Endophytes: Potential Source of Bioactive Compounds of Pharmaceutical Importance

Pharmaceutical Importance of Bioactive Compounds from Endophytes

Authors

  • Tahira Younis Department of Plant Sciences, Quaid-i-Azam University, Islamabad
  • Lubna Rahman Department of Biotechnology, Quaid-i-Azam University, Islamabad
  • Sidra Rahman Department of Biotechnology, Quaid-i-Azam University, Islamabad
  • Afnan Khan Shinwari Department of Plant Sciences, Quaid-i-Azam University, Islamabad
  • Irum Iqrar Pakistan Academy of Sciences, Islamabad
  • Zabta Khan Shinwari Department of Plant Sciences, Quaid-i-Azam University, Islamabad

DOI:

https://doi.org/10.53560/PPASB(59-4)780

Keywords:

Endophytes, Antibiotics, Antimicrobial, Medicinal Plants, Secondary Metabolites, Pharmacology

Abstract

Microbes exist as mutualists, parasites, and symbionts or as pathogens in nature. In plant microbiota, plant immunity determines whether the interaction with microbes is friendly or hostile. Friendly interaction may have an eccentric way of mutual interrelations for a resource contribution. This interaction is called plant-endophyte mutualistic or symbiotic relation in which microorganisms (fungi, bacteria, and actinomycetes) live within robust plant tissues. It has been discovered that almost all plant species investigated by various researchers harbor one or more endophytes. They benefit their host by producing various secondary metabolites that can be employed in agriculture and medicine. Endophytes are a treasure house of many novel bioactive compounds such as steroids, tannins, terpenoids, quinones, alkaloids, saponins, and phenolic acids which makes them a potential candidate for anticancer, antibiotic, antioxidant, anti-inflammatory, antiviral, antidiabetic properties, etc. Endophytes continue to be the peculiar source of various potential drugs. This review intends to shed light on the function and potential applications of endophytes as a forthcoming source of medications for a range of illnesses/diseases as well as other potential medical uses.

References

A.T. Khalil, and Z.K. Shinwari. Utilization of

Plant Growth-Promoting Bacteria (PGPB) Against

Phytopathogens. In: Sayyed, R., Singh, A., Ilyas, N.

(eds) Antifungal Metabolites of Rhizobacteria for

Sustainable Agriculture. Fungal Biology. Springer,

Pharmaceutical Importance of Bioactive Compounds from Endophytes 7

Cham. (2022).

S.A. Khan, M. Hamayun, A. L. Khan, In-Jung Lee,

Z. K. Shinwari and Jong-Guk Kim Isolation of plant

growth promoting endophytic fungi from dicots

inhabiting coastal sand dunes of Korea. Pakistan

Journal of Botany 44(4):1453-1460 (2012).

N.L. Owen, and N. Hundley. Endophytes-the

chemical synthesizers inside plants. Science

Progress 87(2):79-99 (2004).

M.L. Davey, and R.S. Currah. Interactions between

mosses (Bryophyta) and fungi. Botany 84:1509-

(2006).

I. Afzal, I. Iqrar, Z. K. Shinwari, and A. Yasmin.

Plant growth-promoting potential of endophytic

bacteria isolated from roots of wild Dodonaea

viscosa L. Plant Growth Regulation 81(3):399-408

(2017).

K.S. Lam. New aspects of natural products in drug

discovery. Trends in Microbiology 15(6):279-89

(2007).

A.de. Bary. Morphology and physiology of fungi,

lichens and myxomycetes. Hofmeister’s Handbook

of Physiological Botany, Leipzig 2:(1866).

D.Wilson. Endophyte: the evolution of a term, and

clarification of its use and definition. Oikos 274-6

(1995).

J. Hallmann, and R.A. Sikora. Influence of Fusarium

oxysporum, a mutualistic fungal endophyte, on

Meloidogyne incognita infection of tomato. Journal

Plant Diseases and Protection 1:475-81 (1994).

G. Brader, E. Corretto and A. Sessitsch.

“Metagenomics of plant microbiomes.” Functional

Metagenomics: Tools and Applications. T. Charles,

M. Liles and A. Sessitsch (Ed.), Springer, Berlin,

Germany, p. 179-200 (2017).

T. Khan, B.H. Abbasi, I. Iqrar, M. A. Khan and Z.

K. Shinwari. Molecular identification and control

of endophytic contamination during in vitro plantlet

development of Fagonia indica. Acta Physiologiae

Plantarum 40: 150 (2018).

