Potential Role of Extracellular Matrix and its Components in Cancer Development and Progression
DOI:
https://doi.org/10.53560/PPASB(61-3)1024Keywords:
Cancer Development and Progression, Tumor Microenvironment, Extracellular MatrixAbstract
Cancer occurs due to unregulated multiplication of cells. Extracellular matrix (ECM) proteins come in a huge variety, and each one has unique biochemical and biophysical characteristics that affect the phenotype of cells. To ensure tissue homeostasis, the ECM undergoes continuous deposition, remodeling, and degradation from early development until maturity. In order to govern cell behavior and differentiation, the ECM's composition and structure are spatiotemporally controlled. However, when ECM dynamics are dysregulated in any way, illnesses like cancer can arise. Collagen is a major component involved in ECM regulation but after cross linking with each other, it initiates ECM stiffness, loss of cell contacts and cell geometry. Due to which most of the regulators including the Transcriptional coactivator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) are inhibited and cause extensive cell proliferation and tumor metastasis. Proteases like Metalloproteinases degrades collagen and other proteins that leads to ECM break down and cancer progression. As cancer spreads, the stress and pressure on cells increases which damage arteries and capillaries causing hypoxia. Hypoxia inducible factors take advantage of the situation and enhance invasiveness of cancer cells. This stress generated by tumor cells in their surrounding causes dysregulation of ECM matrix. Finding strategies to study the relationship between mechanical stress in tumors and their destructive behavior is vital for cancer research.
References
C. Walker, E. Mojares, and A. del Río Hernández. Role of extracellular matrix in development and cancer progression. International Journal of Molecular Sciences 19: 3028 (2018).
B. Faubert, A. Solmonson, and R.J. DeBerardinis. Metabolic reprogramming and cancer progression. Science 368: eaaw5473 (2020).
J. Fares, M.Y. Fares, H.H. Khachfe, H.A. Salhab, and Y. Fares. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy 5: 28 (2020).
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians 71: 209-249 (2021).
J.A. Clara, C. Monge, Y. Yang, and N. Takebe. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nature Reviews Clinical Oncology 17: 204-232 (2020).
C. Rodríguez, and J. Martínez-González. The role of lysyl oxidase enzymes in cardiac function and remodeling. Cells 8(12): 1483 (2019).
A. Kaul, W.D. Short, S.G. Keswani, and X. Wang. Immunologic roles of hyaluronan in dermal wound healing. Biomolecules 11(8): 1234 (2021).
J. Prakash and Y. Shaked. The interplay between extracellular matrix remodelling and cancer therapeutics. Cancer Discovery 14(8): 1375-1388 (2024).
Z. Ma, C. Mao, Y. Jia, Y. Fu, and W. Kong. Extracellular matrix dynamics in vascular remodeling. American Journal of Physiology-Cell Physiology 319(3): C481-C499 (2020).
R.D. Bruno, J.M. Fleming, A.L. George, C.A. Boulanger, P. Schedin, and G.H. Smith. Mammary extracellular matrix directs differentiation of testicular and embryonic stem cells to form functional mammary glands in vivo. Scientific Reports 7(1): 40196 (2017).
Q. Wang, W. Qian, X. Xu, A. Bajpai, K. Guan, Z. Zhang, and W. Chen. Energy-mediated machinery drives cellular mechanical allostasis. Advanced Materials 31(35): 1900453 (2019).
C.E. Witherel, K. Sao, B.K. Brisson, B. Han, S.W. Volk, R.J. Petrie, and K.L. Spiller. Regulation of extracellular matrix assembly and structure by hybrid M1/M2 macrophages. Biomaterials 269: 120667 (2021).
J.D. San Antonio, O. Jacenko, A. Fertala, and J.P. Orgel. Collagen structure function mapping informs applications for regenerative medicine. Bioengineering 8(1): 3 (2020).
P.A. Taylor, A.M. Kloxin, and A. Jayaraman. Impact of collagen-like peptide (CLP) heterotrimeric triple helix design on helical thermal stability and hierarchical assembly: a coarse-grained molecular dynamics simulation study. Soft Matter 18(16): 3177-3192 (2022).
