt cotton varieties in North China. Journal of Cotton Research 1: Article No. 4 (2018).

C.N.K. Rajapakse, and G.H. Walter. Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arthropod-Plant Interactions 1: 17-26 (2007).

M.Ye, J. Beach, J.W. Martin, and A. Senthilselvan. Occupational pesticide exposures and respiratory health. International Journal of Environmental Research and Public Health 10: 6442-6471 (2013).

Y. Carrière, J.A. Fabrick, and B.E. Tabashnik. Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops? Trends in Biotechnology 34: 291-302 (2016).

D. Singh, J. Gill, R. Gumber, R. Singh, and S. Singh. Yield and fibre quality associated with cotton leaf curl disease of Bt-cotton in Punjab. Journal of Environmental Biology 34: 113-116 (2013).

M.U. Rahman, A.Q. Khan, Z. Rahmat, M.A. Iqbal, and Y. Zafar. Genetics and Genomics of Cotton Leaf Curl Disease, Its Viral Causal Agents and Whitefly Vector: A Way Forward to Sustain Cotton Fiber Security. Frontiers Plant Sciences 8: 1157 (2017).

M.N. Sattar, A. Kvarnheden, M. Saeed, and R.W. Briddon. Cotton leaf curl disease – an emerging threat to cotton production worldwide. Journal of General Virology 94: 695-710 (2013).

H.M. Nateshan, V. Muniyappa, M.M. Swanson, and B.D. Harrison. Host range, vector relations and serological relationships of cotton leaf curl virus from southern India. Annals of Applied Biology 128: 233-244 (1996).

R.C. Reddy, V. Muniyappa, J. Colvin, and S. Seal. A new begomovirus isolated from Gossypiumbarbadense in southern India. Plant Pathology 54(4): 570-570 (2005)

T. Hussain, and T. Mahmood. A note on leaf curl disease of cotton. The Pakistan Cotton 32: 248-251 (1988).

T. Hussain, M. Tahir, and T. Mahmood. Cotton leaf curl virus. Pakistan Journal of Phytopathology 3: 57-61 (1991).

K.K. Biswas, U.K. Bhattacharyya, S. Palchoudhury, N. Balram, A. Kumar, R. Arora, S.K. Sain, P. Kumar, R.K. Khetarpal, A. Sanyal, and P.K. Mandal. Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS One 15: e0231886 (2020).

B. Nawaz, M. Naeem, T.A. Malik, G. Muhae-Ud-Din, Q. Ahmad, and S. Sattar. A Review about Cotton Leaf Curl Viral Disease and Its Control Strategies in Pakistan. International Journal of Innovative Approaches in Agricultural Research 3: 132-147 (2019).

L. Amrao, S. Akhter, M.N. Tahir, I. Amin, R.W. Briddon and S. Mansoor. Cotton leaf curl disease in Sindh province of Pakistan is associated with recombinant begomovirus components. Virus Research 153: 161-165 (2010).

M. Ahmad, M.I. Arif, Z. Ahmad, and I. Denholm. Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Management Science 58: 203-208 (2002).

W. Nazeer, S. Ahmad, K. Mahmood, A. Tipu, A. Mahmood, and B. Zhou. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum). Genetics and Molecular Research 13: 1133-1143 (2014).

M.Ahmad, and G.E. Battese. A Probit Analysis of the Incidence of the Cotton Leaf Curl Virus in Punjab, Pakistan. The Pakistan Development Review 36: 155-169 (1997).

R. Peshin, B.S. Hansra, K. Singh, R. Nanda, R. Sharma, S. Yangsdon and R. Kumar. Long-term impact of Bt cotton: An empirical evidence from North India. Journal of Cleaner Production 312: 127575 (2021).

J.L. Hofs, A.S. Schoeman, and J. Pierre. Diversity and abundance of flower-visiting insects in Bt and non-Bt cotton fields of Maputaland (KwaZulu Natal Province, South Africa). International Journal of Tropical Insect Science 28: 211 (2008).

X. Men, F. Ge, C.A. Edwards, and E.N. Yardim. The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Protection 24: 319-324 (2005).

N.C. Naveen, R. Chaubey, D. Kumar, K.B. Rebijith, R. Rajagopal, B. Subrahmanyam, and S. Subramanian. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports 7: 4063 (2017).

C. Sun, J. Xu, Q. Zhang, H. Feng, F. Wang, and R. Song. 2022. Effect of transgenic Bt cotton on population of cotton pests and their natural enemies in Xinjiang. Chinese Journal of Biological Control 18: 106-110 (2022).

