An Overview of Pathways Network Analysis of Pendred Syndromic Genes

Pathways Network Analysis of Pendred Syndromic Genes

Authors

  • Mirza J. Hasnain Department of Bioinformatics & Computational Biology, Virtual University of Pakistan, Pakistan
  • Muhammad U. Z. Khan State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR, China
  • Khizra Maqsood Department of Bioinformatics & Computational Biology, Virtual University of Pakistan, Pakistan
  • Tahera Aslam Department of Bioinformatics & Computational Biology, Virtual University of Pakistan, Pakistan
  • Masroor E. Babar Department of Genetics, Virtual University of Pakistan, Pakistan
  • Shunli Yang State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR, China
  • Huma Sohail Department of Bioinformatics & Computational Biology, Virtual University of Pakistan, Pakistan
  • Muhammad T. Pervez Department of Bioinformatics & Computational Biology, Virtual University of Pakistan, Pakistan
  • Jianping Cai State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR, China

Keywords:

Pendred syndrome, Hearing impairment, SLC26A4, PDS Gene, Gene network, Ingenuity Pathway Analysis software (IPA)

Abstract

Pendred syndrome, mainly labeled as sensorineural hearing loss and goiter, is an autosomal recessive disorder that forms an association to worsen the disease severity. It is the most known and prevalent form of the audiological disease. Some studies showed that the disorder may account for almost 10% of inherited deafness. Like all other disorders, a set of genes are known to characterize the Pendred Syndrome, where each one of them is segregated with the disease according to the families they belong to. The proposed study focusing on exploring the extent of segregation of each gene that is playing a role in the disorder. SLC26, a protein family of ion transporters, is known to play a significant role in this accord. The mutations in the genes mainly SLC26A4 underlie the major anomalies and malfunctioning that characterize the Pendred Syndrome. The biological pathway analysis using different online tools and databases like Ensemble decision analysis, DAVID (Database for Annotation, Visualization, and Integrated Discovery), IPA (Ingenuity Pathway Analysis software ) was performed to see Cellular Enrichment Components and Biological Enrichment Processes followed by gene network analysis, which determines the candidate gene interactions including the ion transporter family genes that are present on the plasma membrane, out of which two genes belonged to the focused protein family SLC26. The proposed study has highlighted the central role of the SLC26 protein family in hearing impairment and hearing loss.

References

P. S. Padanad, N. Bhat, B. Guo, and B.B. Riley, Conditions that influence the response to Fgf during otic placode induction. Developmental Biology 364(1): 1-10 (2012).

J. Bok, C. Zenczak, C.H. Hwang, and D.K. Wu, Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences 110(34) : 13869-13874 (2013).

G. R. Fraser, Association of congenital deafness with goitre (Pendred’s syndrome): a study of 207 families. Annals of Human Genetics 28(1‐3): 201-250 (1964).

T. Tateya, I. Imayoshi, I. Tateya, K. Hamaguchi, H. Torii, J. Ito, and R. Kageyama, Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 140(18): 3848-3857 (2013).

F. R. Lin, E. J. Metter, R. J. O’Brien, S. M. Resnick, A. B. Zonderman, and L. Ferrucci, Hearing loss and incident dementia. Archives of Neurology 68(2): 214-220 (2011).

N. Schmuziger, K. Fostiropoulos, and R. Probst, Long-term assessment of auditory changes resulting from a single noise exposure associated with non-occupational activities: Evaluación a largo plazo de los cambios auditivos ocasionados por una exposición única a ruido durante actividades no laborales. International journal of audiology 45(1): 46-54 (2006).

J.B.B. Keats, and C.I. Berlin, Genomics and hearing impairment. Genome Research 9(1): 7-16 (1999).

D.S. Dalton, K.J. Cruickshanks, B.EK. Klein, R. Klein, T.L. Wiley, and D.M. Nondahl The impact of hearing loss on quality of life in older adults. The Gerontologist 43(5): 661-668 (2003).

M.G.B. Goldfeld, JM.E.G. Nassir, E. Hazani, and N. Bishara, CT of the ear in Pendred syndrome. Radiology 235(2): 537-540 (2005).