D.N. Tabang, Y. Cui, D.M. Tremmel, M. Ford, Z. Li, S.D. Sackett, and L. Li. Analysis of pancreatic extracellular matrix protein post-translational modifications via electrostatic repulsion- hydrophilic interaction chromatography coupled with mass spectrometry. Molecular Omics 17(5): 652-664 (2021).
C. K. Revell, O.E. Jensen, T. Shearer, Y. Lu, D.F. Holmes, and K.E. Kadler. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biology Plus 12: 100079 (2021).
E.M. Feneck, P.N. Lewis, and K.M. Meek. Three-dimensional imaging of the extracellular matrix and cell interactions in the developing prenatal mouse cornea. Scientific Reports 9(1): 11277 (2019).
S. Radhakrishnan, S. Nagarajan, M. Bechelany, and S.N. Kalkura. Collagen based biomaterials for tissue engineering applications: A review. Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature 3: 22 (2020).
M.J. Mienaltowski, N.L. Gonzales, J.M. Beall, and M.Y. Pechanec. Basic structure, physiology and biochemistry of connective tissues and extracellular matrix collagens. Progress in Heritable Soft Connective Tissue Diseases 5: 43 (2021).
W. Wang, X. Wang, F. Yao, and C. Huang. Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. International Journal of Molecular Sciences 23(20): 12270 (2022).
S. Appunni, M. Rubens, V. Ramamoorthy, V. Anand, M. Khandelwal, and A. Sharma. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Molecular and Cellular Biochemistry 476: 3935-3950 (2021).
D.M. Darvish. Collagen fibril formation in vitro: From origin to opportunities. Materials Today Bio 15: 100322 (2022).
A.M. Puszkarska, D. Frenkel, L.J. Colwell, and M.J. Duer. Using sequence data to predict the self-assembly of supramolecular collagen structures. Biophysical Journal 121(16): 3023-3033 (2022).
J. Melrose. Perlecan, a modular instructive proteoglycan with diverse functional properties. The International Journal of Biochemistry & Cell Biology 128: 105849 (2020).
F. Gondelaud, and S. Ricard‐Blum. Structures and interactions of syndecans. The FEBS Journal 286(15): 2994-3007 (2019).
R. Trenker, and N. Jura. Receptor tyrosine kinase activation: From the ligand perspective. Current Opinion in Cell Biology 63: 174-185 (2020).
X. Wu, M. Kang, D. Wang, M. Zhu, Y. Hu, Y. Zhang, and L. Teng. Heparan sulfate analogues regulate tumor-derived exosome formation that attenuates exosome functions in tumor processes. International Journal of Biological Macromolecules 187: 481-491 (2021).
K.M. Lee, E.C. Seo, J.H. Lee, H.J. Kim, and C. Hwangbo. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. International Journal of Molecular Sciences 24(11): 9418 (2023).
G. Gao, S. Chen, Y.A. Pei, and M. Pei. Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomaterialia 135: 13-26 (2021).
D. Chen, Y. Du, J. Llewellyn, A. Bonna, B. Zuo, P.A. Janmey, R.W. Ferndale, and R.G. Wells. Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices. BioRxiv 2022: 1-24 (2022).
https://www.biorxiv.org/content/10.1101/2022.03.27.485990v1.full.pdf
N.K. Karamanos. Extracellular matrix: key structural and functional meshwork in health and disease. The FEBS Journal 286(15): 2826-2829 (2019).
N.D. Chavda, B. Sari, F.M. Asiri, and K.J. Hamill. Laminin N-terminu (LaNt) proteins, laminins and basement membrane regulation. Biochemical Society Transactions 50(6): 1541-1553 (2022).
R.W. Naylor, M.R. Morais, and R. Lennon. Complexities of the glomerular basement membrane. Nature Reviews Nephrology 17(2): 112-127 (2021).
A. Limone, V. Maggisano, D. Sarnataro, S. Bulotta. Emerging roles of the cellular prion protein (PrPC) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cellular and Molecular Life Sciences 80(8): 207 (2023).
