2-Methylpyridinium Based Surfactants: Synthesis, Characterization and Potential Application as Drug Carrier Systems

Synthesis of 2-Methylpyridinium Based Surfactants

Authors

  • Summaira Fayyaz Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
  • Rabia Talat Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
  • Saqib Ali Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.Pakistan Academy of Sciences, 3-Constitition Avenue, G-5/2, Islamabad, Pakistan
  • Nasir Khalid Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan
  • Afzal Shah Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan. Department of Chemistry, College of Science, University of Bahrain, Sakhir Campus, Kingdom of Bahrain
  • Faizan Ullah Department of Botany, University of Science and Technology Bannu, Bannu, Pakistan
  • Ali Haider Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan

Keywords:

Micelle, Critical micelle concentration, Cationic surfactant, Drug carriers, Binding constant

Abstract

New cationic surfactants i.e., n-hexyl-2-methylpyridium bromide (a6), n-heptyl-2-methylpyridium bromide (a7) and n-octyl-2-methylpyridium bromide (a8) have been synthesized and characterized by multinuclear (1H, 13C) Nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. Critical micelle concentration (CMC) values of these compounds were studied in ethanol using conductometric and UV-Visible spectroscopic methods. Dependence of CMC of synthesized surfactants on temperature was used as a parameter to determine the thermodynamic parameters (ΔG, ΔH and ΔS) of micellization process. The negative values of ΔG and positive values of ΔH indicated the spontaneous and endothermic nature of micellization process, respectively. Bioactivity tests of these surfactants showed them as significant biological active compounds. The interaction of drugs (Flurbiprofen and Ketoprofen) with these compounds has been studied by employing UV-Visible spectroscopic method. The binding constant (Kb) and number of drug molecules incorporated per micelle (n) gives evidence of strong interaction of selected drugs with these synthesized surfactants. Negative value of Gibb’s free energy calculated from (Kb) showed the spontaneous nature of drug surfactant interaction.

References

M. Chen, X. Hu, and M. Fu. Novel synthesis of a new surfactant 4-((4-bromophenyl) (dodecyl) amino)-4-oxobutanoic acid containing a benzene ring using a copper catalyst cross-coupling reaction and its properties. Journal of Surfactant and Detergents.16:581–585 (2013).

M. E. Achouri, S. Alehyen, A. Assioui, R. Chami, F. Bensajjay, L. Perez, and M. R. Infante, Synthesis and physico-chemical studies of ester-quat surfactants in the series of (dodecanoyloxy)propyl n-alkyl dimethyl ammonium bromide. Journal of Surfactant and Detergents 16:473–485 (2013).

I. Ullah, K. Ahmad, A. Shah, A. Badshah, U. A. Rana, I. Shakir, Z. U. Rehman, and S. Z. Khan, Synthesis, characterization and effect of a solvent mixture on the CMC of a thio-based novel cationic surfactant using a UV–Visible spectroscopic technique. Journal of Surfactant and Detergents. 17:501-507 (2014).

N. Tahirat, A. Luis and L. Mindy, Determination of critical micelle concentrations using UV-Visible spectroscopy. Journal of High School Research. 2:(2011).

M. Rather, G. M. Rana, S. A. Pandit and S. Bhat, Determination of cmc of imidazolium based surface active ionic liquids through probe- less UV– vis spectrophotometry. Talanta 131: 55–58 (2015).

N. Azum, M. A. Rub and A. M. Asiri, Analysis of surface and bulk properties of amphiphilic drug ibuprofen and surfactant mixture in the absence and presence of electrolyte. Colloids and Surfaces B: Biointerfaces. 121: 158-164 (2014).

N. Azum, M. A. Rub, and A. M. Asiri, Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions. Journal of Solution Chemistry 45: 791-803 (2016).

C. Tourne-Peteilh, B. Coasne, M. In, D. Brevet, J.M. Devoisselle, A. Vioux, and L. Viau, Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self- assembly. Langmui:30:1229-1238. (2014).

S. Zhao, X. Yang, V. M. Garamus, U. A. Handge, L. Berengere, L. Zhao, G. Salamon, R. Willumeit, A. Zou, and S. Fan, Mixture of nonionic /ionic surfactants for the formulation of nanostructured lipid carriers: effects on physical properties. Langmuir. 30:6920–6928 (2014).

F. Zafar, A. Shah, A. M. Khan, U. A. Rana, Z. Ahmad, M. Siddiq and S. Ali. A spectroscopic and electrochemical investigation of interactions of anticancer uracil derivatives with cationic and anionic surfactants. Journal of Chemical Society of Pakistan 37: 290 (2015).

B. C. Stephenson, C. O. Rangel-Yagui, A. P. Junior, L. C. Tavares, K. Beers and D. Blankschtein, Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir. 22:1514-1525 (2006).

F. Khan, M. A. Rub, N. Azum and A. M. Asiri,Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant:Micellar and thermodynamic investigation. Journal of Physical Organic Chemistry. 31: 3812 (2018)

R., Efrat, D. E. Shalev, R. E. Hoffman, A. Aserin, and N. Garti, Effect of sodium diclofenac loads on mesophase components and structure. Langmuir.24:7590-7595 (2008).

J. Griesser, G. Hetényi, M. Moser, F. Demarne, V. Jannin and A. B. Schnürch, Hydrophobic ion pairing: Key to highly pay loaded self-emulsifying peptide drug delivery systems. International Journal of Pharmaceutics 520: 267-274 (2017).

A. M. Khan, and S. S. Shah, A UV-Visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl Sulfate. Journal of Dispersion Science and Technology. 29:1401- 1407 (2008).

