Biogenic Nanomaterials: A Way Forward in Preventing Bacterial Infections

Nanobiotechnology against resistant pathogens

Authors

  • Maham Khan Department of Biotechnology, University of Malakand, Dir Lower, Pakistan
  • Shahid Wahab School of Applied Biotechnology, College of Agriculture and Convergence Technology, Jeonbuk National University, South Korea
  • Haroon Muhammad Ali Department of Biotechnology, University of Malakand, Dir Lower, Pakistan
  • Sadia Khan Department of Biotechnology, University of Malakand, Dir Lower, Pakistan
  • Reema Iqbal Institute of Biotechnology and Genetic engineering (IBGE), Department of Biotechnology, Agricultural University, Peshawar, Pakistan
  • Tariq Khan Department of Biotechnology, University of Malakand, Dir Lower, Pakistan

DOI:

https://doi.org/10.53560/PPASB(60-sp1)814

Keywords:

Biogenic nanomaterials, Multi-drug resistant microorganisms, Metallic nanoparticles, Nanoparticles-biomolecule conjugate, Lipid nanoparticles

Abstract

Antibiotic resistance puts a tremendous strain on the healthcare system. Bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa that cause diseases like endocarditis, pneumonia, and Urinary tract infections have now become resistant to many previously used antibiotics. Antibiotic overuse must be reduced as it has become a public health threat paving the way to pandemics. Instead of creating new antibiotics, repurposing existing medicines that have faced resistance is one way forward. Plant-based antimicrobials have been explored as antibiotics to boost or augment the capability of existing antibiotics. It has been proposed that conjugates of plant-based products and antibiotics have increased activity and that the conjugated groups could help circumvent the beta-lactam antibiotic resistance mechanisms. Antibiotics have been combined with plant-based substances like Berberine, and a considerable synergy has been reported among them. Nanomaterials also promise a powerful environment-friendly strategy for weaponizing antibiotics with plant compounds. Nanoparticles could attach with many biological molecules such as DNA, enzymes, ribosomes, and lysosomes, further affecting the permeability of the cell membrane. The interaction of nanoparticles with many biological targets makes it hard for bacteria to develop resistance against them. Low molecular weight nanomaterial based on antibiotics could be very effective against multidrug-resistant gram-negative pathogens. Our study aims to analyze the progress done at the front of nanomaterials and nano-antibiotics against infectious diseases.

References

D.G.J. Larsson, and C.F. Flach. Antibiotic resistance in the environment. Nature Reviews Microbiology 20(5): 257-269 (2022).

B. Ribeiro Da Cunha, L.P. Fonseca, and C.R. Calado. Antibiotic discovery: where have we come from, where do we go? Antibiotics 8(2): 45 (2019).

B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U.I. Qamar, and D. Resistance. Antibiotic resistance: a rundown of a global crisis. Infection drug resistance 11: 1645 (2018).

A.R. Mahoney, M.M. Safaee, W.M. Wuest, and A.L. Furst. The silent pandemic: Emergent antibiotic resistances following the global response to SARSCoV-2. Iscience 24(4): 102304 (2021).

T.M. Uddin, A.J. Chakraborty, A. Khusro, B.R.M. Zidan, S. Mitra, T.B. Emran, K. Dhama, M.K.H. Ripon, M. Gajdács, and M.U.K. Sahibzada. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection Public Health14(12): 1750-1766 (2021).

N. Dey, C. Kamatchi, A. Vickram, K. Anbarasu, S. Thanigaivel, J. Palanivelu, A. Pugazhendhi, and V.K. Ponnusamy. Role of nanomaterials in deactivating multiple drug resistance efflux pumps–A review. Environmental Research 204: 111968 (2022).

A.M. Allahverdiyev, K.V. Kon, E.S. Abamor, M. Bagirova, and M. Rafailovich. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert review of anti-infective therapy 9(11): 1035-1052 (2011).

M.C. Zambonino, E.M. Quizhpe, F.E. Jaramillo, A. Rahman, N. Santiago Vispo, C. Jeffryes, and S.A. Dahoumane. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International Journal of Molecular Sciences 22(3): 989 (2021).