A.N.Yadav, V.Kumar, H.S. Dhaliwal, R. Prasad

and A.K. Saxena. “Microbiome in crops:

diversity, distribution, and potential role in crop

improvement.” In Crop improvement through

microbial biotechnology. Elsevier, 305-332 (2018).

A. Javed, A. H. Shah, A. Hussain, Z. K. Shinwari,

S. A. Khan, W. Khan and S. A. Jan. Potential of

endophytic fungus Aspergillus terreus as potent

plant growth promoter. Pakistan Journal of Botany

(3): 1083-1086 (2020).

A. Andreozzi, P. Prieto, J. Mercado‐Blanco, S.

Monaco, E. Zampieri, S. Romano, G. Valè, R.

Defez, and C. Bianco. Efficient colonization of

the endophytes Herbaspirillum huttiense RCA24

and Enterobacter cloacae RCA25 influences the

physiological parameters of Oryza sativa L. cv.

Baldo rice. Environmental Microbiology 21:3489-

(2019).

S.L. Kandel, P.M. Joubert, and S.L. Doty. Bacterial

endophyte colonization and distribution within

plants. Microorganisms 5(4):77 (2017).

A.N.Yadav. Biodiversity and biotechnological

applications of host-specific endophytic fungi for

sustainable agriculture and allied sectors. Acta

Scientific Microbioogyl 1:44 (2018).

B. Joseph, and R. M. Priya. Bioactive Compounds

from Endophytes and their Potential in

Pharmaceutical Effect. American Journal of

Biochemistry and Molecular Biology 1(3): 291-309

(2011).

A.L. Demain. Microbial natural products: a past

with a future. Royal Society of Chemistry 1:3-16

(2000).

G.A. Strobel, and B. Daisy. Bioprospecting for

microbial endophytes and their natural products.

Microbiology and Molecular Biology Reviews

(4):491-502 (2003).

K. Nithya, and J. Muthumary. Bioactive metabolite

produced by Phomopsis sp., an endophytic fungus

in Allamanda cathartica Linn. Recent Research in

Science and Technology 3(3):44-48 (2011).

A. Aljuraifani, S. Aldosary, and I. Ababutain. In

vitro antimicrobial activity of endophytes, isolated

from Moringa peregrina growing in eastern region

of Saudi Arabia. National Academy Science Letters

:75-80. (2019).

N. Tamehiro, Y. Okamoto-Hosoya, S. Okamoto,

M. Ubukata, M. Hamada, H. Naganawa, and K.

Ochi. Bacilysocin, a novel phospholipid antibiotic

produced by Bacillus subtilis 168. Antimicrobial

Agents and Chemotherapy 46(2):315-20 (2002).

M.O. Diale, E. Ubomba-Jaswa, and M.H. SerepaDlamini. The antibacterial activity of bacterial

endophytes isolated from Combretum molle.

African Journal of Biotechnology 17:255-62 (2018).

M. Singh, A. Kumar, R. Singh, and K.D. Pandey.

Endophytic bacteria: a new source of bioactive

compounds. 3 Biotech 7(5):1-14 (2017).

O.A. Mohamad, L. Li, J.B. Ma, S. Hatab, L. Xu,

J.W. Guo, B.A. Rasulov, Y.H. Liu, B.P. Hedlund,

and W.J. Li. Evaluation of the antimicrobial

activity of endophytic bacterial populations

Younis et al

from Chinese traditional medicinal plant licorice

and characterization of the bioactive secondary

metabolites produced by Bacillus atrophaeus against

Verticillium dahlia. Frontiers in Microbiology 9:924

(2018).

M. Beiranvand, M. Amin, A. Hashemi-Shahraki,

B. Romani, S. Yaghoubi, and P. Sadeghi. (2017)

Antimicrobial activity of endophytic bacterial

populations isolated from medical plants of Iran.

Iranian Journal of Microbiology 9:11 (2017).

D. Wicklow, S. Roth, S. Deyrup,and J. Gloer. A

protective endophyte of maize: Acremonium zeae

antibiotics inhibitory to Aspergillus flavus and

Fusarium verticillioides. Mycological Research

(5): 610-618 (2005).

