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Abstract: Francisella tularensis is a Gram-negative bacterium and is the etiological agent of taluremia. The prolonged 
use of antibiotics is the reason for pathogen resistance to antibiotics such as beta-lactams and macrolides. This leads 
to the search to explore novel drug targets for F. tularensis to inhibit its growth. Subtractive proteomics revealed 
Glucose-1-phosphate thymidylyltransferase (G1PTT) as the most promising protein as a drug target. A pharmacophore 
model was generated for virtual screening of a druglike library comprised of 1,000,000 drug molecules. Based on 
a pharmacophore-based search, a set of 152 compounds was predicted as the most potent inhibitors against this 
enzyme. The screened hits were docked with the target enzyme; which unveiled ZINC23121280 as the best-docked 
inhibitor having Autdock Vina binding energy of -7.2 kcal/mol and the GOLD score of 64.06. Moreover, the time-
dependent dynamic behavior of the complex was analyzed using Molecular Dynamics (MD) simulation studies that 
revealed a stable system with a Root Mean Square Deviation (RMSD) average value of 2.25 Å and Root Mean Square 
Fluctuations (RMSF) of 1.16 Å. Radial Distribution Function (RDF) predicted strong hydrogen interactions between 
the ligand and Trp221 from the enzyme active pocket. The higher affinity of the antagonist for the enzyme was further 
supported by Molecular Mechanics Energies combined with the Poisson–Boltzmann and Surface Area (MMPBSA) 
and or Generalized Born and Surface Area (MMGBSA) with the estimated binding free energy of −1.07 kcal/mol and 
−29.59 kcal/mol, respectively. Findings from this present computational framework may provide the foundation for 
future drug discovery against F. tularensis.

Keywords: Francisella tularensis; Subtractive proteomics; Glucose-1-phosphate thymidylyltransferase; 
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1.	 INTRODUCTION

Francisella tularensis is a pleomorphic Gram-
negative coccobacilli and is the etiologic agent 
of a zoonotic disease of the northern hemisphere, 
tularemia [1, 2]. F. tularensis is highly virulent 
to a wide range of animals and humans [3]. The 
pathogen may cause epizootics or epidemics [4]. 
No human-to-human transmission is observed 
whereas transmission to humans occurs by four 
main routes: (i) through direct contact with 
the infected animals, infectious animal fluids 
or tissues, (ii) through arthropod bites, (iii) by 
inhaling infective aerosols, and (iv) by ingesting 
contaminated food or water [5, 6]. Tularemia is 

highly prevalent in Sweden, Finland, and Turkey 
[7]. According to the pre-antibiotic era, the reported 
mortality rate of tularemia was 30%–60% [8]. The 
mortality rate associated with respiratory tularemia 
is as high as 5 – 30% [9]. According to Center for 
Disease Control and Prevention (CDC) statistics, 
F. tularensis is common in south-central America, 
and Massachusetts, and cases of Tularemia have 
been reported from all states of the USA except 
Hawaii.   The number of cases from 1950 declined 
from 927 to 229 in 2018 (https://www.cdc.gov/
tularemia/statistics/index.html).   This bacterium is 
considered an aerosol biological weapon by several 
countries in the past [10]. Various subspecies 
include tularensis, holarctica, mediasiatica, and 



novicida, where tularensis type A and holarctica 
type B is the most significant clinical subspecies of 
F. tularensis  [11, 12]. Strains of the F. tularensis 
subspecies are common in North America where 
they cause rapidly progressive diseases [13] 
leading to prominent lymph node enlargement 
and flu-like symptoms [14]. The pathogen is also 
capable of infecting many types of eukaryotic cells 
and tissue macrophages [15]. With the increasing 
trend of antibiotic resistance to beta-lactams and 
macrolides in F. tularensis and the absence of a 
licensed vaccine for boosting the immune response 
to infections, identification of novel drug targets for 
designing novel antibiotics is an imperative need of 
time [4, 16].