H. Ding, W. Guo, and B. Su. Imaging cell‐matrix adhesions and collective migration of living cells by electrochemiluminescence microscopy. Angewandte Chemie International Edition 59(1): 449-456 (2020).
M. Aumailley. Laminins and interaction partners in the architecture of the basement membrane at the dermal‐epidermal junction. Experimental Dermatology 30(1): 17-24 (2021).
A. Mukwaya, L. Jensen, and N. Lagali. Relapse of pathological angiogenesis: functional role of the basement membrane and potential treatment strategies. Experimental and Molecular Medicine 53(2): 189-201 (2021).
D. Manou, I. Caon, P. Bouris, I.E. Triantaphyllidou, C. Giaroni, A. Passi, A.D. Theocharis. The complex interplay between extracellular matrix and cells in tissues. The Extracellular Matrix: Methods and Protocols 1: 20 (2019).
C.J. Dalton, and C.A. Lemmon. Fibronectin: Molecular structure, fibrillar structure and mechanochemical signalling. Cells 10(9): 2443 (2021).
J.A. Paten, C.L. Martin, J.T. Wanis, S.M. Siadat, A.M. Figueroa-Navedo, J.W. Ruberti, and L.F. Deravi. Molecular interactions between collagen and fibronectin: a reciprocal relationship that regulates de novo fibrillogenesis. Chem 5(8): 2126-2145 (2019).
J.W. Rick, A. Chandra, C.D. Ore, A.T. Nguyen, G. Yagnik, and M.K. Aghi. Fibronectin in malignancy: Cancer-specific alterations, protumoral effects, and therapeutic implications. Seminars in Oncology 46(3): 284-290 (2019).
D. Merker, Y. Handzhiyski, R. Merz, M. Kopnarski, J.P. Reithmaier, C. Popov, and M.D. Apostolova. Influence of surface termination of ultrananocrystalline diamond films coated on titanium on response of human osteoblast cells: A proteome study. Materials Science and Engineering C: Materials for Biological Applications 128: 112289 (2021).
C. Diaz, S. Neubauer, F. Rechenmacher, H. Kessler, and D. Missirlis. Recruitment of ανβ3 integrin to α5β1 integrin-induced clusters enables focal adhesion maturation and cell spreading. Journal of Cell Science 133(1): 232702 (2020).
K.E. Hill, B.M. Lovett, and J.E. Schwarzbauer. Heparan sulfate is necessary for the early formation of nascent fibronectin and collagen I fibrils at matrix assembly sites. Journal of Biological Chemistry 298(1): 101479 (2022).
D. Halbgebauer, J. Roos, J.B. Funcke, H. Neubauer, B.S. Hamilton, E. Simon, and D. Tews. Latent TGFβ-binding proteins regulate UCP1 expression and function via TGFβ2. Molecular Metabolism 53: 101336 (2021).
A. Kader, J. Snellings, L.C. Adams, P. Gottheil, D.B. Mangarova, J.L. Heyl & J. Braun. Sensitivity of magnetic resonance elastography to extracellular matrix and cell motility in human prostrate cancer cell line-derived xenoplast models. Biomaterials Advances 131: 213884 (2024).
L. Beunk, K. Brown, I. Nagtegaal, P. Friedl, and K. Wolf. Cancer invasion into musculature: Mechanics, molecules and implications. Seminars in Cell & Developmental Biology 93: 36-45 (2019).
M. Michael, and M. Parsons. New perspectives on integrin-dependent adhesions. Current Opinion in Cell Biology 63: 31-37 (2020).
X. Liu, J. Iovanna, and P. Santofimia-Castano. Stroma-targeting strategies in pancreatic cancer: A double-edged sword. Journal of Physiology and Biochemistry 79(1): 213-222 (2023).
X. Gong, J. Kulwatno, and K.L. Mills. Rapid fabrication of collagen bundles mimicking tumor-associated collagen architectures. Acta Biomaterialia 108: 128-141 (2020).
J.J.F. Sleeboom, G.S. van Tienderen, K. Schenke-Layland, L.J.W. van der Laan, A.A. Khalil, and M.M.A. Verstegen. The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutics targets. Science Translational Medicine 16(728): eadg3840 (2024).