H. Chandra, P. Kumari, E. Bontempi, and S. Yadav. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis Agricultural Biotechnology 24: 101518 (2020).

M.T. Shaaban, M.F. Ghaly, and S.M. Fahmi. Antibacterial activities of hexadecanoic acid methyl ester and green‐synthesized silver nanoparticles against multidrug‐resistant bacteria. Journal of basic microbiology 61(6): 557-568 (2021).

D. Sharma, P. Shandilya, N. Saini, P. Singh, V. Thakur, R. Saini, D. Mittal, G. Chandan, V. Saini, and A. Saini. Insights into the synthesis and mechanism of green synthesized antimicrobial nanoparticles, answer to the multidrug resistance. Materials Today Chemistry 19: 100391 (2021).

S. Wahab, T. Khan, M. Adil, and A. Khan. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 7(7): e07448 (2021).

U. Anand, M. Carpena, M. Kowalska-Góralska, P. Garcia-Perez, K. Sunita, E. Bontempi, A. Dey, M.A. Prieto, J. Proćków, and J. Simal-Gandara. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment: 153472 (2022).

P. Hawkey. The growing burden of antimicrobial resistance. Journal of antimicrobial chemotherapy 62(suppl_1): i1-i9 (2008).

N.R. Naylor, R. Atun, N. Zhu, K. Kulasabanathan, S. Silva, A. Chatterjee, G.M. Knight, and J.V. Robotham. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance Infection Control 7(1): 1-17 (2018).

C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, and E. Wool. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325): 629-655 (2022).

B. Harish and G. Menezes. Antimicrobial resistance in typhoidal salmonellae. Indian journal of medical microbiology 29(3): 223-229 (2011).

I. Frost, T.P. Van Boeckel, J. Pires, J. Craig, and R. Laxminarayan. Global geographic trends in antimicrobial resistance: the role of international

travel. Journal of travel medicine 26(8): taz036 (2019).

A.C. Palmer and R. Kishony. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nature Reviews Genetics 14(4): 243-248 (2013).

J.M. Bello-López, O.A. Cabrero-Martínez, G. Ibáñez-Cervantes, C. Hernández-Cortez, L.I. Pelcastre-Rodríguez, L.U. Gonzalez-Avila, and G. Castro-Escarpulli. Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms 7(9): 363 (2019).

A. Russell. Whither triclosan? Journal of Antimicrobial Chemotherapy 53(5): 693-695 (2004).

R. Chuanchuen, R.R. Karkhoff-Schweizer, and H.P. Schweizer. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. American journal of infection control 31(2): 124-127 (2003).

L. Fernández and R.E. Hancock. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clinical microbiology reviews 25(4): 661-681 (2012).

G.D. Wright. Molecular mechanisms of antibiotic resistance. Chemical communications 47(14): 4055-4061 (2011).

R.E. Hancock. The bacterial outer membrane as a drug barrier. Trends in microbiology 5(1): 37-42 (1997).

M.M. Fernandes, K. Ivanova, J. Hoyo, S. Pérez-Rafael, A. Francesko, and T. Tzanov. Nanotransformation of vancomycin overcomes the intrinsic resistance of gram-negative bacteria. ACS applied materials interfaces 9(17): 15022-15030 (2017).

J.P. Sarathy, V. Dartois, and E.J.D. Lee. The role of transport mechanisms in Mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals 5(11): 1210-1235 (2012).

S. Singh, S. Datta, K.B. Narayanan, and K.N. Rajnish. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. Journal of Genetic Engineering Biotechnology 19(1): 1-19 (2021).

J.-M. Pagès, M. Masi, and J. Barbe. Inhibitors of efflux pumps in Gram-negative bacteria. Trends in molecular medicine 11(8): 382-389 (2005).

F. Van Bambeke, E. Balzi, and P.M. Tulkens. Antibiotic efflux pumps. Biochemical pharmacology 60(4): 457-470 (2000).

W.C. Reygaert. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology 4(3): 482 (2018).

S.F. Nadeem, U.F. Gohar, S.F. Tahir, H. Mukhtar, S. Pornpukdeewattana, P. Nukthamna, A.M. Moula Ali, S.C.B. Bavisetty, and S. Massa. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Critical Reviews in Microbiology 46(5): 578-599 (2020).

