Insight into Structural and Optical Properties of Pristine and Sr2+ Doped La2NiMnO6
Insight into Structural and Optical Properties
DOI:
https://doi.org/10.53560/PPASA(58-2)610Keywords:
X-ray Diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Optical Phonons, Electrical ResistivityAbstract
Double perovskites oxide (DPO) multiferroics La2-xSrxNiMnO6(x=0.0, 0.1, 0.2, 0.4, 0.6) are synthesized by sol-gel technique. The structural, optical and electrical (both DC and AC) properties of La2-xSrxNiMnO6 have been investigated by XRD and FTIR spectroscopy and two-probe resistivity and dielectric measurements as a function of temperature, respectively. The effect of doping of Strontium at A-site in double perovskites is discussed. XRD has revealed the formation of monoclinic structure of La2-xSrxNiMnO6 with space group P21 / n for x=0.0 and P21 for x=0.1, 0.2, 0.4, 0.6. The average crystallite size has been calculated to be in the range 31 to 46 nm as determined by Debye Scherrer equation. Infrared active optical phonons observed from reflectivity spectra have been analysed fitting the theoretical oscillators using Lorentz oscillator model. We have observed several well-resolved phonon modes in La2-xSrxNiMnO6 with increasing dopant concentration. Activation energy calculated using Arrhenius Plot is in the range of 0.31 to 0.18 eV, confirming the semiconducting nature of all samples. The dielectric constant and tangent loss as a function of temperature and frequency are also discussed for these multiferroics.
References
S. Aarif Ul Islam and M. Ikram, Structural stability improvement, Williamson Hall analysis and band- gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6, Rare Metals 38 (9), 805-813 (2019).
T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Physical Review B 67 (18), 180401-180409 (2003).
G. Lawes, A. P. Ramirez, C. M. Varma and M. A. Subramanian, Magnetodielectric Effects from Spin Fluctuations in Isostructural Ferromagnetic and Antiferromagnetic Systems, Physical Review Letters 91 (25), 257208-257217 (2003).
K. Kuepper, M. Kadiroglu, A. V. Postnikov, K. C. Prince, M. Matteucci, V. R. Galakhov, H. Hesse, G. Borstel and M. Neumann, Electronic structure of highly ordered Sr2FeMoO6: XPS and XES studies, Journal of Physics: Condensed Matter 17 (27), 4309-4317 (2005).
U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J. P. Contour, S. Fusil, J. F. Bobo, J. Fontcuberta, A. Barthélémy and A. Fert, Spin filtering through ferrimagnetic NiFe2O4 tunnel barriers, Applied Physics Letters 88 (8), 082505 (2006).
M. Gajek, M. Bibes,A. Barthélémy, K. Bouzehouane, S. Fusil, M. Varela, J. Fontcuberta and A. Fert, Spin filtering through ferromagnetic BiMnO3 tunnel barriers, Physical Review B 72 (2), 020406-020415 (2005).
K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure, Nature 395 (6703), 677-680 (1998).
R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan and J. F. Scott, β phase and γ−β metal-insulator transition in multiferroic BiFeO3, Physical Review B 77 (1), 014110-014118 (2008).
P. Monthoux, D. Pines and G. G. Lonzarich, Superconductivity without phonons, Nature 450, 1177 (2007).
M. Imada, A. Fujimori and Y. Tokura, Metal- insulator transitions, Reviews of Modern Physics 70 (4), 1039-1263 (1998).
M. T. Anderson, K. B. Greenwood, G. A. Taylor and K. R. Poeppelmeier, B-cation arrangements in double perovskites, Progress in Solid State Chemistry 22 (3), 197-233 (1993).
V. Cuartero, J. Blasco, J. García, S. Lafuerza, G. Subías, J. A. Rodriguez-Velamazán and C. Ritter, Enhancement of ferromagnetic correlations on multiferroic TbMnO3 by replacing Mn with Co, Journal of Physics: Condensed Matter 24 (45), 455601 (2012).
J. Ahmad, M. Usman and U. Nissar, Effect of Yttrium doping on structural, optical and transport properties of La2NiMnO6, Materials Research Express 6 (12), 125706 (2019).
