Study of Newly Synthesized Pyridinium-based Cationic Surfactants for Drug Interaction and Antibacterial Activity

Authors

  • Ali Jaan Department of Chemistry, School of Science, University of Management and Technology, C-II Johar Town, Lahore, Pakistan image/svg+xml
  • Saqib Ali Department of Chemistry Quaid-i-Azam University, 45320, Islamabad, Pakistan image/svg+xml
  • Mohsin Javed Department of Chemistry, School of Science, University of Management and Technology, C-II Johar Town, Lahore, Pakistan image/svg+xml
  • Ali Haider Department of Chemistry Quaid-i-Azam University, 45320, Islamabad, Pakistan image/svg+xml
  • Khurram Shahzad Munawar Department of Chemistry, University of Mianwali, Mianwali, 42200, Pakistan image/svg+xml https://orcid.org/0000-0001-9055-2519
  • Saja Abdulrahman Althobaiti Department of Chemistry College of Sciences & Humanities Prince Sattam Bin Abdulaziz, University, Saudi Arabia image/svg+xml
  • Mahboob ur Rehman Cardiology Department, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan

DOI:

https://doi.org/10.53560/PPASA(61-4)685

Keywords:

Pyridinium, Cationic Surfactants, Drug Delivery, Antibacterial Activity, Spectroscopic Techniques

Abstract

Two pyridinium-based new cationic surfactants have been synthesized by the reaction of 2-methylpyridine and 3-methylpyridine with an alkyl halide (1-bromoctadecane) using dry toluene as a solvent to get the compounds, N-(n-octadecyl)-2-methylpyridinium bromide (A1) and N-(n-octadecyl)-3-methylpyridinium bromide (A2), respectively. The synthesized samples were characterized by using various spectroscopic techniques. The synthesized compounds showed a critical micelle concentration in a very low-value range (0.111 mM to 0.125 mM), proving the synthesized compounds' best surface-acting ability. Both compounds exhibited limited antibacterial activity across various bacterial strains, with inhibition zones ranging from 3 to 7 mm. The change in Gibb’s free energy (ΔG) was also calculated from their binding constant (Kb) for samples A1 (-10.0  kJ/mol) and A2 (-19.37 kJ/mol). The samples demonstrated spontaneous interactions with the drug molecules, which proved the efficient bioavailability of the drug due to the best incorporation of drug molecules with the aggregated monomers of surfactant molecules.

References

R. Aggarwal and S. Singh. Synthesis, self-aggregation, thermal stability, and cytotoxicity trends of alkyloxypropoxycyclohexane based pyridinium ionic liquids. Journal of Molecular Liquids 399: 124382 (2024).

P. Shenoy, N. Kedimar, and S.A. Rao. A comprehensive review on anticorrosive behaviour of surfactants across diverse metals using multiple techniques: Current insights and future horizons. Chemical Engineering Journal Advances 20: 100645 (2024).

B. Borikhonov, E. Berdimurodov, T. Kholikov, W.W. Nik, K.P. Katin, M. Demir, F. Sapaev, S. Turaev, N. Jurakulova, and I. Eliboev. Development of new sustainable pyridinium ionic liquids from reactivity studies to mechanism-based activity predictions. Journal of Molecular Modeling 30(11): 359 (2024).

S. Noori, A.Z. Naqvi, and W. H. Ansari. Experimental and Theoretical Approach to Cationic Drug-Anionic Gemini Surfactant Systems in Aqueous Medium. Colloids and Surfaces B: Biointerfaces 115: 71–78 (2014).

P. Werawatganone, and W. Muangsiri. Interactions between charged dye indicators and micelles to determine the critical micelle concentration. Asian Journal of Pharmaceutical Sciences 4: 221–227 (2009.

M.J. Rosen and J.T. Kunjappu (Eds.). 4th Edn.. Surfactants and Interfacial Phenomena. John Wiley and Sons, New York (2012).

P.A. Bhat, A.A. Dar, and G.M. Rather. Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. Journal of Chemical & Engineering Data 53(6): 1271-1277 (2008).

T. Feng, H. Yang, J. Zhang, and C. Zong. Applicability of cationic surfactants, anionic surfactants, and nonionic surfactants as foaming agents for foamed concrete: surface activity, foamability, and interaction with cement. Journal of Sustainable Cement-Based Materials 13(9): 1330-1347 (2024).

P. Madaan and V.K. Tyagi. Quaternary pyridinium salts: a review. Journal of Oleo Science 57(4): 197-215 (2008).

R. Talat, M.A. Asghar, I. Tariq, Z. Akhter, F. Liaqat, L. Nadeem, H. Ali, and S. Ali. Evaluating the Corrosion Inhibition Efficiency of Pyridinium-Based Cationic Surfactants for EN3B Mild Steel in Acidic-Chloride Media. Coatings 12(11): 1701 (2022).