R. Wheeler, R.D. Turner, R.G. Bailey, B. Salamaga, S. Mesnage, S.A. Mohamad, E.J. Hayhurst, M. Horsburgh, J.K. Hobbs, and S.J. Foster. Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. MBio 6(4): e00660-15 (2015).

F.C. Tenover. Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine 119(6): S3-S10 (2006).

A.L. Davidson, E. Dassa, C. Orelle, and J. Chen. Structure, function, and evolution of bacterial ATPbinding cassette systems. Microbiology molecular biology reviews 72(2): 317-364 (2008).

T.J. Foster. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews 41(3): 430-449 (2017).

E. Medina and D.H. Pieper. Tackling threats and future problems of multidrug-resistant bacteria. How to overcome the antibiotic crisis: 3-33 (2016).

D. Reynolds, J.P. Burnham, C.V. Guillamet, M. Mccabe, V. Yuenger, K. Betthauser, S.T. Micek, and M.H. Kollef. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic. European Respiratory Review 31(166) (2022).

V. Manchanda, S. Sanchaita, and N. Singh. Multidrug resistant acinetobacter. Journal of global infectious diseases 2(3): 291 (2010).

E. Banin, D. Hughes, and O.P. Kuipers. Bacterial pathogens, antibiotics and antibiotic resistance. Federation of European Microbiological Societies 41(3): 450-452 (2017).

S. Tiberi, M.J. Vjecha, A. Zumla, J. Galvin, G.B. Migliori, and A. Zumla. Accelerating development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic. International Journal of Infectious Diseases 113: S96-S99 (2021).

M. Polly, B.L. De Almeida, R.P. Lennon, M.F. Cortês, S.F. Costa, and T. Guimarães. Impact of the COVID-19 pandemic on the incidence of multidrug-resistant bacterial infections in an acute care hospital in Brazil. American journal of infection control 50(1): 32-38 (2022).

T. Singhal. Antimicrobial Resistance: The’Other’Pandemic! Indian Journal of Pediatrics: 1-7 (2022).

M.N. Gwynn, A. Portnoy, S.F. Rittenhouse, and D.J. Payne. Challenges of antibacterial discovery revisited. Annals of the New York Academy of

Sciences 1213(1): 5-19 (2010).

P.S. Hoffman. Antibacterial discovery: 21st century challenges. Antibiotics 9(5): 213 (2020).

L.L. Silver. Challenges of antibacterial discovery. Clinical microbiology reviews 24(1): 71-109 (2011).

G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, and D.A. Stout. Antibacterial properties and toxicity from metallic nanomaterials. International Journal

of Nanomedicine 12: 3941 (2017).

G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, and D.A. Stout. Antibacterial properties and toxicity from metallic nanomaterials [Corrigendum]. International Journal of Nanomedicine 13: 6497-6498 (2018).

Y. Wang, Y. Yang, Y. Shi, H. Song, and C. Yu. Antibiotic‐free antibacterial strategies enabled by nanomaterials: progress and perspectives. Advanced Materials 32(18): 1904106 (2020).

A. Singh, P.K. Gautam, A. Verma, V. Singh, P.M. Shivapriya, S. Shivalkar, A.K. Sahoo, and S.K. Samanta. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports 25: e00427 (2020).

M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. De Aberasturi, I.R. De Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, and M. Mahmoudi. Antibacterial properties of nanoparticles. Trends in biotechnology 30(10): 499-511 (2012).

A. Gupta, S. Mumtaz, C.H. Li, I. Hussain, and V.M. Rotello. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2): 415-427 (2019).

K. Vijayaraghavan, S.K. Nalini, N.U. Prakash, and D. Madhankumar. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids and Surfaces B: Biointerfaces 94: 114-117 (2012).

J.M.V. Makabenta, A. Nabawy, C.-H. Li, S. Schmidt-Malan, R. Patel, and V.M. Rotello. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology 19(1): 23-36 (2021).

V. Vilas, D. Philip, and J. Mathew. Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132: 743-750 (2014).

U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani, and B.A. Chopade. Microbial synthesis of gold nanoparticles: Current status and future prospects. Advances in Colloid and Interface Science 209: 40-48 (2014).

