Methods to Analyze Proteins from Soils

Method to analyze protien from Soilsh

Authors

  • Salma Mukhtar School of Life Sciences, Forman Christian College (A Chartered University), Lahore
  • Nayaab Laaldin School of Life Sciences, Forman Christian College (A Chartered University), Lahore
  • Samina Mehnaz School of Life Sciences, Forman Christian College (A Chartered University), Lahore
  • Kausar Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore

Keywords:

Metaproteomics, Halophiles, 2-D Electrophoresis, High performance liquid chromatography (HPLC) Mass spectrometry (MS)

Abstract

Recent advances in molecular techniques, especially system approaches at DNA, RNA and protein levels have opened an emerging field in microbial ecology. These approaches can be used to identify the specific microbial genes and their functions directly from environmental samples. Among the different ‘omics’ approaches, metaproteomics is used to study microbial ecology and it plays an important role in the determination of microbial functionality. It provides detail about the structure and function of microbial populations from soil samples. However, proteins isolation and purification is very challenging due to complexity of soil samples. Only a few methods give high quality of extracting proteins and other methods can only be used to separate proteins using SDS electrophoresis but they are unable to characterize and identify specific proteins present in a soil sample. This review has mainly focused on recent advances in metaproteomic strategies to understand the structure and function of soil microbial communities. Three methods for protein extraction from soil samples were explained here, e.g., (1) using the phenol extraction method, (2) cell lysis method using different concentrations of SDS and alkaline lysis method using NaOH. For purification and identification of proteins, HPLC, FPLC, 2D-LC, LC-MS, MALDI-TOF and shotgun proteomics analyses were explained.

References

Bastida, F., T. Hernández, J. Albaladejo & C. García. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biology & Biochemistry 65: 12-21 (2013).

Raes, J. & P. Bork. Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology 6: 693-699 (2008).

Wang, H.B., Z.X. Zhang, H. Li, et al. Characterization of metaproteomics in crop rhizospheric soil. Journal of Proteome Research 10: 932-940 (2011).

Lee, N., P.H. Nielsen, K.H. Andreasen, S. Juretschko, J.L. Nielsen, K.H. Schleifer, et al. Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structurefunction analyses in microbial ecology. Applied & Environmental Microbiology65: 1289-1297 (1999).

Radajewski, S., I.R. McDonald & J.C. Murrell. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Current Opinion in Biotechnology14: 296-302 (2003).

Friedrich, M.W. 2006. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology17: 59-66.

Mary, I., A. Oliver, P. Skipp, et al. Metaproteomics and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting. Microbial Ecology 74: 10–18 (2010).

Liszka, M., M. Clark, E. Schneider & D.S. Clark. Nature versus nurture: developing enzymes that function under extreme conditions. Annual Reviews of Chemical Biomolecules Engineering 3: 77–102 (2012).

Lacerda, C.M.R., L.H. Choe & K.F. Reardon. Metaproteomic analysis of a bacterial community response to cadmium exposure. Journal of Proteome Research 6: 1145–1152 (2007).

Bastida F., C. Nicolas, J.L. Moreno, T. Hernandez & C. Garcıa. Tracing Changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics. Pedosphere 20: 479–485 (2010).

Benndorf, D., G.U. Balcke, H. Harms & M. von Bergen. Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME Journal 1: 224-234 (2007).

Morris, R.M., B.L. Nunn, C. Frazar, D.R. Goodlett, Y.S. Ting & G. Rocap. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME Journal 4: 673-685 (2010).

Janga, S.C., J.J. Dıaz-Mejıa & G. Moreno-Hagelsieb. Network-based function prediction and interactomics: the case for metabolic enzymes. Metabolic Engineering 13: 1-10 (2011).

Wilmes, M.W. & P.L. Bond. Metaproteomics provides functional insight into activated sludge wastewater treatment. PloS One 3: 3-8 (2008).

Gygi, S.P., Y. Rochon, B.R. Franza & R. Aebersold. Correlation between protein and mRNA abundance in yeast. Molecular Cell Biology 19: 1720-1730 (1999).

Wilmes P. & P.L. Bond. 2006. Metaproteomics: studying functional gene expression in microbial ecosystems. Trends in Microbiology 14(2): 92-7 (2006).