The first phase of the drug designing process 
is the identification of potential drug targets 
against bacterial pathogens [17]. In traditional 
drug discovery, this process is time and resource-
consuming and often results in failures [18]. On 
the other hand, using computational power and 
available genomic and proteomic data of bacterial 
pathogens is now common to discover new 
antibiotics, optimization, and development [19, 20]. 
In this context, subtractive proteomics is a widely 
used approach that in a step-wise process, filters 
proteins of high pathogen specificity [21]. The use 
of such in silico methodologies, not only saves 
extensive labor cost and time but also expedites the 
process of characterization of bacterial host’s non-
homologous and essential proteins to eradicate the 
disease with fewer side effects [22]. In the present 
study, a subtractive proteomics approach was 
employed in combination with the applications of 
computer-aided drug designing (CAAD) for the 
identification of potential drug candidates for the 
potential druggable protein against F. tularensis 
reference strain SCHU4 [23, 24]. The pathogen 
is investigated for host non-homologous proteins 
followed by essential proteins mapping using 
the Database of Essential Genes (DEG) [25]. 
The Glucose-1-phosphate thymidylyltransferase 
(G1PTT) is a target of choice for novel antibacterial 
discovery. The G1PTT is the first enzyme in the 
dTDP-L-rhamnose biosynthesis pathway that 
acts as an L-rhamnose precursor. L-rhamnose 
is an important component of bacterial surface 
antigens such as the O-lipopolysaccharide [26]. In 
addition, it aids in mediating pathogen adhesion to 
host tissues and virulence [26]. The best-docked 

complex was simulated to unveil the enzyme 
dynamics in the presence of ligand [27]. To further 
explore the ligand affinity towards the enzyme 
active site, binding free energies were estimated 
using Molecular Mechanics Energies combined 
with the Poisson–Boltzmann or Generalized Born 
and Surface Area Continuum Solvation (MMPB/
GBSA) [28]. 

2.   MATERIALS AND METHODS 

The workflow for characterizing potential drug 
targets in F. tularensis proteome and subsequent 
steps of pharmacophore generation, molecular 
docking, MD simulations, and binding free energies 
is illustrated in Fig. 1.

2.1  Subtractive Proteomics

The Uniprot database [29] was used to retrieve the 
complete   proteome   of   the   reference   strain   of 
F. tularensis labeled as SCHU S4 [30]. The proteome 
was subjected to the subtractive proteomics 
where proteins relevant to antibiotics design were 
extracted in a step-wise manner [31]. In the first 
step, the CD-HIT suite [32] was applied to eliminate 
the redundant proteins sharing the identity of 80%. 
Redundant proteins are paralogous proteins that arise 
because of duplication during evolution and are not 
conserved across bacterial species. Non-redundant 
proteins, in contrast, are orthologous and are well 
conserved across bacterial species and strains; thus 
can be targeted for the design of broad-spectrum 
inhibitors [23, 33]. The BLASTp search of the 
National Center for Biotechnological Information 
(NCBI) was performed against reference human 
proteome (Homo sapiens: Tax id. 9606) to obtain 
proteins specific to the pathogen with a percentage 
identity threshold ≥ 30% and the Expectation 
value (E-value) of 10-5. The host non-homologous 
proteins were then used in BLASTp of DEG [25] 
with the threshold E-value of 10-10, sequence 
identity of  ≥ 30%, and bit score of 100 to predict 
pathogen essential proteins. The identified essential 
proteins were then allowed to enter the metabolic 
pathway mapping stage, where the proteins were 
mapped to the metabolic pathways of the pathogen 
[34]. In order to predict protein sequences involved 
in different metabolic pathways of the organism, 
the KEGG Automatic Annotation sever (KAAS) 
[35]  was used. Further in the framework, virulence 
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Fig. 1. Workflow of the methodology used in the present studyFig. 1. Workflow of the methodology used in the present study 

proteins of the bacteria were screened as they aid in 
bacteria adherence, colonization, invasion, evasion 
of host defense, and disease etiology as such are 
attractive targets to deactivate the pathogen [36]. 
For virulent protein identification, the Virulent 
Factor Database (VFDB) was accessed [37]. 
The unique proteins from F. tularensis metabolic 
pathways were subjected to BLASTp of VFDB to 
screen proteins having a threshold bit score ≥100 
and identity ≥ of 50%. In the concluding step of 
the subtractive proteomics, cytoplasmic proteins 
were identified using a comparative subcellular 
localization prediction approach. In this approach, 
the cellular localization of selected proteins was 
determined using three online servers: PSORTb 
[38] CELLO [39], and CELLO2GO [40]. The 
cytoplasmic proteins are presumed to be attractive 
targets because of the higher availability of drugs 
[41]. 