D. Stephens, I. Gianopoulos, and P. Kerr, Determination and Classification of the Problems Experienced by Hearing-impaired Elderly People: Determinatión y clasificación de los problemas que experimentan las personas mayores con hipoacusia. Audiology 40(6): 294-300 (2001).

C.C Morton, and W.E. Nance, Newborn hearing screening—a silent revolution. New England Journal of Medicine 354(20): 2151-2164 (2006).

V.C. Sheffield, Z. Kraiem, J. C. Beck, D. Nishimura, E.M. Stone, M.Salameh, O. Sadeh, and B. Glaser, Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nature Genetics 12(4): 424-426 (1996).

T.A. Manolio, L.D. Brooks, and F.S. Collins. A HapMap harvest of insights into the genetics of common disease. The Journal of Clinical Investigation 118(5): 1590-1605 (2008).

W. Reardon, R. Coffey, T.Chowdhury, A. Grossman, H. Jan, K. Britton, K.T. Pat, and R. Trembat, Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. Journal of Medical Genetics 36(8): 595-598 (1999).

J.P. Taylor, R.A. Metcalfe, P.F. Watson, A.P. Weetman, and R.C. Trembath, Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. The Journal of Clinical Endocrinology & Metabolism 87(4): 1778-1784 (2002).

C. Campbell, R.A. Cucci, S. Prasad, G.E. Green, J.B. Edeal, C.E. Galer, L.P. Karniski, V.C. Sheffield, and R. JH. Smith, Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype–phenotype correlations. Human Mutation 17(5): 403-411 (2001).

B. Coyle, R.W. Herbrick, L. Tsui, E. Gausden, J. Lee, R. Coffey, A. Grueters, A. Grossman, P. Phelps, L. Luxon. Molecular analysis of the PDS gene in Pendred syndrome (sensorineural hearing loss and goitre). Human Molecular Genetics 7(7): 1105-1112 (1998).

R.P. Reardon, T. K. Scarborough, B. D. Matthews, J. L. Marti, and A. Preciado, Laparoscopically assisted ventriculoperitoneal shunt placement using 2-mm instrumentationrid=”” id=”” Presented in poster format at the annual meeting of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES), San Antonio, Texas, USA, 24–27 March 1999. Surgical Endoscopy 14(6): 585-586 (2000).

T.O. Gonzalez, A.O. Karamanoglu, C. J. Ceballos, V. I. Vives, R. C. Ramirez, V. V. Gomez, G. Medeiros-Neto, and P. Kopp, Clinical and molecular analysis of three Mexican families with Pendred’s syndrome. European Journal of Endocrinology 144(6): 585-593 (2001).

G. Dennis, B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H. C. Lane, and R.A. Lempicki, DAVID: database for annotation, visualization, and integrated discovery. Genome Biology 4(9): R60 (2003).

Y. Jun, X. Gu, and S. Yi, Ingenuity pathway analysis of gene expression profiles in distal nerve stump following nerve injury: insights into wallerian degeneration. Frontiers in Cellular Neuroscience 10: 274 (2016).

Ensembl genome browser 101. (n.d.). Retrieved November 20, 2020, from https://asia.ensembl.org/index.html

A.G. Stamatiou, and K.M. Stankovic, A comprehensive network and pathway analysis of human deafness genes. Otology & Neurotology 34(5): 961-970 (2013).

J.F. Polanski, A. D. Soares, Z. M. D. Santos, and O.L.M. Cruz, Active middle-ear implant fixation in an unusual place: clinical and audiological outcomes. The Journal of Laryngology & Otology 130(4): 404-407 (2016).

R. Mittal, L.H. Debs, D. Nguyen, A.P. Patel, M. Grati, J. Mittal, D. Yan, A. A. Eshraghi, and X.Z. Liu, Signaling in the auditory system: implications in hair cell regeneration and hearing function. Journal of Cellular Physiology 232(10): 2710-2721 (2017).