Schneider T. & K. Riedel. Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10: 785-98 (2010).

Nannipieri, P. & K. Smalla. Nucleic Acids and Proteins in Soil. Series: Soil Biology, Volume 8. Springer Verlag, Heidelberg (2006).

Wang W., S.N. Chen & M.C. Rillig Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics 9: 4970-4973 (2009).

Nannipieri, P. Role of stabilized enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nucleic Acids and Proteins in Soil. Series: Soil Biology. Nannipieri P. & K. Smalla (Ed.), Springer Verlag, Heidelberg, p. 75-94 (2006).

Giagnoni L., F. Magherini, L. Landi, S.Taghavi, D. Lelie, et al. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biology & Fertility of Soils 48: 425-433 (2012).

Keiblinger, K.M., I. C. Wilhartitz, T. Schneider, B. Roschitzki, et al. Soil metaproteomics - Comparative evaluation of protein extraction protocols. Soil biology & biochemistry 54: 14-24 (2012).

Madsen, E.L. Microorganisms and their roles in fundamental biogeochemical cycles. Current Opinion in Biotechnology 22: 456-464 (2011).

Lawrance, I.C., B. Klopcic, & V.C. Wasinger. Proteomics: an overview. Inflammatory bowel diseases 11: 927-36 (2005).

Rolling, W.F.M., M. Ferrer & P.N. Golyshin. Systems approaches to microbial communities and their functioning. Current Opinion in Biotechnology 21: 532-538 (2010).

Pieper, R., S.T. Huang & M.J. Suh. Proteomics and Metaproteomics. Metagenomics Encyclopedia 8: 1-11 (2014).

Keller, M. & R. Hettich. Environmental Proteomics: a paradigm shift in characterising microbial activities at the molecular level. Microbial Molecular Biology Reviews 73: 62-70 (2009).

Dill, B.D., J.C. Young, P.A. Carey & N. VerBerkmoes. 1st (Ed.) Environmental molecular microbiology, Norfolk, UK: Caister Academic Press, p. 231.

Stevenson J.R. & L.L. Bahls. Benthic Macroinvertebrates and Fish. 2nd (Ed.) Periphyton Protocols, in Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, U.S. Environmental Protection Agency; Office of Water.

Nassar, I.N. & R. Horton. Salinity and compaction effects on soil water evaporation and water and solute distributions. Soil Science Society of America Journal 63: 752-758 (1999).

Ogunseitan, O.A. Direct extraction of proteins from environmental samples. Journal of Microbiological Methods 17: 273-281 (1993).

Bergauer K, A. Fernandez-Guerra, J.A.L. Garcia, R.R. Sprenger, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences of USA 115: E400-E408 (2018).

Criquet, S., A.M. Farnet & E. Ferre. Protein measurement in forest litter. Biology & Fertility of Soils 35: 307-313 (2002).

Ogunseitan, O.A. & J. LeBlanc. Environmental proteomics: methods and applications for aquatic ecosystems. Molecular Microbial Ecology Manual 4: 1027-1046 (2005).

Whiffen, L.K., D.J. Midgley & P.A. McGee. Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method. Soil Biology & Biochemistry 39: 691-694 (2007).

Roberts, P. & D.L. Jones. Critical evaluation of methods for determining total protein in soil solution. Soil Biology & Biochemistry 40: 1485-1495 (2008).

Sunagawa, S., L.P. Coelho, S. Chaffron, J.R. Kultima, et al. Structure and function of the global ocean microbiome. Science 348: 1261359 (2015).

Zhang, T., J. Lei, H. Yang, K. Xu, R. Wang & Z. Zhang. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 28: 795-798 (2011).

Zellner, M., W. Winkler, H. Hayden, M. Diestinger, et al. Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 26: 2481-2489 (2005).

Wessel E & E.D. Fluegge. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Annals of Biochemistry 138: 141-143 (1984).

Ladisch E. Bioseparations Engineering. John Wiley & Sons, Inc. New York, NY 2001.

Wittig, I., H.P. Braun & H. Blue native PAGE. Nature Protocols, 1: 418-428 (2006).