H. Xu, K.A. Bunde, J. Figueiredo, R. Seruca, M.L. Smith, and D. Stamenović. Differential Impacts on Tensional Homeostasis of Gastric Cancer Cells Due to Distinct Domain Variants of E-Cadherin. Cancers 14(11): 2690 (2022).
S. Ishihara, and H. Haga. Matrix stiffness contributes to cancer progression by regulating transcription factors. Cancers 14(4): 1049 (2022).
I.I. Verginadis, H. Avgousti, J. Monslow, G. Skoufos, F. Chinga, K. Kim, and C. Koumenis. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology 24(6): 940-953 (2022).
N. Yang, D.F. Cao, X.X. Yin, H.H. Zhou, and X.Y. Mao. Lysyl oxidases: Emerging biomarkers and therapeutic targets for various diseases. Biomedicine & Pharmacotherapy 131: 110791 (2020).
J.T. Erler, K.L. Bennewith, M. Nicolau, N. Dornhöfer, C. Kong, Q.T. Le, A.J. Giaccia. Retraction Note: Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088): 1222-1226 (2020).
W. Han, S. Chen, W. Yuan, Q. Fan, J. Tian, X. Wang, L. Liu. Oriented collagen fibers direct tumor cell intravasation. Proceedings of the National Academy of Sciences 113(40): 11208-11213 (2016).
G. Xi, W. Guo, D. Kang, J. Ma, F. Fu, L. Qiu, and J. Chen. Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics 11(7): 3229 (2021).
J. Martinez, and P.C. Smith. The dynamic interaction between extracellular matrix remodeling and breast tumor progression. Cells 10(5): 1046 (2021).
J.M. Szulczewski, D.R. Inman, M. Proestaki, J. Notbohm, B.M. Burkel, and S.M. Ponik. Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomaterialia 129: 96-109 (2021).
M. Bedeschi, N. Marino, E. Cavassi, F. Piccinini, and A. Tesei. Cancer Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance. Cells 12(5): 802 (2023).
A. Brownfield. A Study of Hyaluronidases and UDP-Glucose Dehydrogenase as Contributing Factors To Prostate Cancer Progression. MS Thesis. North Carolina State University, USA (2021).
A. Caner, E. Asik, and B. Ozpolat. SRC signaling in cancer and tumor microenvironment. Advances in Experimental Medicine and Biology1270: 57-71 (2021).
H. Yin, F. Strunz, Z. Yan, J. Lu, C. Brochhausen, S. Kiderlen, and D. Docheva. Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells. Biomaterials 236: 119802 (2020).
T. Wu, S. Xiong, M. Chen, B.T. Tam, W. Chen, K. Dong, and G. Ouyang, G. Matrix stiffening facilitates the collective invasion of breast cancer through the periostin-integrin mechanotransduction pathway. Matrix Biology 121: 22-40 (2023).
A. Cigliano, S. Zhang, S. Ribback, S. Steinmann, M. Sini, C.E. Ament, and et al. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. Journal of Experimental & Clinical Cancer Research 41(1): 192 (2022).
C.T. Mierke. Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells. Cells 13(1): 96 (2024).
A.W.M. Haining, M. Von Essen, S.J. Attwood, V.P. Hytönen, and A. del Río Hernández. All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing. ACS Nano 10(7): 6648-6658 (2016).
R. Rahikainen, T. Öhman, P. Turkki, M. Varjosalo, and V.P. Hytönen. Talin-mediated force transmission and talin rod domain unfolding independently regulate adhesion signaling. Journal of Cell Science 132(7): 226514 (2019).
A.W.M. Haining, R. Rahikainen, E. Cortes, D. Lachowski, A. Rice, M. Von Essen, A. Del Río Hernández. Mechanotransduction in talin through the interaction of the R8 domain with DLC1. PLoS Biology 16(7): e2005599 (2018).
Y. Sun, Y. Ding, C. Guo, C. Liu, P. Ma, S. Ma, and C. Wu. α-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene 38(24): 4856-4874 (2019).
R. Cunningham, and C.G. Hansen. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clinical Science 136(3): 197-222 (2022).