J. Dai, K. Krohn, U. Flörke, S. Draeger, B. Schulz,

A. Kiss‐Szikszai, S. Antus, T. Kurtán, and T. van

Ree. Metabolites from the endophytic fungus

Nodulisporium sp. from Juniperus cedre. European

Journal of Organic Chemistry 3498-3506 (2006).

V. Rukachaisirikul, U. Sommart, S. Phongpaichit,

J. Sakayaroj, and K. Kirtikara. Metabolites from

the endophytic fungus Phomopsis sp. PSU-D15.

Phytochemistry 69(3):783-7 (2008).

J.C. Qin, Y.M. Zhang, J.M. Gao, M.S. Bai, S.X. Yang,

H. Laatsch, and A.L. Zhang. Bioactive metabolites

produced by Chaetomium globosum, an endophytic

fungus isolated from Ginkgo biloba. Bioorganic and

Medicinal Chemistry Letters 19(6):1572-4 (2009).

J.L. Cui, T.T. Guo, Z.X. Ren, N.S. Zhang, and

M.L. Wang. Diversity and antioxidant activity

of culturable endophytic fungi from alpine

plants of Rhodiola crenulata, R. angusta, and R.

sachalinensis. PloS One 10(3) (2015).

H.M. Noble, D. Langley, P.J. Sidebottom, S.J.

Lane, and P.J. Fisher. An echinocandin from an

endophytic Cryptosporiopsis sp. and Pezicula sp. in

Pinus sylvestris and Fagus sylvatica. Mycological

Research 95(12):1439-40 (1991).

K. Subban, R. Subramani, and M. Johnpaul. A novel

antibacterial and antifungal phenolic compound from

the endophytic fungus Pestalotiopsis mangiferae.

Natural Product Research 27(16):1445-9 (2013).

E.A. Pinheiro, J.M. Carvalho, D.C. dos Santos,

A.D. Feitosa, P.S. Marinho, G.M. Guilhon, A.D. de

Souza, F.M. da Silva, A.M. Marinho. Antibacterial

activity of alkaloids produced by endophytic fungus

Aspergillus sp. EJC08 isolated from medical plant

Bauhinia guianensis. Natural Product Research.

(18):1633-8 (2013).

J.H. Park, G.J. Choi, S.W. Lee, H.B. Lee, K.M.

Kim, H.S. Jung, K.S. Jang, K.Y. Cho, and J.C.

Kim. Griseofulvin from Xylaria sp. strain F0010,

an endophytic fungus of Abies holophylla and

its antifungal activity against plant pathogenic

fungi. Journal of Microbiology and Biotechnology

(1):112-7 (2005).

S.H. Wu, R. Huang, C.P. Miao, and Y.M. Chen. Two

new steroids from an endophytic fungus Phomopsis

sp. Chemistry and Biodiversity 10(7):1276-83

(2013).

C. Santiago, C. Fitchett, M.H. Munro, J. Jalil, and

J. Santhanam. Cytotoxic and antifungal activities

of 5-hydroxyramulosin, a compound produced by

an endophytic fungus isolated from Cinnamomum

mollisimum. Evidence-Based Complementary and

Alternative Medicine (2012).

S. Phongpaichit, N. Rungjindamai, V.

Rukachaisirikul, and J. Sakayaroj. Antimicrobial

activity in cultures of endophytic fungi isolated from

Garcinia species. FEMS Immunology & Medical

Microbiology 51(3):517-25 (2006).

G. Pai, and M. Chandra. Antimicrobial activity of

endophytic fungi isolated from ethnomedicinal

plant Phyllanthus reticulatus poir. The International

Journal of Science and Engineering Invention 7:40-

(2018).

I.P. Santos, L.C. Silva, M.V. Silva, J.M. Araújo,

M.D. Cavalcanti, and V.L. Lima. Antibacterial

activity of endophytic fungi from leaves of

Indigofera suffruticosa Miller (Fabaceae). Frontiers

in Microbiology. 6:350 (2015).

R. Singh, and A.K. Dubey. Diversity and applications

of endophytic actinobacteria of plants in special and

other ecological niches. Frontiers in Microbiology

:1767 (2018).

U. Castillo, J.K. Harper, G.A. Strobel, J. Sears, K.

Alesi, E. Ford, J. Lin, M. Hunter, M. Maranta, H.

Ge, and D. Yaver. Kakadumycins, novel antibiotics

from Streptomyces sp. NRRL 30566, an endophyte

of Grevillea pteridifolia. FEMS Microbiology

Letters 224(2):183-19 (2003).