Rana, U., R. Kothinti, J. Meeusen, N.M. Tabatabai, S. Krezoski, D.H. Petering. Zinc binding ligands and cellular zinc trafficking: apo-metallothionein, glutathione, TPEN, proteomic zinc, and Zn-Sp1. Journal of Inorganic Biochemistry 102: 489-499 (2008).

Manchenko, G.P. 2nd (Ed.) Handbook of detection of enzymes on electrophoretic gels. CRC Press; Boca Raton (2003).

Sussulini, A. & J.S. Becker. Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3: 1271-1279 (2011).

Simpson D.M. & R.J. Beynon. Acetone precipitation of proteins and the modification of peptides. Journal of Proteome Research 9: 444-450 (2010).

Vizcaino, J.A. Proteome Xchange provides globally coordinated proteomics data 554 submission and dissemination. Nature Biotechnology 32: 223-226

(2014).

Washburn, M.P. & J.R. Yates. Novel methods of proteome analysis: multidimensional chromatography and mass spectrometry. Proteomics: A Proteomics Current Supplement 28-32 (2000).

Graves, P.R. & T.A.J. Haystead. Molecular biologist’s guide to proteomics. Microbiology & Molecular Biology Reviews 66: 39-45 (2002).

Nesatyy, V.J. & M.J.F. Suter. Proteomics for the analysis of environmental stress responses in organisms. Environmental Science & Technology 41: 6891-6900 (2007).

Wippler, J., M. Kleiner, C. Lott, A. Gruhl, P.E. Abraham, et al. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis. BMC Genomics 17: 942 (2016).

Gruber, K.A., S. Stein, L. Brink, et al. Fluorometric assay of vasopressin and oxytocin: a general approach to the assay of peptides in tissues. Proceedings of the National Academy of Sciences of USA 73: 1314-1318 (1976).

Kuroda, I., Y. Shintani, M. Motokawa, et al. Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Annals of Science 20: 1313-1319 (2004).

Dale, C.J. & T.W. Young. Applications of fast protein liquid chromatography (FPLC) to the analysis of the nitrogenous constituents of beer. Journal of the Institute of Brewing 98: 117-121 (1992).

Sheehan, D. & S. O’Sullivan. Fast Protein Liquid Chromatography. In: Protein Purification Protocols, Cutler, Paul (Ed.), p. 253-255 (2003).

Chamber, A.G., J.S. Mellors, W.H. Henley & J.M. Ramsey. Monolithic integration of two-dimensional liquid chromatography, capillary electrophoresis and electrospray ionization on a microfluidic device. Annals of Chemistry 83: 842-849 (2011).

Guiochon, G., N. Marchetti, K. Mriziq & R. Shalliker. Implementations of two-dimensional liquid chromatography. Jounral of Chromatography 1189: 109-168 (2008).

Zhang, K., Y. Li, M. Tsang & N.P. Chetwyn. Analysis of pharmaceutical impurties using multi-heart-cutting 2D-LC coupled with UV-charged aerosol MS detection: Liquid Chromatography. Journal of Separation Science 36: 2986-2992 (2013).

Bass, J.J., D.J. Wilkinson, D. Rankin, B.E. Phillips, N.J. Szewczyk, K. Smith & P.J. Atherton. An overview of technical considerations for Western blotting applications to physiological research. Scandinavian Journal of Medicine & Science in Sports 27: 4-25 (2016).

Kurien, B.T. & R.H. Scofield. Western blotting. Methods 38(4): 283-293 (2006).

Alegria-Schaffer, A., A. Lodge & K. Vattem. Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymology 463: 573-599 (2009).

Mishra, M., S. Tiwari & A.V. Gomes. Protein purification and analysis: next generation Western blotting techniques. Expert Review of Proteomics 14: 1037-1053 (2017).

Pere-Brissaud, A., X. Blanchet, D. Delourme, P. Pelissier, et al. Expression of SERPINA3s in cattle: focus on bovSERPINA3-7 reveals specific involvement in skeletal muscle. Open Biology 5(9): 150071 (2015).

Peng, J., Gygi, S.P. Proteomics: the move to mixtures. Journal of Mass Spectrometry 36: 1083-1091 (2001).

Paul, P.K., S. Bhatnagar, V. Mishra, S. Srivastava, et al. The E3 ubiquitin ligase TRAF6 intercedes in starvationinduced skeletal muscle atrophy through multiple mechanisms. Molecular Cell Biology 32: 1248-1259 (2012).