S. Mukherjee, M. Guha, B. Adhikary, B. Bankura, P. Mitra, S. Chowdhury, and M. Das, Genetic alterations in pendrin (SLC26A4) gene in adult hypothyroid patients. Hormone and Metabolic Research 49(9): 680-686 (2017).

M.J. Kwak, Clinical genetics of defects in thyroid hormone synthesis. Annals of pediatric Endocrinology & Metabolism 23(4): 169 (2018).

L. Zenglin, P. D. Luca, and A.D. Cristofano, Gene expression analysis reveals a signature of estrogen receptor activation upon loss of Pten in a mouse model of endometrial cancer. Journal of Cellular Physiology 208(2): 255-266 (2006).

R.K. Edlund, B. Onur, and A.K. Groves, The role of foxi family transcription factors in the development of the ear and jaw. In Current Topics in Developmental Biology, vol. 111, pp. 461-495. Academic Press, 2015.

A. Molnar, C.A. Horvath, P. Czovek, A. Szanto, and G. Kovacs, FOXI1 Immunohistochemistry Differentiates Benign Renal Oncocytoma from Malignant Chromophobe Renal Cell Carcinoma. Anticancer Research 39(6): 2785-2790 (2019).

L. Chen, JW Lee, CL Chou, A.V. Nair, M.A. Battistone, T.G. Păunescu, M. Merkulova, S. Breton, JW Verlander, S.M. Wall, D. Brown, Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proceedings of the National Academy of Sciences 114(46): E9989-E9998 (2017).

D. E. P. Vanpoucke, J. Oláh, F.D. Proft, V.S. Veronique, and G. Roos. “onvergence of atomic charges with the size of the enzymatic environment.”Journal of Chemical Information and Modeling 55(3): 564-571 (2015).

S.P. Alexander, J.A. Peters, E. Kelly, N.V. Marrion, E. Faccenda, S.D. Harding, A.J. Pawson, J.L. Sharman, C. Southan, J.A. Davies, C.G.T.P. Collaborators, The Concise Guide to PHARMACOLOGY 2017/18: Ligand‐gated ion channels. British Journal of Pharmacology 174: S130-S159 (2017).

M.AM.V. Steensel, A.M. Maurice, M. V. Geel, and P. M. Steijlen, Further delineation of the hypotrichosis-deafness syndrome. European Journal of Dermatology 15(6): 437-438 (2005).

S. Delmaghani, J. Defourny, A. Aghaie, M. Beurg, D. Dulon, N.Thelen, I. Perfettini, T. Zelles, M. Aller, A. Meyer, A. Emptoz, Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163(4): 894-906 (2015).

B. Blanco-Sánchez, C.Aurélie, J.F. Javier , S. Sarah, B. P. Jennifer, W. Jeremy, M.P. Jennifer, J.L. Peirce, P. Washbourne, and M. Westerfield, Grxcr1 Promotes Hair Bundle Development by Destabilizing the Physical Interaction between Harmonin and Sans Usher Syndrome Proteins. Cell Reports 25(5): 1281-1291 (2018).

I. Mašindová, A. Šoltýsová, L. Varga, P. Mátyás, A. Ficek, M. Hučková, M. Sůrová, D. Šafka-Brožková, S. Anwar ,J. Bene,S. Straka, MARVELD2 (DFNB49) mutations in the hearing impaired central european roma population-prevalence, clinical impact and the common origin. PloS one 10(4) (2015).

A.G. Ercan-Sencicek, S. Jambi, D. Franjic, S. Nishimura, M. Li, P. El-Fishawy, T.M. Morgan, S.J. Sanders, K. Bilguvar, M. Suri, M.H. Johnson, Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. European Journal of Human Genetics 23(2): 165-172 (2015).

M. Hulander, E.K. Amy, R.B. Sandra, C. Peter, S. Emma-Johanna, R.J. Bengt, P.S. Karen, and E.Sven, Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130(9): 2013-2025 (2003).

A.Imtiaz, C.K.David, and N. Sadaf, A frameshift mutation in GRXCR 2 causes recessively inherited hearing loss. Human mutation 35(5): 618-624 (2014).