2.2  Physiochemical Characterization of     	     
       Cytoplasmic Proteins

The physicochemical properties of the cytoplasmic 
proteins were unraveled to evaluate several vital 
parameters of the targets important from an 
experimental validations point of view [42]. The 
characterization was done based on molecular 
weight, theoretical pI, atomic composition, 
instability index, and grand average of 
hydropathicity (GRAVY). For this, an online server 
of ProtParam [43] was used. 

2.3  Drug Target Selection

The selection of a drug target was done based 
on their subcellular localization, virulence, and 
physiochemical properties of the protein [16, 17]. 
Another parameter for the target selection was 
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the non-availability of experimentally determined 
structure. The Protein Data Bank (PDB) was 
explored for the availability of protein experimental 
structures. Enzymes in the shortlisted targets were 
especially targeted because of the following reasons: 
(i) Enzymes are essential to life, (ii) dysregulated 
enzymes lead to disease states, (iii) Enzymes are 
highly amenable to inhibition by small druglike 
molecules, (iv) Majority of the pharmaceutical 
companies (50% - 75%) around the globe focused 
on enzyme as primary target [44].

2.4  Comparative Structure Modeling and 	     	
       Validation

The availability of 3D structures of the targeted 
protein was checked using an online BLASTp 
tool of NCBI against PDB. The 3D structure is a 
prerequisite of the subsequent molecular docking 
study, MD simulation, and binding free energy 
calculations. In the absence of 3D structure, the 
sequence of proteins was used in a comparative 
structure modeling approach. First, in this approach, 
the amino acid sequence of the selected proteins 
was BLASTp against PDB for the identification of 
the appropriate template structure. Once template 
structure was identified, an automated protein 
modeling program, Modeller 9.14, was run to 
predict the most optimal 3D structure of proteins. 
Parallel to Modeller, several online severs: 
ReptorX [45], Phyre2 [46], SWISS-MODEL 
[47] and I-TASSER [48] were used. To check the 
thermodynamic stability of the generated models, 
online structure quality assessment tools: ERRAT, 
Verify3D [49], ProSA [50], and Ramachandran 
Plot [51] were utilized. The protein was then 
energetically minimized using UCSF Chimera [52] 
to improve the quality of the structure by removing 
steric clashes. Minimization was performed for 
1500 steps which can be split into 750 conjugate 
gradient steps and 750 steepest descent steps under 
Tripos Force Field [53].

2.5  Pharmacophore Model Generation and 	    	
       Virtual Screening

For ligand-based pharmacophore model generation, 
15 compounds against the target protein were 
retrieved from the extensive literature reviews and 
binding database as illustrated in Table S1 [38]. 
The pharmacophore model was generated using 

LigandScout 4.5. Pharmacophoric sites: aromatic 
ring, hydrogen bond acceptor (HBA), hydrogen 
bond donor (HBD), positive and negative ionizable 
groups, and hydrophobic sites were characterized 
carefully. To incorporate associated features of the 
utilized compounds, merge feature model generation 
and atom overlapping scoring function of the 
LigandScout was employed. The pharmacophore 
model with the best score was selected and used 
in virtual screening of Zinc database druglike 
libraries containing 1 million compounds. Once the 
screening was done, Lipinski’s rule of five filters 
was additionally applied to the shortlisted inhibitors 
for filtering drug molecules with properties: HBA < 
10, HBD < 5, molecular weight < 500 Da, and the 
value of log P < 5 [54].