A. M. Khan, and S. S. Shah, pH induced partitioning and interactions of ciprofloxacin hydrochloride with anionic surfactant sodium dodecyl sulfate using ultraviolet and fourier transformed infrared spectroscopy study. Journal of Dispersion Science and Technology. 30:1247-1254 (2009).

E. J. Choi, and G. H. Kim, 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncology Reports. 22:1533-1537 (2009).

M. A. Hoque, M. A. Khan and M. D. Hossain, Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide. Journal of Chemical Thermodynamics 6:71–75 (2013).

M. A. Hoque, M. D. Hossain and M. A. Khan, Interaction of cephalosporin drugs with dodecyltrimethylammonium bromide. Journal of Chemical Thermodynamics 63: 135–141 (2013).

S. M. A. Ahsan, S. M. A., M. D. Hossain, M. A Hoque and M. A. Khan, Micellar parameters and thermodynamics of interaction of fluoroquinolone drugs with cetyldimethylethylammonium bromide. Indian Journal of Chemistry A 55: 160–169 (2016).

D. Kumar, and M. A. Rub, Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures. Journal of Physical Organic Chemistry 29: 394–405 (2016).

K. Kumar, B. S. Patel, and S. Chauhan, Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodiumdeoxycholate in aqueousmedium at different temperatures: effect of selected amino acids. Journal of Chemical Thermodynamics 82: 25–33 (2015).

A. Mathur, R. Singh, S. Yousuf, A. Bhardwaj, S. K. Verma, P. Babu, V. Gupta, G. B. K. S Prasad, and V.K. Dua, Antifungal activity of some plant extracts against clinical pathogens. Advances in Applied Science Research. 2:260-264 (2011).

V. R. de Souza, P. Aparecid, P. Pereira, T. L. T. da Silva, L. C. de O. Lima, R. Pio, and F. Queiroz, Determination of the bioactive compounds,antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry.156:362–368 (2014).

G. I. Marco, Rapid method for evaluation of antioxidants. Journal of the American Oil Chemists’ Society. 45:94–598 (1968).

L. L. Schramm, E. N. Stasiuk and D. G. Marangoni,Surfactant and their applications, Annu. Rep. Prog.Chem., Sect. C, 99:3–48 (2003).

W. Zhang, Y. Shi, Y. Chen, J. Ye, X. Sha, and X. Fang, Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors.Biomaterials, 32:2894-2906 (2011).

Z. Wei, J. Hao, S. Yuan, Y. Li, W. Juan, X. Sha, and X.Fang, Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. International Journal of Pharmaceutics. 376:176-185 (2009).

D. Attwood, C. Booth, S. G. Yeates, C. Chaibundit, and N. M. P. S. Ricardo, Block copolymers for drug solubilisation: Relative hydrophobicities of polyether and polyester micelle-core-forming blocks. International Journal of Pharmaceutics. 345:35-41 (2007).

S. S. Kulthe, N. N. Inamdar, Y. M. Choudhari, S. M. Shirolikar, L. C. Borde, and V. K. Mourya, Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: Implications for controlled and targeted drug delivery. Colloids and Surfaces B: Biointerfaces. 88:691-696 (2011).

M. C. Jones, and J. C. Leroux, Polymeric micelles — a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics. 48:101–111 (1999).

A. Martin, Physical Pharmacy. 4ed., Williams and Wilkins, Baltimore, USA, (1993). 33. R. J. Hunter, Introduction to Modern Colloid Science. Oxford University Press, Oxford. (1993).

V. Alptüzün, S. Parlar, H. Taşlı, and E. Erciyas, Synthesis and antimicrobial activity of some pyridinium salts, Molecules. 14:5203-5215 (2009).

K. M. Docherty, and C. F. Kupla Jr. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemisty. 7:185–189 (2005).

I. Kubo, P. Xiao, and K. Fujita, Antifungal activity of octylGallate: structural criteria and mode of action. Bioorganic & Medicinal Chemistry Letters.11:347-350 (2001).

A. Heins, D. McPhail, T. Sokolowski, H.Stockmann, and K. Schwarz, The location of phenolic antioxidants and radicals at interfaces determines their activity. Lipids 42:573–582 (2007).

W. L. Porter, Recent trends in food applications of antioxidants. In Autoxidation in Food and Biological Systems; Plenum Press: New York, 1980.

W. L. Porter, E. D. Black, and E. M. Drolet, Use of polyamide oxidative fluorescence test on lipid emulsions: Contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. Journal of Agricultural and Food Chemistry. 37:615–624 (1989).

R. Sharma, and D. Jani, Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation. Tenside Surfactants Detergents. 50:283-288 (2013).

M. H. M. Leung, H. Colangelo, and T. W. Kee, Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir. 24:5672–5675 (2008).

H. H. Tonnesen, Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids. Die Pharmazie. 57: 820-824 (2002).

Z. F. Wang, M. H. M. Leung, T. W. Kee, and D. S.English, The role of charge in the surfactant-assisted stabilization of the natural product curcumin. Langmuir 26:5520–5526 (2010).

Published

2021-03-19

How to Cite

Fayyaz, S. ., Talat, R. ., Ali, S. ., Khalid, N. ., Shah, A. ., Ullah, F. ., & Haider, A. . (2021). 2-Methylpyridinium Based Surfactants: Synthesis, Characterization and Potential Application as Drug Carrier Systems: Synthesis of 2-Methylpyridinium Based Surfactants. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 56(3), 47–66. Retrieved from http://ppaspk.org/index.php/PPAS-A/article/view/89

Issue

Section

Articles