V. Vidhu and D. Philip. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 117: 102-108 (2014).

R. Arunachalam, S. Dhanasingh, B. Kalimuthu, M. Uthirappan, C. Rose, and A.B. Mandal. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids and Surfaces B: Biointerfaces 94: 226-230 (2012).

M. Rashid and S. Sabir. Biosynthesis of SelfDispersed Silver Colloidal Particles Using the Aqueous Extract of P. peruviana for Sensing dl-Alanine. ISRN Nanotechnology 2014: 7 (2014).

W.C. Chan. Bionanotechnology progress and advances. Biology of Blood Marrow Transplantation 12(1): 87-91 (2006).

J. Hulla, S. Sahu, and A. Hayes. Nanotechnology: History and future. Human experimental toxicology 34(12): 1318-1321 (2015).

W. Tan, K. Wang, X. He, X.J. Zhao, T. Drake, L. Wang, and R.P. Bagwe. Bionanotechnology based on silica nanoparticles. Medicinal research reviews 24(5): 621-638 (2004).

J. Li, M. Yao, Y. Shao, and D. Yao. The application of bio-nanotechnology in tumor diagnosis and treatment: a view. Nanotechnology Reviews 7(3): 257-266 (2018).

L. Wang, C. Hu, and L. Shao. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine 12: 1227 (2017).

M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, and S. Jha. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific reports 5(1): 1-12 (2015).

B. Li and T. Webster. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. Journal of

Orthopaedic Research 36(1): 22-32 (2018).

G. Singh, M. Manohar, A.A. Adegoke, T.A. Stenström, and R. Shanker. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update. Journal of Nanoparticle Research 19(1): 1-11 (2017).

Y. Shen, T. Hao, S. Ou, C. Hu, and L. Chen. Applications and perspectives of nanomaterials in novel vaccine development. MedChemComm 9(2): 226-238 (2018).

X. Wang, L. Yang, Z. Chen, and D.M. Shin. Application of nanotechnology in cancer therapy and imaging. CA: a cancer journal for clinicians 58(2): 97-110 (2008).

J.E. Hutchison. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS nano 2(3): 395-402 (2008).

S.S. Mughal and S.M. Hassan. Comparative Study of AgO Nanoparticles Synthesize Via Biological, Chemical and Physical Methods: A Review. American Journal of Materials Synthesis Processing 7(2): 15-28 (2022).

M. Nasrollahzadeh, M. Sajjadi, S.M. Sajadi, and Z. Issaabadi, Green nanotechnology, in Interface science and technology. 2019, Elsevier. p. 145 198.

X. Qu, J. Brame, Q. Li, and P.J. Alvarez. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Accounts of chemical research 46(3): 834-843 (2013).

J. Jain, S. Arora, J.M. Rajwade, P. Omray, S. Khandelwal, and K.M. Paknikar. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular pharmaceutics 6(5): 1388-1401 (2009).

C. Rigo, L. Ferroni, I. Tocco, M. Roman, I. Munivrana, C. Gardin, W.R. Cairns, V. Vindigni, B. Azzena, and C. Barbante. Active silver nanoparticles for wound healing. International journal of molecular sciences 14(3): 4817-4840 (2013).

S.A. Brennan, C. Ní Fhoghlú, B. Devitt, F. O’mahony, D. Brabazon, and A. Walsh. Silver nanoparticles and their orthopaedic applications. The bone joint journal 97(5): 582-589 (2015).

P. Lackner, R. Beer, G. Broessner, R. Helbok, K. Galiano, C. Pleifer, B. Pfausler, C. Brenneis, C. Huck, and K. Engelhardt. Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocritical care 8(3): 360-365 (2008).

A. De Mel, K. Chaloupka, Y. Malam, A. Darbyshire, B. Cousins, and A.M. Seifalian. A silver nanocomposite biomaterial for blood‐contacting implants. Journal of Biomedical Materials Research Part A 100(9): 2348-2357 (2012).

A. Bahador, B. Pourakbari, B. Bolhari, and F.B. Hashemi. In vitro evaluation of the antimicrobial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral pathogens by a membrane-enclosed immersion test. Journal of biomedical science 38(1): 77-83 (2015).