M. Aslam, M. Razaq, N.A. Saeed, and F. Ahmad. Comparative resistance of different cotton varieties against bollworm complex. International Journal of Agriculture and Biology 6: 39-41 (2004).

G. Murtaza, M. Ramzan, U. Naeem-Ullah, M.A. Qayyum, A. Nawaz, U.R. Azmi, and M. Ali. Population Dynamics of Cotton Jassid (Amrassica Biguttula) in Relation to Weather Parameters in Multan. Acta Scientific Agriculture 3: 212-215 (2019).

S.N. Harde, A.G. Mitkari, S.V. Sonune, and L.V. Shinde. Seasonal Incidence of Major Sucking Insect Pest in Bt Cotton and Its Correlation with Weather Factors in Jalna District (MS), India. International Journal of Agriculture & Environmental Science 5: 59-65 (2018).

M.R. Shahid, J. Farooq, A. Mahmood, F. Ilahi, M. Riaz, A. Shakeel, I.V. Petrescu-Mag, and A. Farooq. Seasonal occurrence of sucking insect pest in cotton ecosystem of Punjab, Pakistan. Advances in Agriculture and Botanics 4: 26-30 (2012).

M.M. Zafar, A. Razzaq, M.A. Farooq, A. Rehman, H. Firdous, A. Shakeel, H. Mo, and M. Ren. Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing). Journal of Cotton Research 3: 33 (2020).

F. Huang, D.A. Andow, and L.L. Buschman. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomologia Experimentalis et Applicata 140: 1-16 (2011).

Y. Chen, Y. Li, Y. Chen, E.H.M.A. Abidallha, D. Hu, Y. Li, X. Zhang, and D. Chen. Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Field Crops Research 205: 14-22 (2017).

Y. Chen, Y. Li, M. Zhou, Q. Rui, Z. Cai, X. Zhang, Y. Chen, and D. Chen. Nitrogen (N) Application Gradually Enhances Boll Development and Decreases Boll Shell Insecticidal Protein Content in N-Deficient Cotton. Frontiers Plant Sciences 9: 51-51 (2018).

L. Wang, Y. Ma, P. Wan, K. Liu, Y. Xiao, J. Wang, S. Cong, D. Xu, K. Wu, J.A. Fabrick, X. Li, and B.E. Tabashnik. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochemistry and Molecular Biology 94: 28-35 (2018).

C. Luo, C.M. Jones, G. Devine, F. Zhang, I. Denholm, and K. Gorman. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection 29: 429-434 (2010).

A. Sethi, and V. K. Dilawari. Spectrum of Insecticide Resistance in Whitefly from Upland Cotton in Indian Subcontinent. Journal of Entomology 5: 138-147 (2008).

T.C. Sparks, and R. Nauen. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology 121: 122-128 (2015).

C. Erdogan, G. D. Moores, M.O. Gurkan, K.J. Gorman, and I. Denholm. Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Protection 27: 600-605 (2008).

E. Fernández, C. Grávalos, P.J. Haro, D. Cifuentes, and P. Bielza. Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Management Science 65: 885-891 (2009).

M.Z. Khalid, S. Ahmed, I. Al-Ashkar, A. El Sabagh, L. Liu, and G. Zhong. Evaluation of Resistance Development in Bemisia tabaci Genn. (Homoptera: Aleyrodidae) in Cotton against Different Insecticides. Insects 12: 996 (2021).

M. Khan, H. Mahmood, and C. Damalas. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection 67: 184-190 (2015)

Government of Pakistan, Economic Survey of Pakistan, Finance Division Islamabad, Pakistan (2006).

https://www.finance.gov.pk/survey/chapters/02-Agriculture.PDF

S. Rashid, W. Rashid, R.X.S. Tulcan, and H. Huang. Use, exposure, and environmental impacts of pesticides in Pakistan: a critical review. Environmental Science and Pollution Research 29(29): 43675-43689 (2022).

M.I. Tariq. Leaching and degradation of cotton pesticides on different soil series of cotton growing areas of Punjab, Pakistan in Lysimeters. Ph. D. Thesis, University of the Punjab, Lahore, Pakistan (2005).

M.I. Tariq, S. Afzal, I. Hussain, and N. Sultana. Pesticides exposure in Pakistan: a review. Environment International 33: 1107-1122 (2007).

M.I. Tariq, S. Afzal, and I. Hussain. Pesticides in shallow groundwater of Bahawalnagar, Muzafargarh, D.G. Khan and Rajan Pur districts of Punjab, Pakistan. Environment International 30: 471-479 (2004).

