Antimicrobial Effect of Psidium guajava L. Leave Extract in Correlation with Biofilm Formation and Metallo-β-Lactamase Production in Multidrug Resistant Pseudomonas aeruginosa

Effect of plant extract on multi drug resistant bacteria

Authors

  • Rabina Thapa Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
  • Bijendra Raj Raghubanshi KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal
  • Anjana Singh Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal

Keywords:

Disk diffusion method, alternative source, treatment, antimicrobial resistance, standardized

Abstract

This study was aimed to determine antibacterial effect of P. guajava leave extracts and correlation of metallo-β-lactamase (MBL) production and biofilm formation with MDR P. aeruginosa isolated from different clinical samples. The study was carried out in the Kathmandu Institute of Science and Technology (KIST) medical college and teaching hospital and Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal. A total of 45 isolates of P. aeruginosa, isolated from different clinical samples were identified by standard microbiological techniques and antimicrobial susceptibility of the isolates was tested by Kirby-Bauer disk diffusion method on Muller Hinton agar as per CLSI guidelines. The ability to form biofilm was detected using the microtiter plate assay. MBL production was screened by Imipenem disk diffusion method and confirmed by Imipenem-EDTA combined disk method. P. guajava leave extracts were prepared using absolute methanol and hydroethanol solvent at different ratios. The antimicrobial activity of P. guajava leave extract against the pseudomonal isolates was determined by agar well diffusion method. Out of 45 isolates of P. aeruginosa, 30 (67%) were multidrug resistant (MDR) isolates, 30 (67%) were biofilm producers and 6 (13%) were metallo β lactamase (MBL) producers respectively. The methanol extract of fresh P. guajava leave (13mm) showed higher activity and least activity by 7:3 hydroethanol extract of dried P. guajava leave (6mm) toward the P. aeruginosa isolates. The methanol extract may be an alternative source for Pseudomonal infection treatment as antimicrobial resistance to available drugs which is increasing day by day. However, it should be standardized and tested in animal models before its application.

References

Moreau-Marquis, S., B.A. Stanton & G.A. O’Toole. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulmonary pharmacology & therapeutics 21: 595-599 (2008).

Kang, C.I., S.H. Kim, H.B. Kim, S.W. Park, Y.J. Choe, M.D. Oh & K.W. Choe. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical infectious diseases 37: 745-751 (2003).

Kerr, K.G., & A.M. Snelling. Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infection 73: 338- 344 (2009).

Defez, C., P. Fabbro-Peray, N. Bouziges, A. Gouby, A. Mahamat, J.P. Daures & A. Sotto. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. Journal of Hospital Infection 57: 209-216 (2004).

Upadhyay, S., M.R. Sen & A. Bhattacharjee. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. The Journal of Infection in Developing Countries 4:239-242 (2010).

Rajamohan, G., V.B. Srinivasan & W.A. Gebreyes. 118 Rabina Thapa et al Biocide-tolerant multidrug-resistant Acinetobacter baumannii clinical strains are associated with higher biofilm formation. Journal of Hospital Infection 73:287-289 (2009).

Poudel, P., P. Poudel, N. Adhikari & P.K. Shah (2015). Multi-drug resistant bacterial isolates associated with blood stream infection. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 14: 23-52 (2015).

Wozniak, D.J., T.J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G.A. O’Toole & M.R. Parsek. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proceedings of the National Academy of Sciences 100: 7907-7912 (2003).

Chanda, S. & Y. Baravalia. (2010). Novel leads from herbal drugs for infectious skin diseases. Current research, technology and education topics in applied microbiology and microbial biotechnology 1: 451-456 (2010).

Badan, P.O.M. Monograph for extracts of Indonesian medicinal plants. Drug and food agent Republica Indonesia 1: 1-91 (2004).

Naseer, S., S. Hussain, N. Naeem, M. Pervaiz & M. Rahman. The phytochemistry and medicinal value of Psidium guajava (P. guajava). Clinical Phytoscience 4: 32 (2018).

Yong, D., K. Lee, J.H. Yum, H.B. Shin, G.M. Rossolini & Y. Chong. Imipenem-EDTA disk method for differentiation of metallo-β-lactamaseproducing clinical isolates of Pseudomonas spp. and Acinetobacter spp. Journal of Clinical Microbiology 40: 3798-3801 (2002).

Stepanovic, S., D. Vukovic, V. Hola, G.D. Bonaventura, S. Djukic, I. Cirkovic & F. Ruzicka. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathologica Microbiologica et Immunologica Scandinavica115:891-899 (2007).

Carmeli, Y., N. Troillet, G.M. Eliopoulos & M.H. Samore. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrobial agents and chemotherapy 43:1379-1382 (1999).

Harris, A., C. Torres-Viera, L. Venkataraman, P. DeGirolami, M. Samore & Y. Carmeli. Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clinical Infectious Diseases 28: 1128-1133 (1999).

Fatima, A., S.B. Naqvi, S.A. Khaliq, S. Perveen & S. Jabeen (2012). Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infections. Springer Plus 1: 70 (2012).

Alnour T.M.S. & E.H. Ahmed-Abakur. Multidrug Resistant Pseudomonas aeruginosa: Medical Impact, Pathogenicity, Resistance Mechanisms and Epidemiology. Journal of Sexual Medicine Microbiology 5: 1046 (2017).

