Advances in the CRISPR/Cas9 Mediated Genome Editing: A Review

CRISPR/Cas9 Mediated Genome Editing

Authors

  • Mohsin Nawaz Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
  • Muhammad Q. Iqbal Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
  • Iqra Shoaib Department of Biosciences, COMSATS University, Islamabad, Pakistan
  • Sidra Ahmad Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Pakistan
  • Farhat Ullah Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
  • Adil Hussain Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Pakistan

Keywords:

CRISPR/Cas9 system, DNA, Genome editing, Revolution

Abstract

The primary long-lasting objective of biomedical researcher’s is the expansion of some superior and fruitful conducts in order to make some targeted alterations to the living cells genome. In modern times, a novel and up-to-date tool have emerged which is CRISPR-associated protein-9 nuclease (Cas9) from a bacteria Streptococcus pyogenes. This tool has gained a lot of focus and delivered a significant excitement. It has been sanctioned that the Biological Sciences have one of the best ever discoveries in the form of CRISPR-Cas9, which makes the integration of anticipated traits in eukaryotic cells very well-organized and easy. Furthermore, these traits have the potency of being target specific. They do not follow a random insertion of genes in the genome of any organism. This revolutionary technology is very user and environment friendly, easy to handle, and can be easily applicable in other offshoots of biology including, health, agriculture, genetic syndromes, and other microbial diseases. In this review, we will provide, brief insights on the history of CRISPR/Cas9 system from its discovery to the mechanism of action. The literature for this review has been obtained from accessible catalogs namely, PubMed, Science Direct, Google Scholar and Research gate. With this revolutionary technology, the modification, regulation and locating of genomic loci in cells of all organisms indeed is a remarkable development.

References

Cui, J., S.J.L. Chew., Y. Shi., Z. Gong., & H.M. Shen. CRISPR system for genome engineering: the application for autophagy study. BMB reports 50(5):247.(2017).

Cao, H. X., W. Wang., H.T. Le., & G.T. Vu. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. International journal of genomics (2016).

Chylinski, K., K.S. Makarova., E. Charpentier., & E.V. Koonin. Classification and evolution of type II CRISPR-Cas systems. Nucleic acids research 42(10): 6091-6105 (2014).

Singh, A., D, Chakraborty., & S, Maiti. CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chemical Society Reviews45(24): 6666-6684 (2016)

Lau, V., & J.R. Davie. The discovery and development of the CRISPR system in applications in genome manipulation. Biochemistry and Cell Biology 95(2): 203-210. (2016).

Mei, Y., Y. Wang., H. Chen., Z.S. Sun., & X.D. Ju. Recent progress in CRISPR/Cas9technology. Journal of Genetics and Genomics43(2):63-75 (2016).

Makarova, K.S., Y.I. Wolf., O.S. Alkhnbashi., F. Costa., S.A. Shah., S.J. Saunders., & P. Horvath. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology 13(11): 722-736 (2015).

Doetschman, T., & T. Georgieva. Gene editing with CRISPR/Cas9 RNA-directed nuclease. Circulation research, 120(5):876-894. (2017).

Zhang, J. H., P. Adikaram., M. Pandey., A. Genis., & W.F. Simonds. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 7(3), 166-174. (2016).

Hsu, P. D., E.S. Lander., & F. Zhang. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-1278 (2014).

Zhou, Y., Y. Zong., & X. Kong. Research progress in the third-generation genomic editing technology-CRISPR/Cas9. Zhonghua yi xue yi chuan xue za zhi= Zhonghua yixue yichuanxue zazhi= Chinese journal of medical genetics 33(5): 713-716 (2016).

Dominguez, A.A., W.A. Lim., & L.S. Qi. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 17(1), 5-15.(2016).

Amitai, G., & R. Sorek. CRISPR–Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology 14(2): 67. (2016).

Anders, C., O. Niewoehner., A. Duerst., & M. Jinek. Structural basis of PAMdependent target DNA recognition by the Cas9 endonuclease. Nature 513:(7519) 569 (2014).

Wang, H., Russa., M. La., & L. S. Qi. CRISPR/Cas9 in genome editing and beyond. Annual review of biochemistry 85: 227-264 (2016).

Bhaya, D., M. Davison., & R. Barrangou. CRISPRCas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics45:273-297 (2011).

Jiang, F., & J.A. Doudna. CRISPR–Cas9 structures and mechanisms. Annual review of biophysics46:505-529 (2017).

Zhang, Y., N. Heidrich., B.J. Ampattu., C.W. Gunderson., H.S. Seifert., C. Schoen., J. Vogel., & E.J. Sontheimer. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Molecular Cell50:488–503 (2013)

Makarova, K.S. F. Zhang., & E.V. Koonin. Snapshot: class 1 CRISPR-Cas systems. Cell 168(5): 946-946 (2017).

Richter, H., J. Rompf., J. Wiegel., K. Rau., & L. Randau. Fragmentation of the CRISPR-Cas Type IB signature protein Cas8b. Biochimica et Biophysica Acta (BBA)-General Subjects (2017).

Sinkunas, T., G. Gasiunas., C. Fremaux., R. Barrangou., P. Horvath., & V. Siksnys. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO Journal 30: 1335–1342 (2011).

Cong, L., F.A. Ran., D. Cox., S. Lin., R. Barretto., N. Habib.,& F. Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science339(6121) :819-823 (2013).