M. Murphy, K. Ting, X. Zhang, C. Soo, and Z. Zheng. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. Journal of nanomaterials 2015 (2015).

M.D. Willcox, E.B. Hume, A.K. Vijay, and R. Petcavich. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. Journal of Optometry 3(3): 143-148 (2010).

J. Talapko, T. Matijević, M. Juzbašić, A. Antolović-Požgain, and I. Škrlec. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms 8(9): 1400 (2020).

A.A. Yaqoob, K. Umar, and M.N.M. Ibrahim. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience 10(5): 1369-1378 (2020).

H.D. Beyene, A.A. Werkneh, H.K. Bezabh, and T.G. Ambaye. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Journal of Sustainable materials and technologies 13: 18-23 (2017).

L. Xu, W. Yi-Yi, J. Huang, C. Chun-Yuan, W. ZhenXing, and H. Xie. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10(20): 8996 (2020).

A. Kumar and M. Jaiswal. Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. Journal of Applied Polymer Science 133(14) (2016).

S.N. El Din, T.A. El-Tayeb, K. Abou-Aisha, and M. El-Azizi. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. International journal of nanomedicine 11: 1749 (2016).

D. Liang, Z. Lu, H. Yang, J. Gao, R. Chen, and Interfaces. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation. ACS applied materials 8(6): 3958-3968 (2016).

S. Iravani, H. Korbekandi, S.V. Mirmohammadi, and B. Zolfaghari. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 9(6): 385 (2014).

J.L. Velázquez-Velázquez, A. Santos-Flores, J. Araujo-Meléndez, R. Sánchez-Sánchez, C. Velasquillo, C. González, G. Martínez-Castañon, and F. Martinez-Gutierrez. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Materials Science Engineering: C 49: 604-611 (2015).

W. Lee, K.-J. Kim, and D.G. Lee. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27(6): 1191 -1201 (2014).

J.K. Patra and K.-H. Baek. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in microbiology 8: 167 (2017).

B. Buszewski, A. Rogowska, V. Railean-Plugaru, M. Złoch, J. Walczak-Skierska, and P. Pomastowski. The influence of different forms of silver on selected pathogenic bacteria. Materials 13(10): 2403 (2020).

J. Lu, Y. Wang, M. Jin, Z. Yuan, P. Bond, and J. Guo. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid mediated antibiotic resistance genes. Water research 169: 115229 (2020).

A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, and D. Mohamad. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3): 219-242 (2015).

S. Nadunga. A review on zinc and zinc oxide nanoparticles; biosynthesis, characterization and applications. (2022).

R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, and S. Khorramfar. Novel biocompatible composite (chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surfaces B: Biointerfaces 80(1): 86-93 (2010).

M. Kumar, A. Curtis, and C. Hoskins. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10(1): 11 (2018).

Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied environmental microbiology 77(7): 2325-2331 (2011).

C. Wang, L.-L. Liu, A.-T. Zhang, P. Xie, J.-J. Lu, and X.-T. Zou. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. African Journal of Biotechnology 11(44): 10248-10254 (2012).

M.E. El-Naggar, S. Shaarawy, and A. Hebeish. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydrate polymers 181: 307-316 (2018).

P. Singh, A. Garg, S. Pandit, V. Mokkapati, and I. Mijakovic. Antimicrobial effects of biogenic nanoparticles. Nanomaterials 8(12): 1009 (2018).

S. Senthilkumar, L. Kashinath, M. Ashok, and A. Rajendran. Antibacterial properties and mechanism of gold nanoparticles obtained from Pergularia daemia leaf extract. Nanomed Res 6(1): 00146 (2017).

C. Uruén, G. Chopo-Escuin, J. Tommassen, R.C. Mainar-Jaime, and J. Arenas. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10(1): 3 (2020).

E.O. Ogunsona, R. Muthuraj, E. Ojogbo, O. Valerio, and T.H. Mekonnen. Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today 18: 100473 (2020).

S. Vanaraj, J. Jabastin, S. Sathiskumar, and K. Preethi. Production and Characterization of Bio-AuNPs to Induce Synergistic Effect Against Multidrug Resistant Bacterial Biofilm. Journal of Cluster Science 28(1): 227-244 (2017).