2.6  Molecular Docking 

The binding site in the selected enzyme for the 
screened set of inhibitors was predicted using a 
combined approach of online binding site prediction 
tools and Multiple Sequence Alignment (MSA) 
[55]. Meta pocket [56] was used first to predict 
the enzyme active cavity, followed by aligning the 
orthologues of G1PTT enzyme through ClustalW 
[57] to look for the most conserved active site pocket 
residue. Genetic Optimization for Ligand Docking 
(GOLD) [58] and AutoDock Vina (AD-Vina) [59] 
were used for docking of the compounds to enzyme 
active pockets. The coordinates of the oxygen 
atom from Gly09 were set as the point of inhibitors 
binding. The GOLD docking was accomplished 
with a genetic run for each compound was set to 10. 
In AD-Vina, the same active site coordinates used 
in GOLD were used with the grid box size set to 
15 Å along with the X, Y, and Z-axis. The docking 
results were visualized using LIGPLOT [60], UCSF 
Chimera [60], Visual Molecular Dynamics (VMD) 
[61], and Discovery Studio (DS). 

2.7  MD Simulation

To determine the dynamic behavior of the enzyme 
in complex with the ligand, MD simulation for 
100-ns was carried out [62]. Assisted model 
building with the energy refinement 14 (AMBER 
14) [63] was used to design and perform simulation 
protocol. Initial libraries of the complex were 
generated using the Antechamber program. The 
docked complex was integrated into a TIP3P water 
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box with a padding distance size of 12 Å between 
the protein and water box boundary conditions. This 
was accomplished using ff14SB force field using 
Leap program [64]. The addition of 12 Na+ ions 
was involved in neutralizing the hydrated complex. 
During minimization, hydrogen atoms, water box, 
carbon alpha atoms of the complex were minimized 
for 1000 cycles whereas non-heavy atoms were 
relaxed for 300 steps [65]. After that, the system 
was subjected to a heating step, where a temperature 
of 300 K for 20-ps with the restraint of 5 kcal/mol. 
on alpha-carbon atoms are used. SHAKE algorithm  
[66] was used to heat the system while Langevin 
dynamics was used for maintaining system 
temperature. The system equilibrium was achieved 
for 100-ps with a time scale of 2-fs [67]. The NPT 
ensemble was employed for 50-ps to maintain 
system pressure. The system was then equilibrated 
for 1-ns. In production phase, the Berendsen 
algorithm combined with NVT ensemble was used 
with cut-off value of non-bonded interactions set to 
0.8 Å. The production run was carried out for 100-
ns. For simulation trajectories analysis, CPPTRAJ 
program of AMBER was used [68].

2.8  Binding Free Energy Calculations

The MM-PBSA and MM-GBSA of AMBER14 
were used to estimate the binding free energies of 
the system [62]. A total of 500 frames were extracted 
from the simulation trajectories. The prmtop files of 
receptor, ligand, and complex were generated using 
the anti-MMPBSA.py module of AMBER whereas 
for estimating binding free energy MMPBSA.py 
module was used. 

3.  RESULTS AND DISCUSSION

3.1  Subtractive Proteomics

The emergence of resistance in bacteria is rapid and 
occurring worldwide thus endangering the efficacy 
of life-saving antibiotics [69]. This resistance to 
antibiotics has been attributed to misuse and overuse 
of these medications, in addition, to the lack of 
new antibiotic development by pharma industries 
due to challenging regulatory requirements and 
lesser economic incentives [70]. Because of many 
limitations of conventional drug target identification 
and drug discovery, computational identification 
of potentially druggable proteins and subsequent 