Lockyer, E. J. The potential of CRISPR-Cas9 for treating genetic disorders. Bioscience Horizons: The International Journal of Student Research 9: 012 (2016).

Chylinski, K., K.S. Makarova., E. Charpentier., & E.V. Koonin. Classification and evolution of type II CRISPR-Cas systems. Nucleic acids research 42(10): 6091-6105 (2014).

Hsu, P.D., E.S. Lander., & F. Zhang. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262-1278 (2014).

Hatoum-Aslan, A., K.L. Palmer., M.S. Gilmore., & L.A. Marraffini. Type III CRISPR-Cas Systems and the Roles of CRISPR-Cas in Bacterial Virulence. In CRISPR-Cas Systems(pp. 201-219). Springer Berlin Heidelberg (2013).

Toro, N., F. Martínez-Abarca., & A. González- Delgado. The Reverse Transcriptases Associated with CRISPR-Cas Systems. Scientific reports7:7089 (2017).

Makarova, K.S., L. Aravind., N.V. Grishin., I.B. Rogozin., & E.V. Koonin. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research 30:482–496 (2002).

Gaj, T., C.A. Gersbach., & C.F. Barbas. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in biotechnology 31(7):397-405 (2013).

Kim, H., & J.S. Kim. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15(5): 321-334 (2014).

Wu, X., A.J. Kriz., & P.A. Sharp. Target specificity of the CRISPR-Cas9 system. Quantitative biology 2(2): 59-70 (2014).

Pattanayak, V., C.L. Ramirez., J.K. Joung., & D.R. Liu. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8(9): 765 (2011).

Liu, D., R.Mewalal., Hu., R.G.A.Tuskan.,&X.Yang. New technologies accelerate the exploration of noncoding RNAs in horticultural plants. Horticulture research 4: 17031(2017).

Jia, H.,& N. Wang. Targeted genome editing of sweet orange using Cas9/sgRNA. PloS one9(4):e93806(2014)..

Nishitani, C., N. Hirai. S. Komori., K. M. Wada.,Okada., K. Osakabe., & Y. Osakabe. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific reports 6: 31481(2016).

Brooks, C., V. Nekrasov., Z.B. Lippman., & J. Van Eck. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant physiology 166(3): 1292-1297 (2014)

Butler, N.M., P.A. Atkins., D.F. Voytas., & D.S. Douches. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PloS one 10(12):e0144591 (2015).

Shalem, O., N.E. Sanjana., & F. Zhang. Highthroughput functional genomics using CRISPR–Cas9. Nature Reviews Genetics16(5): 299 (2015).

Zamore, P. D., T., Tuschl, P. A., Sharp, & D. Bartel, PRNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25-33 (2000).

Jacobs, T.B., P.R. LaFayette., R.J. Schmitz., & W.A. Parrott. Targeted genome modifications in soybean with CRISPR/Cas9. BMC biotechnology15(1): 16 (2015).

Shechner, D.M., E. Hacisuleyman., S.T. Younger., & J.L Rinn. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nature methods 12(7):664 (2015).

Liu, X., S.W., J.Xu.,C.Sui.,& J. Wei. Application of CRISPR/Cas9 in plant biology. Acta pharmaceutica sinica B 7(3):292-302 (2017).

Jiang, W., H.Bi. Zhou., H.M. Fromm., B. Yang., & D.P. Weeks. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research 41(20): e188-e188 (2013).

Jia, H., & N. Wang. Targeted genome editing of sweet orange using Cas9/sgRNA. PloS one9(4):e93806 (2014).

Yin, K., T. Han., G. Liu., T. ChenWang., Y.A.Y.L. Yu., & Y.A. Liu. geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific reports5:14926 (2015).

Lawrenson, T., O. Shorinola., N. Li., C. Stacey., L. Østergaard., N. Patron.,& W. Harwood. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome biology 16(1): 258 (2015).

Jacobs, T.B., P.R. LaFayette., R.J. Schmitz., & W.A Parrott. Targeted genome modifications in soybean with CRISPR/Cas9. BMC biotechnology 15(1): 16 (2015).

Li, M., X. Li,. Z. Zhou., P. Wu., M. Fang., X. Pan., & H. Li. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in plant science 7:377 (2016).

Yang, C., F. Lin., Q. Li., T. Li., & J. Zhao. Comparative genomics reveals diversified CRISPRCas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Frontiers in microbiology 6:394 (2015).

Anderson, R.E., W.J. Brazelton., & J.A. Baross. Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS microbiology ecology 77(1):120-133 (2011).

Fraser, D.W., T.R.Tsai.,W.Orenstein., W.E. Parkin., H.J.Beecham., R.G. Sharra.,&C.C. Shepard. Legionnaires disease: description of an epidemic of pneumonia. New England Journal of Medicine 297(22):1189-1197 (1977).

Horvath, P., & R. Barrangou. CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167-170 (2010).

Faucher, S. P., & H. A. Shuman, Small regulatory RNA and Legionella pneumophila. Frontiers in microbiology 2: 98 (2011).

Downloads

Published

2019-03-06

How to Cite

Nawaz, M. ., Iqbal, M. Q. ., Shoaib, I. ., Ahmad, S. ., Ullah, F. ., & Hussain, A. . (2019). Advances in the CRISPR/Cas9 Mediated Genome Editing: A Review: CRISPR/Cas9 Mediated Genome Editing. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 56(1), 1–17. Retrieved from http://ppaspk.org/index.php/PPAS-B/article/view/161

Issue

Section

Review Article