M. Ahmad, I. Arif, and M. Ahmad. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection 26: 809-817 (2007).

A. Tahir, F. Khan, and A. Khan. Effect of constant flow valves on performance of pesticide sprayers. International Journal of Agriculture and Biology 5: 49-52 (2003).

C.A. Damalas, and I.G. Eleftherohorinos. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8: 1402-1419 (2011).

D. Nuyttens, K. Baetens, M. De Schampheleire, and B. Sonck. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering 97: 333-345 (2007).

J. Ferguson, A. Hewitt, and C. O'Donnell. Pressure, droplet size classification, and nozzle arrangement effect on coverage and droplet number density using air-inclusion dual fan nozzles for pesticide applications. Crop Protection 89: 231-238 (2016).

D. Mada, and A. Medugu. Study on environmental impact of pesticides application with agricultural sprayers in southern Adamawa state- Nigeria. IOSR Journal of Engineering 4: 05-11 (2014)

J. Wu, L. Ge, F. Liu, Q. Song, and D. Stanley. Pesticide-Induced Planthopper Population Resurgence in Rice Cropping Systems. Annual Review of Entomology 65: 409-429 (2020)

M.D. Gogi, A.H. Syed, B. Atta, M. Sufyan, M.J. Arif, M. Arshad, and O.E. Liburd. Efficacy of biorational insecticides against Bemisia tabaci (Genn.) and their selectivity for its parasitoid Encarsia formosa Gahan on Bt cotton. Scientific Reports 11(1): 2101-2101 (2021).

A. Nadeem, H.M. Tahir, A.A. Khan, A. Idrees, M.F. Shahzad, Z.A. Qadir, and J. Li. Response of natural enemies toward selective chemical insecticides; used for the integrated management of insect pests in cotton field plots. Agriculture 12(9): 1341-1341 (2022).

S. Ejaz, W. Akram, C.W. Lim, J.J. Lee, and I. Hussain. Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Experimental Oncology 26: 98-105 (2004).

D. Shepard, M. Agnew, M. Fidanza, J. Kaminski, and L. Dant. Selecting nozzles for fungicide spray applications. Golf Course Management 74: 83-88 (2006).

R. Klein, L. Schulze, and C. Ogg. Factors affecting spray drift of pesticides. Crops Soils 41: 19-23 (2008).

M.S. Sharifzadeh, G. Abdollahzadeh, C.A. Damalas, and R. Rezaei. Farmers’ criteria for pesticide selection and use in the pest control process. Agriculture 8: 24 (2018).

T.J. Peters, A. Thostenson, J.F. Nowatzki, V.L. Hofman and J.A. Wilson. Selecting spray nozzles to reduce particle drift. NDSU Extension Service, North Dakota State University (2017).

https://www.sbreb.org/wp-content/uploads/2018/05/Selecting-Spray-Nozzles.pdf.

C.N. Kesavachandran, M. Fareed, M.K. Pathak, V. Bihari, N. Mathur, and A.K. Srivastava. Adverse Health Effects of Pesticides in Agrarian Populations of Developing Countries. Reviews of Environmental Contamination and Toxicology 200: 33-52 (2009).

R. Chen, J. Huang, and F. Qiao. Farmers' knowledge on pest management and pesticide use in Bt cotton production in China. China Economic Review 27: 15-24 (2013).

B.T. Mengistie, A.P. Mol, and P. Oosterveer. Pesticide use practices among smallholder vegetable farmers in Ethiopian Central Rift Valley. Environment, Development and Sustainability 19: 301-324 (2017).

M.S. Allahyari, C.A. Damalas, and M. Ebadattalab. Farmers’ technical knowledge about integrated pest management (IPM) in olive production. Agriculture 7(12): 101 (2017).

C.E. Togbé, R. Haagsma, A.K. Aoudji, and S.D. Vodouhê. Effect of participatory research on farmers' knowledge and practice of ipm: the case of cotton in Benin. The Journal of Agricultural Education and Extension 21(5): 421-440 (2015).

E.E. Lekei, A.V. Ngowi, and L. London. Farmers' knowledge, practices and injuries associated with pesticide exposure in rural farming villages in Tanzania. BMC Public Health 14: 1-13 (2014).

A.V.F. Ngowi, T.J. Mbise, A.S. Ijani, L. London, and O.C. Ajayi. Smallholder vegetable farmers in Northern Tanzania: Pesticides use practices, perceptions, cost and health effects. Crop Protection 26: 1617-1624 (2007).