E. Fjærvik, and S.B. Zotche. Biosynthesis of

the polyene macrolide antibiotic nystatin in

Streptomyces noursei. Applied Microbiology and

Biotechnology 67:436-43 (2005).

T. Taechowisan, C. Lu, Y. Shen, S. Lumyong.

Antitumor activity of 4-arylcoumarins from

endophytic Streptomyces aureofaciens CMUAc130.

Journal of Cancer Research and Therapeutics

(2):86 (2007).

F.M. Gos, D.C. Savi, K.A. Shaaban, J.S. Thorson,

Pharmaceutical Importance of Bioactive Compounds from Endophytes 9

R. Aluizio, Y.M. Possiede, J. Rohr, C. Glienke.

Antibacterial activity of endophytic actinomycetes

isolated from the medicinal plant Vochysia divergens

(Pantanal, Brazil). Frontiers in Microbiology 8:1642

(2017).

T. Sasaki, Y. Igarashi, N. Saito, and T. Furumai.

Cedarmycins A and B, new antimicrobial antibiotics

from Streptomyces sp. TP-A0456. The Journal of

Antibiotics 54(7):567-72 (2001).

T. Taechowisan, S. Chanaphat, W. Ruensamran,

and W.S. Phutdhawong. Antibacterial activity of

new flavonoids from Streptomyces sp. BT01; an

endophyte in Boesenbergia rotunda (L.) Mansf.

Journal of Applied and Pharmaceutical Sciences

(4):8 (2014).

M. Bae, B. Chung, K.B. Oh, J. Shin, and D.C. Oh.

Hormaomycins B and C: New antibiotic cyclic

depsipeptides from a marine mudflat-derived

Streptomyces sp. Marine Drugs 13:5187-200

(2015).

Siyu-Mao, Hong-Chen, Li-Chen, Chuanxi-Wang,

Wei-Jia, Xiaoming-Chen, Huangjian-Yang, WeiHuang, and Wei-Zheng. Two novel ansamitocin

analogs from Actinosynnema pretiosum. Natural

Product Research 27(17):1532-6 (2013).

H.P. Fiedler, C. Bruntner, J. Riedlinger, A.T. Bull, G.

Knutsen, M. Goodfellow, A. Jones, L. Maldonado,

W. Pathom-Aree, W. Beil,and K. Schneider.

Proximicin A, B and C, novel aminofuran antibiotic

and anticancer compounds isolated from marine

strains of the actinomycete Verrucosispora. The

Journal of Antibiotics 61:158-63 (2008).

J. Zhang, J.D. Wang, C.X. Liu, J.H. Yuan, X.J. Wang,

and W.S. Xiang. A new prenylated indole derivative

from endophytic actinobacteria Streptomyces sp.

neau-D50. National Product Research 28(7):431-7

(2014).

M.L. Nelson. The chemistry and cellular biology

of the tetracyclines. Tetracyclines in Biology,

Chemistry and Medicine 1:3-63 (2001).

S. Firáková, M. Šturdíková, M. Múčková. Bioactive

secondary metabolites produced by microorganisms

associated with plants. Biologia 62:251-7 (2007).

L. Zhang, B. Guo, H. Li, S. Zeng, H. Shao, S.

Gu, and W. Rongcheng. Preliminary study on the

isolation of endophytic fungus of Catharanthus

roseus and its fermentation to produce products of

therapeutic value. Chinese Traditional and Herbal

Drugs 31(11):805-7 (2000).

G.A. Strobel, W.M. Hess, J.Y. Li, E. Ford, J. Sears,

R.S. Sidhu, and B. Summerell. Pestalotiopsis

guepinii, a taxol-producing endophyte of the

Wollemi pine, Wollemia nobilis. Australian Journal

of Botany 5(6):1073-82 (1997).

R. Alurappa, S. Chowdappa, R. Narayanaswamy,

U.R. Sinniah, S.K. Mohanty, and M.K. Swamy.

Endophytic fungi and bioactive metabolites

production: an update. Microbial Biotechnology

:455-482 (2018).

M. Pandi, R.S. Kumaran, Y.K. Choi, H.J. Kim, and

J. Muthumary. Isolation and detection of taxol,

an anticancer drug produced from Lasiodiplodia

theobromae, an endophytic fungus of the medicinal

plant Morinda citrifolia. African Journal of

Biotechnology 10(8):1428-35 (2011).