Y. Zhou, Y. Kong, S. Kundu, J.D. Cirillo, and H. Liang. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. Journal of nanobiotechnology 10(1): 1-9 (2012).

P. Boomi, G.P. Poorani, S. Selvam, S. Palanisamy, S. Jegatheeswaran, K. Anand, C. Balakumar, K. Premkumar, and H.G. Prabu. Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Applied

Organometallic Chemistry 34(5): e5574 (2020).

S. Saranya, K. Vijayarani, and S. Pavithra. Green synthesis of iron nanoparticles using aqueous extract of Musa ornata flower sheath against pathogenic bacteria. Indian Journal of Pharmaceutical Sciences 79(5): 688-694 (2017).

U. Kamran, H.N. Bhatti, M. Iqbal, S. Jamil, and M. Zahid. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. Journal of Molecular Structure 1179: 532-539 (2019).

M. Senthil and C. Ramesh. Biogenic synthesis of Fe3O4 nanoparticles using tridax procurements leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest Journal of Nanomaterials Biostructures 7(4) (2012).

S.O. Aisida, N. Madubuonu, M.H. Alnasir, I. Ahmad, S. Botha, M. Maaza, and F.I.J.a.N. Ezema. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Applied Nanoscience 10(1): 305-315 (2020).

R. Irshad, K. Tahir, B. Li, A. Ahmad, A.R. Siddiqui, and S. Nazir. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. Journal of Photochemistry Photobiology B: Biology 170: 241-246 (2017).

G. Jagathesan and P. Rajiv. Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatalysis agricultural biotechnology 13: 90-94 (2018).

A.A. Date, M.D. Joshi, and V.B. Patravale. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Advanced drug delivery reviews 59(6): 505-521 (2007).

K. Manjunath, J.S. Reddy, and V. Venkateswarlu. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27(2):127-144 (2005).

S. Scioli Montoto, G. Muraca, and M.E. Ruiz. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Frontiers in molecular biosciences 7: 587997 (2020).

M. Harms and C. Müller-Goymann. Solid lipid nanoparticles for drug delivery. Journal of Drug Delivery Science Technology 21(1): 89-99 (2011).

E. Musielak, A. Feliczak-Guzik, and I. Nowak. Synthesis and potential applications of lipid nanoparticles in medicine. Materials 15(2): 682 (2022).

N. Naseri, H. Valizadeh, and P. Zakeri-Milani. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin 5(3): 305 (2015).

C.R. Thorn, N. Thomas, B.J. Boyd, and C.A. Prestidge. Nano-fats for bugs: The benefits of lipid nanoparticles for antimicrobial therapy. Drug Delivery Translational Research 11(4): 1598-1624 (2021).

A. Walduck, P. Sangwan, Q.A. Vo, J. Ratcliffe, J. White, B.W. Muir, and N. Tran. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles. RSC advances 10(55): 33608-33619 (2020).

R.S. Kalhapure, S.J. Sonawane, D.R. Sikwal, M. Jadhav, S. Rambharose, C. Mocktar, and T. Govender. Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surfaces B: Biointerfaces 136: 651-658 (2015).

R.S. Kalhapure, C. Mocktar, D.R. Sikwal, S.J. Sonawane, M.K. Kathiravan, A. Skelton, and T. Govender. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surfaces B: Biointerfaces 117: 303-311 (2014).

A. González-Paredes, L. Sitia, A. Ruyra, C.J. Morris, G.N. Wheeler, M. Mcarthur, and P. Gasco. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. European journal of pharmaceutics biopharmaceutics 134: 166-177 (2019).

C.L. Seabra, C. Nunes, M. Brás, M. Gomez-Lazaro, C.A. Reis, I.C. Gonçalves, S. Reis, and M.C.L. Martins. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. European Journal of Pharmaceutics Biopharmaceutics 127: 378-386 (2018).

X. Hou, T. Zaks, R. Langer, and Y. Dong. Lipid nanoparticles for mRNA delivery. Nature Reviews Materials 6(12): 1078-1094 (2021).