A.O. Ezzat, A.M. Atta, and H.A. Al-Lohedan. Demulsification of stable seawater/Arabian heavy crude oil emulsions using star-like tricationic pyridinium ionic liquids. Fuel 304: 121436 (2021).

A.G. Hassabo, F. Saad, B.M. Hegazy, A. Sediek, and H. Ghazal. The use of cationic surfactants in the textiles industry. Journal of Textiles, Coloration and Polymer Science 20(2): 227-242 (2023).

D. Fu, X. Gao, B. Huang, J. Wang, Y. Sun, W. Zhang, K. Kan, X. Zhang, Y. Xie, and X. Sui. Micellization, surface activities and thermodynamics study of pyridinium-based ionic liquid surfactants in aqueous solution. Royal Society of Chemistry Advances 9(49): 28799-807 (2019).

F. Qin, Y. Zhang, K. Naseem, Z. Chen, G. Suo, W. Hayat, and S.H.S. Gardezi. Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium. Nanoscale 16(41): 19518-19528 (2024).

F. Qin, K. Naseem, Z. Chen, G. Suo, and A. Tahir. Carbon nano-tube coated with iron carbide catalysis for hydrolysis of magnesium to generate hydrogen. International Journal of Hydrogen Energy 83: 1359-1369 (2024).

A.Z. Hezave, S. Dorostkar, S. Ayatollahi, M .Nabipour, and B. Hemmateenejad. Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibria 360:139-45 (2013).

L.L. Schramm, E.N. Stasiuk, and D.G. Marangoni. 2 Surfactants and their applications. Annual Reports Section "C" (Physical Chemistry) 99: 3-48 (2003).

R. Goel, S. Bhardwaj, and S. Bana. Pharmaceutical excipients. Dosage Forms, Formulation Developments and Regulations 1: 311-348 (2024).

Z. Sun, Y. Ji, H. Wang, J. Zhang, C. Yuan, M. Kang and H. Yin. Impact of hydroxyethyl headgroup on long-chain quaternary ammonium cationic surfactants: Solubility, surface activities, self-assembly behaviors, and rheological properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 700: 134831 (2024).

F.I. El-Dossoki, M.A. Migahed, M. M. Gouda, and S.A.E.H.A. El-Maksoud. Aggregation behavior of newly synthesized Gemini cationic surfactants in absence and in presence of different inorganic salts in 15% DMSO–water solvent. Scientific Reports 14(1): 20351 (2024).

T. Majeed, T.I. Sølling, and M. S. Kamal. Foamstability: The interplay between salt-, surfactant-and critical micelle concentration. Journal of Petroleum Science and Engineering 187: 106871 (2020).

C.B. Farias, F.C. Almeida, I.A. Silva, T.C. Souza, H.M. Meira, F.R. de Cássia, J.M. Luna, V.A. Santos, A. Converti, I.M. Banat, and L.A. Sarubbo. Production of green surfactants: Market prospects. Electronic Journal of Biotechnology 51: 28-39 (2021).

I.F.D.L. Fuente, S.S. Sawant, K.W. Kho, N.K. Sarangi, R.C. Canete, S. Pal, and J.L. Rouge. Determining the Role of Surfactant on the Cytosolic Delivery of DNA Cross-Linked Micelles. ACS Applied Materials & Interfaces 16(33): 43400-43415 (2024).

R.A. Gonçalves, K. Holmberg, and B . Lindman. Cationic surfactants: A review. Journal of Molecular Liquids 375: 121335 (2023).

S.P. Moulik, A.K. Rakshit, and B. Naskar. Physical chemical properties of surfactants in solution and their applications: A comprehensive account. Journal of Surfactants and Detergents 27(6): 895-925 (2024).

G. Hertel and H. Hoffmann. Lyotropic nematic phases of double chain surfactants. Trends in Colloid and Interface Science II 76: 123-131 (1988).

Z. Zhang, H. Liu, D.G. Yu, and S.W. Bligh. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 14(7): 789 (2024).

S.D. Santos, B. Medronho, T.D. Santos, and F.E. Antunes. Amphiphilic molecules in drug delivery systems. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment 4: 35-85 (2013).

J. Abildskov and J.P. O’Connell. Molecular thermodynamic modeling and design of microencapsulation systems for drug delivery. Journal of Chemical & Engineering Data 56: 1229-1237 (2011).

C.Y. Wang, H.O. Ho, L.H. Lin, Y.K. Lin, and M.T. Sheu. Asymmetric membrane capsules for delivery of poorly water-soluble drugs by osmotic effects. International Journal of Pharmaceutics 297(1-2): 89-97 (2005).

S.I. Palma, M. Marciello, A. Carvalho, S. Veintemillas-Verdaguer, M.M. del Puerto and A.C. Roque. Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. Journal of Colloid and Interface Science 437: 147-155 (2015).

V.P. Torchilin. Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release 73(2-3): 137-172 (2001).