P. Giridharan, S.A. Verekar, A. Khanna, P.D.

Mishra, and S.K. Deshmukh. Anticancer activity

of sclerotiorin, isolated from an endophytic fungus

Cephalotheca faveolata Yaguchi, Nishim. &

Udagawa. Indian Journal of Experimental Biology

:464–468 (2012).

S.C. Puri, V. Verma, T. Amna, G.N. Qazi, and M.

Spiteller. An endophytic fungus from Nothapodytes

f oetida that produces Camptothecin. Journal of

National Products 68(12):1717-9 (2005).

S.C. Puri, A. Nazir, R. Chawla, R. Arora, S. Riyazul-Hasan, T. Amna, B. Ahmed, V. Verma, S. Singh,

R. Sagar, and A. Sharma. The endophytic fungus

Trametes hirsuta as a novel alternative source of

podophyllotoxin and related aryl tetralin lignans.

Journal of Biotechnology 122(4):494-510 (2006).

A. Kour, A.S. Shawl, S. Rehman, P. Sultan, P.H. Qazi,

P. Suden, R.K. Khajuria, and V. Verma. Isolation and

identification of an endophytic strain of Fusarium

oxysporum producing podophyllotoxin from

Juniperus recurva. World Journal of Microbiology

and Biotechnology 24(7):1115–1121(2008).

G.E. Konecny, R. Glas, J. Dering, K. Manivong, J.

Qi, R.S. Finn, G.R. Yang, K.L. Hong, C. Ginther, B.

Winterhoff, and G. Gao. Activity of the multikinase

inhibitor dasatinib against ovarian cancer cells.

British Journal of Cancer 101(10):1699-708 (2009).

S. Phongpaichit, J. Nikom, N. Rungjindamai,

J. Sakayaroj, N. Hutadilok-Towatana, V.

Rukachaisirikul, and K. Kirtikara. Biological

activities of extracts from endophytic fungi isolated

from Garcinia plants. FEMS Immunology &

Medical Microbiology 51(3):517-25 (2007).

Z. Lin, T. Zhu, Y. Fang, Q. Gu, and W. Zhu.

Polyketides from Penicillium sp. JP-1, an

endophytic fungus associated with the mangrove

plant Aegiceras corniculatum. Phytochemistry

Younis et al

(5):1273-8 (2008).

V. Gangadevi, and J. Muthumary. Isolation of

Colletotrichum gloeosporioides, a novel endophytic

taxol-producing fungus from the leaves of a

medicinal plant, Justicia gendarussa. Mycologia

Balcanica 5:1-4 (2008).

X. Yang, L. Zhang, B. Guo, and S. Guo. Preliminary

study of a vincristine-producing endophytic fungus

isolated from leaves of Catharanthus roseus. Chinese

Traditional and Herbal Drugs (1994).

M.D. Fernandes, T.A. Silva, L.H. Pfenning, C.M.

Costa-Neto, T.A. Heinrich, S.M. Alencar, M.A.

Lima, and M. Ikegaki. Biological activities of the

fermentation extract of the endophytic fungus

Alternaria alternata isolated from Coffea arabica

L. Brazilian Journal of Pharmaceutical Sciences

:677–685 (2009).

K. Nithya, and J. Muthumary. Growth studies of

Colletotrichum gloeosporioides (Penz.) a taxol

producing endophytic fungus from Plumeria

acutifolia. Indian Journal Science and Technology

(11):14-9 (2009).

G.H. Silva, H.L. Teles, L.M. Zanardi, M.C. Young,

M.N. Eberlin, R. Hadad, L.H. Pfenning, C.M.

Costa-Neto, I. Castro-Gamboa, V. da Silva Bolzani,

and A.R. Araújo. Cadinane sesquiterpenoids

of Phomopsis cassiae, an endophytic fungus

associated with Cassia spectabilis (Leguminosae).

Phytochemistry 67(17):1964-9 (2006).

J. Kjer, V. Wray, R. Edrada-Ebel, R. Ebel, A. Pretsch,

W. Lin, P. Proksch. Xanalteric acids I and II and

related phenolic compounds from an endophytic

Alternaria sp. isolated from the mangrove plant

Sonneratia alba. Journal of National Products

(11):2053-7 (2009).