L. Guo, Y. Bai, C. Huang and W. Ma, Revisiting La2MMnO6 (M= Co, Ni, Cu, Zn) perovskites in view of 3d-electron configuration, Journal of Applied Physics 124 (6), 065103 (2018).
R. I. Dass, J. Q. Yan and J. B. Goodenough, Oxygen stoichiometry, ferromagnetism, and transport properties of La2−xNiMnO6 + δ, Physical Review B 68 (6), 064415 (2003).
J. B. Goodenough, 1962.
Y. Q. Lin, X. M. Chen and X. Q. Liu, Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics, Solid State Communications 149 (19), 784-787 (2009).
K. Asai, H. Sekizawa and S. Iida, Magnetisation measurements and 55Mn NMR studies of LaNi0. 5Mn0. 5O3, Journal of the Physical Society of Japan 47 (4), 1054-1060 (1979).
R. J. Booth, R. Fillman, H. Whitaker, A. Nag, R.M. Tiwari, K. V. Ramanujachary, J. Gopalakrishnan and S. E. Lofland, An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R=rare earth, Y), Materials Research Bulletin 44 (7), 1559-1564 (2009).
E. K. H. Salje, M. F. Osmaston, apos, R. K. Nions, R. Clayton and B. Parsons, Characteristics of perovskite-related materials, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 328 (1599), 409-416 (1989).
R. P. Maiti, S. Dutta, M. Mukherjee, M. K. Mitra and D. Chakravorty, Magnetic and dielectric properties of sol-gel derived nanoparticles of double perovskite Y2NiMnO6, Journal of Applied Physics 112 (4), 044311-044319 (2012).
R. C. Sahoo, S. Das and T. K. Nath, Effect of rare earth site substitution on magnetic and transport properties of Ln2CoMnO6 (Ln = La, Sm and Gd) double perovskites, Journal of Magnetism and Magnetic Materials 460, 409-417 (2018).
J. Ahmad, U. Ahmad and S. H. Bukhari, Synthesis and optical properties of La1−XCeXMnO3 studied by infrared reflectivity measurements, Chinese Journal of Physics 56 (4), 1439-1448 (2018).
J. Ahmad, H. Yamanaka and H. Uwe, Bismuth charge disproportionation in semiconducting BaPbxBi1− xO3studied by infrared reflection spectroscopy, Journal of Physics: Condensed Matter 19 (26), 266223-266230 (2007).
I. Terasaki, T. Nakahashi, A. Maeda and K. Uchinokura, Optical study of the doping effect in the metallic oxide (Nd,Sr)CoO3, Physical Review B 43 (1), 551-554 (1991).
D. R. Patil and B. K. Chougule, Effect of resistivity on magnetoelectric effect in (x)NiFe2O4–(1−x) Ba0.9Sr0.1TiO3 ME composites, Journal of Alloys and Compounds 470 (1), 531-535 (2009).
M. Idrees, M. Nadeem and M. M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3by impedance spectroscopy, Journal of Physics D: Applied Physics 43 (15), 155401-155408 (2010).
J. P. Palakkal, C. R. Sankar, A. P. Paulose and M. R. Varma, Hopping conduction and spin glass behavior of La2FeMnO6, Journal of Alloys and Compounds 743, 403-409 (2018).
J. A. Khan and J. Ahmad, Double perovskite La2CrMnO6: synthesis, optical and transport properties, Materials Research Express 6 (11), 115906-115918 (2019).
M. S. Khandekar, R. C. Kambale, J. Y. Patil, Y. D. Kolekar and S. S. Suryavanshi, Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesised by combustion method, Journal of Alloys and Compounds 509 (5), 1861- 1865 (2011).
D. Singh and A. Mahajan, Effect of A-site cation size on the structural, magnetic, and electrical properties of La1−xNdxMn0.5Cr0.5O3 perovskites, Journal of Alloys and Compounds 644, 172-179 (2015).
C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies, Physical Review 83 (1), 121-124 (1951).
H. Das, U. V. Waghmare, T. Saha-Dasgupta and D. D. Sarma, Theoretical evidence and chemical origin of the magnetism-dependent electrostructural coupling in La 2 NiMnO 6, Physical Review B 79 (14), 144403-114409 (2009).