Thapa, P., D. Bhandari, D. Shrestha, H. Parajuli, P. Chaudhary, J. Amatya & R. Amatya, R. A hospital based surveillance of metallo-beta-lactamase producing gram negative bacteria in Nepal by imipenem-EDTA disk method. BioMed Central research notes 10: 322 (2017).

Acharya, M., P.R. Joshi, K. Thapa, R. Aryal, T. Kakshapati & S. Sharma. Detection of metallo- β-lactamases-encoding genes among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal. BioMed Central research notes 10: 718 (2017).

De, A.S., S.H. Kumar & S.M Baveja. Prevalence of metallo-β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in intensive care areas in a tertiary care hospital. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 14: 217 (2010).

Franklin, C., L. Liolios & A.Y. Peleg. Phenotypic detection of carbapenem-susceptible metallo-β- lactamase-producing gram-negative bacilli in the clinical laboratory. Journal of clinical microbiology 44: 3139-3144 (2006).

Livermore, D.M. Has the era of untreatable infections arrived? Journal of Antimicrobial Chemotherapy 64: 129-136 (2009).

Nagao, M., Y. Iinuma, J. Igawa, T. Saito, K. Yamashita, T. Kondo & S. Ichiyama. Control of an outbreak of carbapenem-resistant Pseudomonas aeruginosa in a haemato-oncology unit. Journal of Hospital Infection 79: 49-53 (2011).

Kaleem, F., J. Usman, A. Hassan & A. Khan. Frequency and susceptibility pattern of metallo-betalactamase producers in a hospital in Pakistan. The Journal of infection in developing countries 4: 810- 813 (2010).

Pitout, J.D., D.B. Gregson, L. Poirel, J.A. McClure, P. Le & D.L. Church. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. Journal of Clinical Microbiology 43: 3129-3135 (2005).

Neopane, P., H.P Nepal, R. Gautam, R. Paudel, S. Ansari, S. Shrestha & S. Thapa. European Journal of Biomedical and Pharmaceutical sciences. European Journal of Biomedical 4: 366-372 (2017).

Maita, P. & K. Boonbumrung. Association between biofilm formation of Pseudomonas aeruginosa clinical isolates versus antibiotic resistance and genes involved with biofilm. Journal of Chemical and Pharmaceutical Research 6: 1022-1028 (2014).

Hoiby, N., T. Bjarnsholt, M. Givskov, S. Molin & O. Ciofu. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 35: 322-332 (2010).

Sauer, K., M.C. Cullen, A.H. Rickard, L.A.H. Zeef, D.G. Davies & P. Gilbert. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. Journal of Bacteriology 186: 7312-7326 (2004).

Khan, W., S.P. Bernier, S.L. Kuchma, J.H. Hammond, F. Hasan & G.A. O’Toole. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. International microbiology: the official journal of the Spanish Society for Microbiology 13: 207 (2010).

Laverty, G., S. Gorman & B. Gilmore. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3: 596-632 (2014).

Yekani, M., M.Y. Memar, N. Alizadeh, N. Safaei & R. Ghotaslou, R. Antibiotic resistance patterns of biofilm-forming Pseudomonas aeruginosa isolates from mechanically ventilated patients. International. Journal 5: 85 (2017).

Gitika, K.M. Antibacterial activity of Psidium guajava L. leave extracts against some grampositive and gram-negative bacteria. European Journal of Pharmaceutical and Medical Research 3: 261-266 (2016).

Cruzada, C.J.O., T.M.C. Chua, V.A. Chuabio, K.M.D.G. Cruz, D.A.M. De Castro, J.S. Chua & M.K.A. Crisostomo. Evaluation of Psidium guajava (P. guajava) Leave Extract against Gram- Negative Bacteria in Planktonic and Biofilm Lifestyles. Annual Research & Review in Biology 4370-4380 (2014).

Goncalves, F.A., M. Andrade Neto, J.N. Bezerra, A. Macrae, O.V.D. Sousa, A.A. Fonteles-Filho & R.H. Vieira. Antibacterial activity of P. GUAJAVA, Psidium guajava Linnaeus, leave extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller). Revista do Instituto de Medicina Tropical de Sao Paulo 50: 11-15 (2008).

Mailoa, M.N., M. Mahendradatta, A. Laga & N. Djide. Tannin extract of P. guajava leave (Psidium guajava L) variation with concentration organic solvents. International Journal of Scientific & Technology Research 2: 106-110 (2013).

Khadka, B. Effect of natural product on correlation of biofilm formation with multidrug resistance and ESBL production in Psuedomonas aeruginosa. M.Sc. dissertation. Central Department of Mirobiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal (2018).

Chiari, B.G., J.A. Severi, D. Pauli-Credendio, P. Abackerli, C.M.D. Sylos, W. Vilegas & V.L.B. Isaac. Assessment of the chemical profile, polyphenol content and antioxidant activity in extracts of Psidium guajava L. fruits. International Journal of Pharmacy and Pharmaceutical Sciences, 331-336 (2012).

Published

2019-09-19

How to Cite

Thapa, R. ., Raghubanshi, B. R. ., & Singh, A. . (2019). Antimicrobial Effect of Psidium guajava L. Leave Extract in Correlation with Biofilm Formation and Metallo-β-Lactamase Production in Multidrug Resistant Pseudomonas aeruginosa: Effect of plant extract on multi drug resistant bacteria. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 56(3), 113–120. Retrieved from https://ppaspk.org/index.php/PPAS-B/article/view/117

Issue

Section

Research Articles