S. Shweta, S. Zuehlke, B.T. Ramesha, V. Priti,

P.M. Kumar, G. Ravikanth, M. Spiteller, R.

Vasudeva, and R.U. Shaanker. Endophytic

fungal strains of Fusarium solani, from Apodytes

dimidiata E. Mey. ex Arn (Icacinaceae) produce

camptothecin, 10-hydroxycamptothecin and

-methoxycamptothecin. Phytochemistry 71(1):117-

(2010).

G. Dhayanithy, K. Subban, and J. Chelliah.

Diversity and biological activities of endophytic

fungi associated with Catharanthus roseus. BMC

Microbiology 19:1-4 (2019).

X. Sun, X. Kong, H. Gao, T. Zhu, G. Wu, Q. Gu,

and D. Li. Two new meroterpenoids produced by

the endophytic fungus Penicillium sp. SXH-65.

Archives of Pharmacal Research 37(8):978-82

(2014).

S.S. El‐Hawary, R. Mohammed, S.F. AbouZid,

W. Bakeer, R. Ebel, A.M. Sayed, and M.E. Rateb.

Solamargine production by a fungal endophyte of

Solanum nigrum. Journal of Applied Microbiology

:900-11 (2016).

S. Pornpakakul, S. Roengsumran, S. Deechangvipart,

A. Petsom, N. Muangsin, N. Ngamrojnavanich,

N. Sriubolmas, N. Chaichit, and T. Ohta.

Diaporthichalasin, a novel CYP3A4 inhibitor from

an endophytic Diaporthe sp. Tetrahedron Letters

(4):651-5 (2007).

J. Xu, J. Kjer, J. Sendker, V. Wray, H. Guan, R.

Edrada, W.E. Müller, M. Bayer, W. Lin, J. Wu,and

P. Proksch. Cytosporones, coumarins, and an

alkaloid from the endophytic fungus Pestalotiopsis

sp. isolated from the Chinese mangrove plant

Rhizophora mucronata. Bioorganic and Medicinal

Chemistry 17(20):7362-7 (2009).

J.Y. Zhang, L.Y. Tao, Y.J. Liang, L.M. Chen, Y.J.

Mi, L.S. Zheng, F. Wang, Z.G. She, Y.C. Lin, K.K.

To, and L.W. Fu. Anthracenedione derivatives

as anticancer agents isolated from secondary

metabolites of the mangrove endophytic fungi.

Marine Drugs 8(4):1469-81 (2010).

Z. Huang, J. Yang, Z. She, and Y. Lin. Isoflavones

from the mangrove endophytic fungus Fusarium sp.

(ZZF41). Natural Product Communications 5(11)

(2010).

L. Wen, G. Chen, Z. She, C. Yan, J. Cai, and L. Mu.

Two new paeciloxocins from a mangrove endophytic

fungus Paecilomyces sp. Russian Chemical Bulletin

(8):1656-9 (2010).

N. Uche-Okereafor, T. Sebola, K. Tapfuma,

L. Mekuto, E. Green, and V. Mavumengwana.

Antibacterial activities of crude secondary

metabolite extracts from Pantoea species obtained

from the stem of Solanum mauritianum and their

effects on two cancer cell lines. International

Journal of Environmental Research and Public

Health 16(4):602 (2019).

T.E. Sebola, N.C. Uche‐Okereafor, K.L. Tapfuma

L. Mekuto, E. Green, and V. Mavumengwana.

Evaluating antibacterial and anticancer activity of

crude extracts of bacterial endophytes from Crinum

macowanii Baker bulbs. Microbiology Open 8(12):

(2019).

S. Shweta, J.H. Bindu, J. Raghu, H.K. Suma, B.L.

Manjunatha, P.M. Kumara, G. Ravikanth, K.N.

Nataraja, K.N. Ganeshaiah, and R.U. Shaanker.

Isolation of endophytic bacteria producing the

Pharmaceutical Importance of Bioactive Compounds from Endophytes 11

anti-cancer alkaloid camptothecine from Miquelia

dentata Bedd. (Icacinaceae). Phytomedicine

(10):913-7 (2013).

Y. Igarashi. Screening of novel bioactive

compounds from plant-associated actinomycetes.

Actinomycetologica 18(2):63-6 (2014).

P. Tuntiwachwuttikul, T. Taechowisan, A.

Wanbanjob, S. Thadaniti, and W.C. Taylor. Lansai

A–D, secondary metabolites from Streptomyces sp.