M.E. Gindy, B. Feuston, A. Glass, L. Arrington, R.M. Haas, J. Schariter, and S.M. Stirdivant. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics. Molecular pharmaceutics 11(11): 4143-4153 (2014).

A. Masri, A. Anwar, N.A. Khan, and R. Siddiqui. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics 8(4): 260 (2019).

U. Rajchakit and V. Sarojini. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjugate chemistry 28(11): 2673-2686 (2017).

I. Pal, D. Bhattacharyya, R.K. Kar, D. Zarena, A. Bhunia, and H.S. Atreya. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Scientific reports 9(1): 1-11 (2019).

B. Casciaro, M. Moros, S. Rivera-Fernandez, A. Bellelli, M. Jesús, and M.L. Mangoni. Goldnanoparticles coated with the antimicrobial peptide esculentin-1a (1-21) NH2 as a reliable strategy for antipseudomonal drugs. Acta biomaterialia 47: 170-181 (2017).

S. Ramesh, M. Grijalva, A. Debut, G. Beatriz, F. Albericio, and L.H. Cumbal. Peptides conjugated to silver nanoparticles in biomedicine–a “valueadded” phenomenon. Biomaterials science 4(12): 1713-1725 (2016).

L.C.W. Lin, S. Chattopadhyay, J.C. Lin, and C.M.J. Hu. Advances and opportunities in nanoparticle‐and nanomaterial‐based vaccines against bacterial infections. Advanced healthcare materials 7(13): 1701395 (2018).

M. Anwar, F. Muhammad, B. Akhtar, M.I. Anwar, A. Raza, and A. Aleem. Outer Membrane Protein‐Coated Nanoparticles as Antibacterial Vaccine Candidates. International Journal of Peptide Research Therapeutics 27(3): 1689-1697 (2021).

P. Angsantikul, S. Thamphiwatana, W. Gao, and L. Zhang. Cell membrane-coated nanoparticles as an emerging antibacterial vaccine platform. Vaccines 3(4): 814-828 (2015).

A.J. Huh and Y.J. Kwon. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release 156(2): 128-145 (2011).

V.K. Sharma, J. Filip, R. Zboril, and R.S. Varma. Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews 44(23): 8410-8423 (2015).

I. Iavicoli, L. Fontana, V. Leso, and A. Bergamaschi. The effects of nanomaterials as endocrine disruptors. International journal of molecular sciences 14(8): 16732-16801 (2013).

S.H. Qari, A.F. Alrefaei, A.B. Ashoor, and M.H. Soliman. Genotoxicity and Carcinogenicity of Medicinal Herbs and Their Nanoparticles. Nutraceuticals 1(1): 31-41 (2021).

J. Zhao and V. Castranova. Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology Environmental Health, Part B 14(8): 593-632 (2011).

D. Boraschi, L. Costantino, and P. Italiani. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7(1): 121-131 (2012).

W.J.J.O.C.R. Abdussalam-Mohammed. Review of therapeutic applications of nanotechnology in medicine field and its side effects. Journal of Chemical Reviews 1(3): 243-251 (2019).

M. Bundschuh, J. Filser, S. Lüderwald, M.S. Mckee, G. Metreveli, G.E. Schaumann, R. Schulz, and S. Wagner. Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe 30(1): 1-17 (2018).

R. Saxena, M. Saxena, and A. Lochab. Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater. ChemistrySelect 5(1): 335-353 (2020).

N.R. Panyala, E.M. Peña-Méndez, and J. Havel. Silver or silver nanoparticles: a hazardous threat to the environment and human health? Journal of applied biomedicine 6(3) (2008).

E. Kabir, V. Kumar, K.-H. Kim, A.C. Yip, and J. Sohn. Environmental impacts of nanomaterials. Journal of Environmental Management 225: 261-271 (2018).

A. Intisar, A. Ramzan, T. Sawaira, A.T. Kareem, N. Hussain, M.I. Din, M. Bilal, and H.M. Iqbal. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials–A review. Chemosphere 293: 133538 (2022).

L. Brannon-Peppas. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International journal of pharmaceutics 116(1): 1-9 (1995).

F. Gottschalk, T. Sonderer, R.W. Scholz, and B. Nowack. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environmental toxicology chemistry 29(5): 1036-1048 (2010).