J.K. Virdi, and P. Pethe. Biomaterials regulate mechanosensors YAP/TAZ in stem cell growth and differentiation. Tissue Engineering and Regenerative Medicine 18(2): 199-215 (2021).
S. Chakraborty, K. Njah, and W. Hong. Agrin mediates angiogenesis in the tumor microenvironment. Trends in cancer 6(2): 81-85 (2020).
L. He, H. Pratt, M. Gao, F. Wei, Z. Weng, and K. Struhl. YAP and TAZ are transcriptional co-activators of AP-1 proteins and STAT3 during breast cellular transformation. Elife 10: e67312 (2021).
X. Cai, K.C. Wang, and Z. Meng. Mechanoregulation of YAP and TAZ in cellular homeostasis and disease progression. Frontiers in Cell and Developmental Biology 9: 673599 (2021).
Q.J. Zhang, L. Wan, and H.F. Xu. High expression of agrin is associated with tumor progression and poor prognosis in hepatocellular carcinoma. Mathematical Biosciences and Engineering 16: 7375-7383 (2017).
S. Chakraborty, and W. Hong. Linking extracellular matrix agrin to the hippo pathway in liver cancer and beyond. Cancers 10(2): 45 (2018).
E. Bassat, Y.E. Mutlak, A. Genzelinakh, I.Y. Shadrin, K. Baruch Umansky, O. Yifa, and E. Tzahor. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547(7662): 179-184 (2017).
Z. Meng, Y. Qiu, K.C. Lin, A. Kumar, J.K. Placone, C. Fang, and K.L. Guan. RAP2 mediates mechanoresponses of the Hippo pathway. Nature 560(7720): 655-660 (2018).
J.C. Bahr, X.Y. Li, T.Y. Feinberg, L. Jiang, and S.J. Weiss. Divergent regulation of basement membrane trafficking by human macrophages and cancer cells. Nature Communications 13(1): 6409 (2022).
A. Boussouar, A. Tortereau, A. Manceau, A. Paradisi, N. Gadot, J. Vial, and P. Mehlen. Netrin-1 and its receptor DCC are causally implicated in melanoma progression. Cancer Research 80(4): 747-756 (2020).
F. Fagotto. Tissue segregation in the early vertebrate embryo. Seminars in Cell & Developmental Biology 107: 130-146 (2020).
N. Khalilgharibi, and Y. Mao. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open Biology 11(2): 200-360 (2021).
S. Linder, P. Cervero, R. Eddy, and J. Condeelis. Mechanisms and roles of podosomes and invadopodia. Nature Reviews Molecular Cell Biology 24(2): 86-106 (2023).
K. Strouhalova, M. Přechová, A. Gandalovičová, J. Brábek, M. Gregor, and D. Rosel. Vimentin intermediate filaments as potential target for cancer treatment. Cancers 12(1): 184 (2020).
J.D. Cohen, A.P. Sparacio, A.C. Belfi, R. Forman-Rubinsky, D.H. Hall, H. Maul Newby, and M.V. Sundaram. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. Elife 9: 57874 (2021).
G.A. Conlon, and G.I. Murray. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. The Journal of Pathology 247(5): 629-640 (2019).
K. Chatterjee, S. Jana, P. Choudhary, and S. Swarnakar. Triumph and tumult of matrix metalloproteinases and their crosstalk with eicosanoids in cancer. Cancer and Metastasis Reviews 37: 279-288 (2018).
J. Heino, and E. Siljamäki. Integrins α1β1 and α2β1: The Generalist Collagen Receptors. In: Integrins in Health and Disease: Key Effectors of Cell-Matrix and Cell-Cell Interactions. Springer International Publishing pp. 3-25 (2023).
S. Nallanthighal, J.P. Heiserman, and D.J. Cheon. The role of the extracellular matrix in cancer stemness. Frontiers in Cell and Developmental Biology 7: 86 (2019).
C.L. Chen, L. Zhang, Y.R. Jiao, Y. Zhou,Q.F. Ge, P.C. Li, and Z. Lv. miR‐134 inhibits osteosarcoma cell invasion and metastasis through targeting MMP 1 and MMP 3 in vitro and in vivo. FEBS Letters 593(10): 1089-1101 (2019).