SUC1. Tetrahedron 64(32):7583-6 (2008).

C. Lu, and Y. Shen. A novel ansamycin, naphthomycin

K from Streptomyces sp. J. Antibiotics 60(10):649-

(2007).

Y. Igarashi, S. Yanase, K. Sugimoto, M. Enomoto,

S. Miyanaga, M.E. Trujillo, I. Saiki, S. Kuwahara.

and C. Lupinacidin. An inhibitor of tumor cell

invasion from Micromonospora lupini. Journal of

Natural Products 74(4):862-5 (2011).

W.Y. Huang, Y.Z. Cai, J. Xing, H. Corke, and M.

Sun. A potential antioxidant resource: endophytic

fungi from medicinal plants. Economic Botany

(1):14-30 (2007).

M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M.

Mazur, and J. Telser. Free radicals and antioxidants

in normal physiological functions and human

disease. The International Journal of Biochemistry

& Cell Biology 39(1):44-84 (2007).

E. Elfita, M. Muharni, M. Munawar, and R. Rizki.

Isolation of antioxidant compound from endophytic

fungi Acremonium sp. from the twigs of Kandis

Gajah. Makara Seri Sains 16:46-50 (2012).

M.M. Photolo, V. Mavumengwana, L. Sitole, and

M.G. Tlou. Antimicrobial and antioxidant properties

of a bacterial endophyte, Methylobacterium

radiotolerans MAMP 4754, isolated from

Combretum erythrophyllum seeds. International

Journal of microbiology (2020).

M. A. Akinsanya, J.K. Goh, S.P. Lim, and A.S. Ting.

Diversity, antimicrobial and antioxidant activities of

culturable bacterial endophyte communities in Aloe

vera. FEMS Microbiology Letters 1:362 (2015).

A.L. Prihantini, and S. Tachibana. Antioxidant

compounds produced by Pseudocercospora sp. ESL

, an endophytic fungus isolated from Elaeocarpus

sylvestris. Asian Pacific Journal of Tropical

Biomedicine 7(2):110-5 (2017).

P.R. Sarjono, L.D. Putri, C.E. Budiarti, N.S.

Mulyani, D. Kusrini, and N.B. Prasetya. Antioxidant

and antibacterial activities of secondary metabolite

endophytic bacteria from papaya leaf (Carica

papaya L.). InIOP Conference Series: Materials

Science and Engineering 509(1):012112 (2019).

Y. Swarnalatha, B. Saha, and L. Choudary. Bioactive

compound analysis and antioxidant activity of

endophytic bacterial extract from Adhathoda

beddomei. Asian Journal of Pharmaceutical and

Clinical Research (8):70–72 (2015).

K. Srinivasan, L.K. Jagadish, R. Shenbhagaraman,

and J. Muthumary. Antioxidant activity of

endophytic fungus Phyllosticta sp. isolated from

Guazuma tomentosa. Journal of Phytology 2(6)

(2010).

R. Singla. A comparative study on the antioxidant

activity of four different fungal endophytes. Acta

Scientific Microbiology 3:34–41 (2019).

N. Premjanu, and C. Jaynthy. Antioxidant activity

of endophytic fungi isolated from Lannea

coromendalica. International Journal of Research

in Pharmaceutical Sciences 5:304-8 (2014).

F.R. Nuraini, R. Setyaningsih, and A. Susilowati.

Antioxidant activity of bioactive compound

produced by endophytic fungi isolated from

endemic plant of South Kalimantan Mangifera

casturi Kosterm. AIP Conference Proceedings. Vol.

No. 1. AIP Publishing LLC, (2019).

A. Khiralla, I. Mohamed, J. Thomas, B. Mignard,

R. Spina, S. Yagi, and D. Laurain-Mattar. A pilot

study of antioxidant potential of endophytic fungi

from some Sudanese medicinal plants. Asian Pacific

Journal of Tropical Medicine 8(9):701-4 (2015).

K.A. Selim, W.A. Elkhateeb, A.M. Tawila, A.A.

El-Beih, T.M. Abdel-Rahman, A.I. El-Diwany, and

E.F. Ahmed. Antiviral and antioxidant potential of

fungal endophytes of Egyptian medicinal plants.

Fermentation 4(3):49 (2018).