M.A. Rub, and A.Z. Naqvi. Micellization of Mixtures of Amphiphilic Drugs and Cationic Surfactants: A Detailed Study. Colloids and Surfaces B: Biointerfaces 92: 16-24 (2012).

K. Naseem, N.A. Khan, and S.H. Safeer. Effect of Magnesium Doping to Reduce the Charge Reservoir Layer in Cu0.5Tl 0.5(Ba2−xMgx)Ca2Cu3Oy (x = 0, 0.15, 0.25, 0.35) Superconductors. Journal of Electronic Materials 5: 2164-2170 (2021).

G. Socrates (Ed.). Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Third Edition. John Wiley & Sons (2004).

D. Cook. Vibrational spectra of pyridinium salts. Canadian Journal of Chemistry 39(10): 2009-2024 (1961).

R.J. Clark, and C.S. Williams. The far-infrared spectra of metal-halide complexes of pyridine and related ligands. Inorganic Chemistry Journal (3): 350-357 (1965).

G.X. Zhao, B.Y. Zhu, Z.P. Dou, P. Yan, and J. X. Xiao. Effect of charge distribution along surfactant molecules on physico-chemical properties of surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 327(1-3): 122-126 (2008).

N.S. Gill, R.H. Nuttall, D.E. Scaife, and D.A. Sharp. The infra-red spectra of pyridine complexes and pyridinium salts. Journal of Inorganic and Nuclear Chemistry 18: 79-87 (1961).

A. Sager, S. Rahman, S.A. Imtiaz, Y. Zhang, A. Alodhayb, P.E. Georghiou, and M. Al-Gawati. Oxidative and Extractive Desulfurization of Fuel Oils Catalyzed by N-Carboxymethyl Pyridinium Acetate and N-Carboxyethyl Pyridinium Acetate Acidic Ionic Liquids: Experimental and Computational DFT Study. American Chemical Society Omega 9: 23121-24104 (2024).

S. Fayyaz, S. Ali, N. Khalid, A. Shah, and A. , F. Ullah. One Pot Synthesis and Properties of Cationic Surfactants: n‐Alkyl‐3‐Methylpyridinium Bromide. Journal of Surfactants and Detergents (4): 841-848 (2016).

T.Q. Liu, and R. Guo. Influence of low cetyltrimethylammonium bromide concentration on the interactions and properties of hemoglobin with acyclovir. Chinese Journal of Chemistry 24(5): 620-626 (2006).

S.S. Shah, A. Saeed, and Q.M. Sharif, A study of micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate. Colloids and Surfaces A 155(2-3): 405-412 (1999).

F.A. Shah, A.M. Khan, S. Sabir, and S. Ali. CTAB–tributylstannic [3-(3′, 4′-dichlorophenylamido) propanoate] interaction: a tool for predicting organotin (IV) complex–cell membrane interaction parameters. Colloid and Polymer Science 294(1): 87-94 (2016).

T.G. Kantor. Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 6(3): 93-102 (1986).

A.M. Khan and S.S. Shah. A UV-visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate. Journal of Dispersion Science and Technology 29(10): 1401-1407 (2008).

H. Itoh, S. Ishido, M. Nomura, T. Hayakawa, and S. Mitaku. Estimation of the hydrophobicity in microenvironments by pyrene fluorescence measurements: n-β-octylglucoside micelles. The Journal of Physical Chemistry 100(21): 9047-9053 (1996).

B. Naseem, A. Sabri, A. Hasan, and S.S. Shah. Interaction of flavonoids within organized molecular assemblies of anionic surfactant. Colloies and Surfaces B 35(1): 7-13 (2004).

M.A. Awan, and S.S. Shah. Hydrophobic interaction of amphiphilic hemicyanine dyes with cationic and anionic surfactant micelles. Colloids and. Surfaces A 122(1-3): 97-101 (1997).

H.A. Grema, Y.A. Geidam, G.B. Gadzama, J.A. Ameh, and A. Suleiman. Methicillin resistant Staphylococcus aureus (MRSA): a review. Advances in Animal and Veterinary Sciences 3(2): 79-98 (2015).

T.D. Tavares, J.C. Antunes, J. Padrão, A.I. Ribeiro, A. Zille, M.T.P. Amorim, F. Ferreira, and H.P. Felgueiras. Activity of specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics 9(6): 314 (2020).

X.Z. Li, P. Plésiat, and H. Nikaido. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews 28(2): 337-418 (2015).

Published

2024-12-28

How to Cite

Jaan, A., Ali, S., Javed, M., Haider, A., Munawar, K. S., Althobaiti, S. A., & Rehman, M. ur. (2024). Study of Newly Synthesized Pyridinium-based Cationic Surfactants for Drug Interaction and Antibacterial Activity. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 61(4), 349–359. https://doi.org/10.53560/PPASA(61-4)685

Issue

Section

Research Articles