A. Akinpelu, T. Akinsipe, L.A. Avila, R.S. Arnold & P. Mistriotis. The impact of tumor microenvironment unraveling the role of physical cues in breast cancer progression. Cancer and Metastasis Reviews 42(2): 823-844 (2024).
L. You, W. Wu, X. Wang, L. Fang, V. Adam, E. Nepovimova, and K. Kuca. The role of hypoxia‐inducible factor 1 in tumor immune evasion. Medicinal Research Reviews 41(3): 1622-1643 (2021).
S. Mustafa, S. Koran, and L. AlOmair. Insights into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Frontiers in Molecular Biosciences 9: 896099 (2022).
S. Almutairi, H.M.D. Kalloush, N.A. Manoon, and S.K. Bardaweel. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review. Molecules 28(14): 5567 (2023).
J.J. Northey, A.S. Barrett, I. Acerbi, M.K. Hayward, S. Talamantes, I.S. Dean, and V.M. Weaver. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. The Journal of Clinical Investigation 130(11): 5721-5737 (2020).
I. Jang, and K.A. Beningo. Integrins, CAFs and mechanical forces in the progression of cancer. Cancers 11(5): 721 (2019).
J. Zhong, Y. Yang, L. Liao, and C. Zhang. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomaterials Science 8(10): 2734-2755 (2020).
C.W. Lee, T.T.T. Vo, C.Z. Wu, M.C. Chi, C.M. Lin, M.L. Fang, and I.T. Lee. The inducible role of ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: a recent perception. Cancers 12(9): 2505 (2020).
A. Plutynski. How is cancer complex? European Journal for Philosophy of Science 11(2): 55 (2021).
C.M. Neophytou, M. Panagi, T. Stylianopoulos, and P. Papageorgis. The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers 13(9): 2053 (2021).
F. Mpekris, M. Panagi, C. Voutouri, J.D. Martin, R. Samuel, S. Takahashi, and T. Stylianopoulos. Normalizing the microenvironment overcomes vessel compression and resistance to nano‐immunotherapy in breast cancer lung metastasis. Advanced Science 8(3): 2001917 (2021)
S.J. Han, S. Kwon, and K.S. Kim. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell International 21: 152 (2021).
A. Stylianou, F. Mpekris, C. Voutouri, A. Papoui, A. Constantinidou, E. Kitiris, and T. Stylianopoulos. Nanomechanical properties of solid tumors as treatment monitoring biomarkers. Acta Biomaterialia 154: 324-334 (2022).
J.M. Northcott, I.S. Dean, J.K. Mouw, V.M. Weaver. Feeling stress: the mechanics of cancer progression and aggression. Frontiers in Cell and Developmental Biology 6: 17 (2018).
M. Di Giuseppe, M. Miniati, M. Miccoli, R. Ciacchini, G. Orrù, R. Lo Sterzo, and C. Conversano. Defensive responses to stressful life events associated with cancer diagnosis. Mediterranean Journal of Clinical Psychology 8(1): 1-22 (2020).
Y. Zi, K. Yang, J. He, Z. Wu, J. Liu, and W. Zhang. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Advanced Drug Delivery Reviews 188: 114449 (2022).
S. Pratavieira, M.B. Requena, M.D. Stringasci, E.T.P. Ayala, and V.S. Bagnato. The physics of light and sound in the fight against skin cancer. Brazilian Journal of Physics 52(4): 106 (2022).
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Upon acceptance of an article, its copyright will be assigned to the Pakistan Academy of Sciences.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution (CC BY). Allows users to: copy the article and distribute; abstracts, create extracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation); include in a collective work (such as an anthology); and text or data mine the article. These uses are permitted even for commercial purposes, provided the user: includes a link to the license; indicates if changes were made; gives appropriate credit to the author(s) (with a link to the formal publication through the relevant DOI); and does not represent the author(s) as endorsing the adaptation of the article or modify the article in such a way as to damage the authors' honor or reputation.