R. Singh, and A.K. Dubey. Endophytic actinomycetes

as emerging source for therapeutic compounds.

Indo Global Journal of Pharmaceutical Sciences

(2):106-16 (2015).

E. Li, R. Tia, S. Liu, X. Chen, L. Guo, and Y. Che.

Pestalotheols A− D, bioactive metabolites from

the plant endophytic fungus Pestalotiopsis theae.

Journal of Natural Products 71(4):664-8 (2008).

J. Wang, Y. Huang, M. Fang, Y. Zhang, Z. Zheng,

Y. Zhao, and W. Su. FEMS Immunology & Medical

Microbiology 34(1):51-7 (2002).

S.B. Singh, J.G. Ondeyka, N. Tsipouras, C.

Ruby, V. Sardana, M. Schulman, M. Sanchez,

F. Pelaez, M.W. Stahlhut, S. Munshi, and D.B.

Olsen. Hinnuliquinone, a C2-symmetric dimeric

non-peptide fungal metabolite inhibitor of HIV-1

protease. Biochemical and Biophysical Research

Communications 324(1):108-13 (2004).

Younis et al

B. Guo, J.R. Dai, S. Ng, Y. Huang, C. Leong, W.

Ong, and B.K. Carté. Cytonic acids A and B: novel

tridepside inhibitors of hCMV protease from the

endophytic fungus Cytonaema species. Journal of

Natural Products 63(5):602-4 (2000).

M. Isaka. A, Jaturapat, K. Rukseree, K.

Danwisetkanjana, M. Tanticharoen,and Y.

Thebtaranonth. Phomoxanthones A and B, novel

xanthone dimers from the endophytic fungus

Phomopsis P. Boonsnongcheep, T. Nakashima,

Y. Takahashi, and S. Prathanturarug. Diversity of

endophytic actinomycetes isolated from roots and

root nodules of Pueraria candollei grah. ex benth.

and the analyses of their secondary metabolites.

Chiang Mai Journal of Science 1:1-4 (2017).

M. Isaka, A. Jaturapat, K. Rukseree, K.

Danwisetkanjana, M. Tanticharoen, and Y.

Thebtaranonth Phomoxanthones A and B, novel

xanthone dimers from the endophytic fungus

Phomopsis species. Journal National Product

(8):1015-8 (2001).

A. Kaur. Evaluation of antidiabetic and antioxidant

potential of endophytic fungi isolated from

medicinal plants. International Journal of Green

Pharmacy 12.01 (2018).

L. Ravi, A. Ragunathan, and K. Krishnan.

Antidiabetic and antioxidant potential of GancidinW

from Streptomyces paradoxus VITALK03. The

Open Bioactive Compounds Journal 5.1 (2017).

V.J. Akshatha, M.S. Nalini, C. D’souza, and H.S.

Prakash. Streptomycete endophytes from anti‐

diabetic medicinal plants of the Western Ghats

inhibit alpha‐amylase and promote glucose uptake.

Letters in Applied Microbiology 58:433-9 (2014).

M. Choudhary, V. Kumar, H. Malhotra, and S. Singh.

Medicinal plants with potential anti-arthritic activity.

Journal of Intercultural Ethnopharmacology 4:147

(2015).

A. Pretsch, M. Nagl, K. Schwendinger, B. Kreiseder,

M. Wiederstein, D. Pretsch, M. Genov, R. Hollaus,

D. Zinssmeister, A. Debbab, and H. Hundsberger.

Antimicrobial and anti-inflammatory activities of

endophytic fungi Talaromyces wortmannii extracts

against acne-inducing bacteria. PloS One 9(6):

e97929 (2014).

M. Shah, S.K. Deshmukh, S.A. Verekar, A. Gohil,

A.S Kate, V. Rekha, and A. Kulkarni-Almeida. Antiinflammatory properties of mutolide isolated from

the fungus Lepidosphaeria species (PM0651419).

SpringerPlus 4(1):1-0 (2015).

Downloads

Published

2022-12-28

How to Cite

Tahira Younis, Rahman, L., Rahman, S., Shinwari, A. K., Irum Iqrar, & Zabta Khan Shinwari. (2022). Endophytes: Potential Source of Bioactive Compounds of Pharmaceutical Importance: Pharmaceutical Importance of Bioactive Compounds from Endophytes. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 59(4), 1–13. https://doi.org/10.53560/PPASB(59-4)780

Issue

Section

Articles