E. Karamidehkordi, and A. Hashemi. Farmers’ knowledge of IPM: A case study in the Zanjan Province in Iran. In: Innovation and Sustainable Development in Agriculture and Food Symposium, ISDA, Montpellier, France. 10p. ffhal-00510402 (2010).

https://sid.ir/paper/601554/en

M.Mubushar, F.O. Aldosari, M.B. Baig, B.M. Alotaibi, and A.Q. Khan. Assessment of farmers on their knowledge regarding pesticide usage and biosafety. Saudi Journal of Biological Sciences 26: 1903-1910 (2019).

M.A. Khan, and M. Iqbal. Sustainable Cotton Production through Skill Development among Farmers: Evidence from Khairpur District of Sindh, Pakistan. The Pakistan Development Review 44: 695-716 (2005).

F. Rehman, S. Muhammad, I. Ashraf, K.M. Ch, and T. Ruby. Effect of farmers’ socioeconomic characteristics on access to agricultural information: Empirical evidence from Pakistan. The Journal of Animal and Plant Sciences 23(1): 324-329 (2013).

S. Ashraf, G.A. Khan, S. Ali, S. Ahmed, and M. Iftikhar. Perceived effectiveness of information sources regarding improved practices among citrus growers in Punjab, Pakistan. Pakistan Journal of Agricultural Sciences 52: 861-866 (2015).

O.Akinnagbe, C. Attamah, and E. Igbokwe. Sources of Information on Climate Change among Crop Farmers in Enugu North Agricultural Zone, Nigeria. International Journal of Research in Agriculture and Forestry 2(11): 27-33 (2015).

A. Abdullah. Analysis of mealybug incidence on the cotton crop using ADSS-OLAP (Online Analytical Processing) tool. Computers and Electronics in Agriculture 69: 59-72 (2009)

G.H. Mallah, A.K. Keerio, A.R. Soomro, and A.W. Soomro. Population dynamics of predatory insects and biological control of cotton pests in Pakistan. Journal of Biological Sciences 1: 245-248 (2001).

G.Abbas, M.J. Arif, M. Ashfaq, M. Aslam, and S. Saeed. Host plants, distribution and overwintering of cotton mealybug (Phenacoccus Solenopsis; Hemiptera: Pseudococcidae). International Journal of Agriculture and Biology 12: 421-425 (2010)

A. Kamble, N. Danawale, and R. Kumar. Integrated weed management in Bt cotton. Indian Journal of Weed Science 49: 405-408 (2017).

A. Mohyuddin, and M. Ambreen. From Faith Healer to a Medical Doctor: Creating Biomedical Hegemony. Open Journal of Applied Sciences 4: 56-67 (2014).

J. Deguine, P. Ferron, and D. Russell. Sustainable pest management for cotton production. A review. Agronomy for Sustainable Development 28: 114-137 (2011).

V.T. Sundaramurthy, and R.T. Gahukar. Integrated Management of Cotton Insect Pests in India. Outlook on Agriculture 27(4): 261-269 (1998).

K. Kranthi, and D. Russell. Changing trends in cotton pest management. Integrated Pest Management. In: Integrated Pest Management: Innovation-Development Process, R. Peshin, and A.K. Dhawan, (Eds). Springer, Dordrecht pp. 499-541 (2009).

M. Barzman, P. Bàrberi, A.N.E. Birch, P. Boonekamp, S. Dachbrodt-Saaydeh, B. Graf, and M. Sattin. Eight principles of Integrated Pest Management. Agronomy for Sustainable Development 35: 1199-1215 (2015).

M. Tudi, H.D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, and D.T. Phung. Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health 18: 1112 (2021).

J. Sherman, and D.H. Gent. Concepts of Sustainability, Motivations for Pest Management Approaches, and Implications for Communicating Change. Plant Disease 98: 1024-1035 (2014).

P.C. Matteson. Insect Pest Management in Tropical Asian Irrigated Rice. Annual Review of Entomology 45: 549-574 (2000).

S. Toepfer, T. Zhang, B. Wang, Y. Qiao, H. Peng, H. Luo, X. Wan, R. Gu, Y. Zhang, H. Ji, and M. Wan. Sustainable Pest Management through Improved Advice in Agricultural Extension. Sustainability 12: 6767 (2020).

Z. Korani. Application of Teaching Methods, Promoting Integrated Pest Management on the Farm School in Order to Achieve Sustainable Agriculture. Procedia Social and Behavioral Sciences 47: 2187-2191 (2012).

Downloads

Published

2024-06-27

How to Cite

Saleem Ashraf, Khalid Mahmood Ch., & Ijaz Ashraf. (2024). Yield Decline and Resistance Development in Sucking Pests of Cotton in the Context of Unwise Spraying Techniques. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 61(2), 133–148. https://doi.org/10.53560/PPASB(61-2)826

Issue

Section

Review Articles