T. Minxing, S. Xiaofei, Y. Jun, W. Qinjun, L. Yajie, C. Xin Cao, and X. Guangqian, Identification of I411K, a novel missense EYA4 mutation causing autosomal dominant non syndromic hearing loss. International Journal of Molecular Medicine 34(6): 1467-1472 (2014).

D. Morten, H. Hove, M. Kirchhoff, K. Devriendt, and M. Schwartz, Mapping genomic deletions down to the base: a quantitative copy number scanning approach used to characterise and clone the breakpoints of a recurrent 7p14. 2p15. 3 deletion. Human Genetics 115(6) : 459-467. (2004)

X. Bai,T.F. Moraes, and R.A. Reithmeier, Effect of SLC26 anion transporter disease-causing mutations on the stability of the homologous STAS domain of E. coli DauA (YchM). Biochemical Journal 473(5): 615-626 (2016).

J. Kere, Overview of the SLC26 family and associated disease”. In Novartis Found Symposium 273: 2-11 (2006).

Z.M. Ahmed, S. Masmoudi, E. Kalay, I.A. Belyantseva, M.A. Mosrati, R.W. Collin, S. Riazuddin, M. Hmani-Aifa, H. Venselaar, M.N. Kawar, A. Tlil, Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nature Genetics 40(11): 1335 (2008).

S. Kikuchi, M. Hata, K. Fukumoto, Y. Yamane, T. Matsui, A. Tamura, S. Yonemura, H. Yamagishi, D. Keppler, S. Tsukita, S. Tsukita, Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genetics 31(3): 320-325 (2002).

H. Moteki, H. Azaiez, K.T. Booth, M. Hattori, A. Sato,Y. Sato, M. Motobayashi, C.M. Sloan, D.L. Kolbe, A.E. Shearer, R.J. Smith, Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation. Annals of Otology, Rhinology & Laryngology 124(1): 177S-183S (2015).

L. Karger, W.A. Khan, Raf. Calabio, R. Singh, B. Xiang, A. Babu, N. Cohen, A.C. Yang, and S.A. Scott, Maternal uniparental disomy of chromosome 15 and concomitant STRC and CATSPER2 deletion-mediated deafness-infertility syndrome. American Journal of Medical Genetics. Part A 173(5): 1436 (2017).

H. Duan, Z.Di,C. Jing,L. Yu, and Y. Huijun. Gene screening facilitates diagnosis of complicated symptoms: A case report. Molecular medicine reports 16(6): 7915-7922 (2017).

H. Azaiez, T.B. Kevin, B. Fengxiao, H. Patrick, B.S. Shibata, A.E. Shearer, K. Diana, M. Nicole, E.A. Black‐Ziegelbein, and J.H.S. Richard, TBC 1 D 24 Mutation Causes Autosomal‐Dominant Nonsyndromic Hearing Loss. Human mutation 35(7): 819-823 (2014).

O. Diaz-Horta, D. Duman, F. Joseph, A. Sırmacı, M. Gonzalez, N. Mahdieh, N. Fotouhi, M. Bonyadi, F.B. Cengiz, I. Menendez, R.H. Ulloa, Whole-exome sequencing efficiently detects rare mutations in autosomal recessive nonsyndromic hearing loss. PloS one 7(11) (2012).

A.U. Rehman, K. Gul, R.J. Morell, K. Lee, Z.M. Ahmed, S. Riazuddin, R.A. Ali, M. Shahzad, A.U. Jaleel, P.B. Andrade, S.N. Khan, “Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome 19p. Human Genetics 130(6): 759-765 (2011).

Downloads

Published

2020-06-10

How to Cite

Hasnain, M. J., Khan, M. U. Z., Maqsood, K. ., Aslam, T. ., E. Babar, M. ., Yang, S., Sohail, H., T. Pervez, M. ., & Cai, J. . (2020). An Overview of Pathways Network Analysis of Pendred Syndromic Genes: Pathways Network Analysis of Pendred Syndromic Genes. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 57(2), 15–26. Retrieved from http://ppaspk.org/index.php/PPAS-B/article/view/30

Issue

Section

Research Articles