Quannzhou, L., K. Tang, F. Yang, et al. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization – mass spectrometry. Journal of Proteome Research 5: 1091-1097 (2006).

Rucevic, M., J. Clifton, F. Huang, et al. Use of short monolithic columns for isolation of low abundance membrane proteins. Journal of Chromatography 1123: 199-204 (2006).

Voelkel, T., C. Andresen, A. Unger, S. Just, W. Rottbauer & W.A. Linke. Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochimica et Biophysica ActaCell Research 1833(4): 812-822 (2013).

Eaton, S.L., S.L. Roche, H.M. Llavero, K.J. Oldknow, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One 8: e72457 (2013).

Heyer, R., K. Schallert, R. Zoun, B. Becher, G. Saake & D. Benndorf.Challenges and perspectives of metaproteomic data analysis. Journal of biotechnology 261: 24-36 (2017).

Everley, R.A., T.M. Mott, S.A. Wyatt, D.M. Toney & T.R. Croley. Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. Journal of American Society of Mass Spectrometry 19: 1621–1628 (2008).

Singhal, N., M. Kumar, P.K. Kanaujia & J.S. Virdi. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 6: 791 (2015).

Ma, Z.Q., M.C. Chambers, A.J. Ham, K.L. Cheek, et al. ScanRanker: Quality assessment of tandem mass spectra via sequence tagging. Journal of proteome research 10: 2896-2904 (2011).

Kleiner, M.,X. Dong, T. Hinzke, J. Wippler, et al. A metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. bioRxiv 9, doi: https://doi.org/10.1101/245290 (2018).

Starr, A.E., S.A. Deeke, L. Li, X. Zhang, et al. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Analytical chemistry 90: 86–109 (2017).

Yang, Y., N. Zheng, X. Zhao, Y. Zhang, et al. Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. Journal of Proteomics 116: 34-43 (2015). Jansson, J.K. & E.S. Baker. A multi-omic future for microbiome studies. Nature Microbiology 1: 16049 (2016).

Radajewski, S., P. Ineson, N.R. Parekh & J.C. Murrell. Stable isotope probing as a tool in microbial ecology. Nature 403: 646-649 (2000).

Jehmlich, N., F. Schmidt, M. von Bergen, H.H. Richnow & C. Vogt. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. The ISME Journal 2: 1122-1133 (2008).

Nijenhuis, I., N. Stelzer, M. Kastner & H.H. Richnow. Sensitive detection of anaerobic monochlorobenzene degradation using stable isotope tracers. Environmental Science & Technology 41: 3836-3842 (2007).

Alves, P., R.J. Arnold, M.V. Novotny, P. Radivojac, J.P. Reilly & H. Tang. Advancement in protein inference from shotgun proteomics using peptide detectability. Pacific Symposium on Biocomputing 4: 409-420 (2007).

Wolters, D.A., M.P. Washburn & J.R. Yates. An automated multidimensional protein identification technology for shotgun proteomics. Annals of Chemistry 73: 5683-5690 (2001).

Washburn, M.P., D. Wolters & J.R. Yates. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology 19: 242-247 (2001).

Cerqueira, F.R., R.S. Ferreira, A.P. Oliveira, A.P. Gomes, J.O. Ramos, G.A. Humberto & C. Baumgartner. MUMAL: Multivariate analysis in shotgun proteomics using machine learning techniques. BMC Genomics 13: S4 (2012).

Tschitschko, B., T.J. Williams, M.A. Allen, L. Zhong, M.J. Raftery & R. Cavicchioli. Ecophysiological distinctions of haloarchaea from a hypersaline Antarctic Lake as determined by metaproteomics. Applied & Environmental Microbiology 82: 3165-3173 (2016).

Downloads

Published

2018-12-12

How to Cite

Mukhtar, S., Laaldin, N. ., Mehnaz, S., & Abdulla Malik, K. (2018). Methods to Analyze Proteins from Soils: Method to analyze protien from Soilsh. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 55(4), 19–28. Retrieved from http://ppaspk.org/index.php/PPAS-B/article/view/102

Issue

Section

Research Articles