M.A. Sadique, S. Yadav, P. Ranjan, S. Verma, S.T. Salammal, M.A. Khan, A. Kaushik, and R. Khan. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. Journal of Materials Chemistry B 9(23): 4620-4642 (2021).

N. O’brien and E. Cummins. Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. Journal of Environmental Science Health Part A 45(8): 992-1007 (2010).

X. Yang, W. Ye, Y. Qi, Y. Ying, and Z. Xia. Overcoming multidrug resistance in bacteria through antibiotics delivery in surface-engineered nano-cargos: Recent developments for future nano-antibiotics. Frontiers in Bioengineering Biotechnology: 569 (2021).

H.M. Abdel-Mageed, A.E. Abd El Aziz, S.A. Mohamed, and N.Z. Abuelezz. The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: an updated review. Journal of microencapsulation 39(1): 72-94 (2022).

A. Alanis. Resistance to antibiotics: are we in the post-antibiotic era? Archives of medical research 36(6): 697-705 (2005).

W. Dodds, Disease now and potential future pandemics, in The world’s worst problems. 2019, Springer. p. 31-44.

B. Das and S. Patra, Antimicrobials: meeting the challenges of antibiotic resistance through nanotechnology, in Nanostructures for antimicrobial therapy. 2017, Elsevier. p. 1-22.

L.D. Blackman, T.D. Sutherland, P.J. De Barro, H. Thissen, and K.E. Locock. Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats? Materials Horizons 9(8): 2076-2096 (2022).

N. Zahin, R. Anwar, D. Tewari, M. Kabir, A. Sajid, B. Mathew, M. Uddin, L. Aleya, and M.M. Abdel-Daim. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environmental Science Pollution Research 27(16): 19151-19168 (2020).

M. Harun-Ur-Rashid, T. Foyez, I. Jahan, K. Pal, and A.B. Imran. Rapid diagnosis of COVID-19 via nanobiosensor-implemented biomedical utilization: a systematic review. RSC advances 12(15): 9445-9465 (2022).

C. Xu, C. Lei, S. Hosseinpour, S. Ivanovski, L.J. Walsh, and A. Khademhosseini. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review 9(10): nwac124 (2022).

L. Krejcova, P. Michalek, M.M. Rodrigo, Z. Heger, S. Krizkova, M. Vaculovicova, D. Hynek, V. Adam, and R. Kizek. Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis 4: 47-66 (2015).

S. Hua, E. Marks, J.J. Schneider, and S. Keely. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine: nanotechnology, biology medicine 11(5): 1117-1132 (2015).

Y.H. Choi and H.-K. Han. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of

Pharmaceutical Investigation 48(1): 43-60 (2018).

M.S. Mufamadi, Nanotechnology shows promise for next-generation vaccines in the fight against COVID-19. 2020, Springer.

C. Constantin, A. Pisani, G. Bardi, and M. Neagu. Nano-carriers of COVID-19 vaccines: the main pillars of efficacy. Nanomedicine 16(26): 2377-2387 (2021).

R.D. Handy, R. Owen, and E.J.E. Valsami-Jones. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. 17(5): 315-325 (2008).

A. León-Buitimea, J.A. Garza-Cervantes, D.Y. Gallegos-Alvarado, M. Osorio-Concepción, and J.R. Morones-Ramírez. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, Coccidioidomycosis, Mucormycosis, and candidiasis. Pathogens 10(10): 1303 (2021).

N. Jan, N. Majeed, M. Ahmad, W.A. Lone, and R. John. Nano-pollution: Why it should worry us. Chemosphere: 134746 (2022).

S. Patil and R. Chandrasekaran. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. Journal of Genetic Engineering Biotechnology 18(1): 1-23 (2020).

Downloads

Published

2023-01-22

How to Cite

Maham Khan, Shahid Wahab, Haroon Muhammad Ali, Sadia Khan, Reema Iqbal, & Tariq Khan. (2023). Biogenic Nanomaterials: A Way Forward in Preventing Bacterial Infections: Nanobiotechnology against resistant pathogens. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 60(S), 3–23. https://doi.org/10.53560/PPASB(60-sp1)814