drug designing played a major role in providing 
therapeutically important molecules against several 
medical complications [71].  The drug target 
identification is the first step in drug discovery 
and can be applied to a range of biological entities 
that may include protein, DNA, and RNA [72] 
associated with the disease. Subtractive proteomics 
is now a widely used approach for the identification 
and validation of bacterial proteins involved in 
regulating essential biological processes [73]. This 
is a step-wise approach that gradually reduces the 
number of proteins involved in the host’s non-
homologous, essential and unique pathways of the 
bacterial pathogen [31]. Using this approach, the 
complete proteome of F. tularensis strain SCHU 
S4 that contains 1556 proteins were thoroughly 
screened first for non-redundant proteome. The 
non-redundant proteins are attractive targets 
for antibiotics because of their broad-spectrum 
conservation across bacterial species and strains 
[31]. On the other hand, redundant proteins are 
paralogous that are less conserved and not preferred 
as drug targets [31]. The CD-HIT analysis revealed 
28 duplicated proteins and thus excluded them 
from F. tularensis proteome. The 1528 orthologous 
proteins were forwarded to the homology check. 
At this check, homologous proteins between the 
host (Homo sapiens) and bacteria were compared 
using an online BLASTp tool of NCBI. The 
homologous proteins sharing 30% of identity were 
discarded whereas those having identity of <30% 
were passed to the next step of DEG analysis. A 
homology check revealed 1218 proteins as host non-
homologous proteins as a potential target for drug 
discovery. Screening host non-homologs is vital 
as targeting host homologous proteins could lead 
to autoimmune reactions and adverse side effects 
[73]. The essential proteins are the foundation to 
bacterial life without such proteins the bacterium is  
unable to survive, and as such are attractive targets 
for designing novel antibiotics [73]. The essentiality 
analysis unraveled 732 proteins in number while 
the remaining 486 proteins are non-essential hence 
excluded from further analysis [73]. Mapping 
essential proteins to organism metabolic pathways 
are vital as it provides an array of opportunities to 
block pathogen survival. The KAAS mapped a total 
of 262 proteins to metabolic pathways including 
11 unique and 251 common proteins. The output 
of KASS was investigated first enzymatic and 
non-enzymatic proteins. The enzymatic proteins 
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Fig. 2. Sub-Cellular localization of F. tularensis virulent proteins. 

3.2. Physicochemical Characterization  

The physicochemical characterization of 
shortlisted proteins was an important 
consideration for shedding light on the 
suitability of selected proteins for a wet lab 
analysis [42]. The major parameter during this 
analysis was to compute the molecular weight 
of proteins. The proteins having <110 kDa 
molecular weight are preferred as drug and 
vaccine targets because of their easy 
purification [42, 53]. It was estimated that all 
four proteins have a molecular weight less 
than the threshold and can be used in the 
development of the novel drug. The stability of 
the protein is the next most important 
characteristic of protein. The proteins having 

an estimated <40 stability index are considered 
stable while those proteins with >40 are 
regarded as unstable. For all three proteins, 
stability were calculated <40 while no protein 
stability value was > 40. The GRAVY 
negative score of all the stable proteins 
indicates the hydrophilic nature of the 
proteins. The theoretical pI value of 2 proteins 
(wcaJ, qseC) were greater than 7 represented 
the basic nature of the protein and the 1 
protein (wbtL) with less than 7 pI value 
indicating the acidic nature of drug-protein. 
The aliphatic index value for the proteins 
ranged from 117.9 - 95 show the high thermal 
stability of proteins. The physicochemical 
parameters for the shortlisted 3 proteins are 
tabulated in Table 2.     

Fig. 2. Sub-Cellular localization of F. tularensis virulent proteins.

were recognized through its Enzyme Classification 
(EC) number and were 71% of the total proteins 
compared to the non-enzymatic proteins that were 
29%. The metabolic proteins were categorized into 
the following: 1) cellular process, 2) environment 
information processing pathways, 3) metabolism 
4) human diseases and drug development and 
5) organismal systems. Cellular processes can 
be divided into two main systems including 
peroxisome cell-cycle –caulobacter. Genetic 
information processing includes proteins that take 
part in folding, translation, transcription, sorting and 
degradation, repair, and replication. Environmental 
information processing include transport systems 
including phosphotransferase system (PTS), ABC 
transporters, two-component system and bacterial 
secretion system. The virulent proteins were 
identified through VFDB. Six proteins were found 
virulent including wcaJ, oppF, qseC, phnA, wbtL and 
tolQ (Table 1). The WcaJ is considered as initiating 
enzyme in the synthesis of colonic acid (CA) [74]. 
OppF plays part in transporting oligonucleotides. 
QseC is a member of two-component regulatory 
system (QseB/QseC) and functions by activating 
the flagella regulon of FlhDC [75]. The PhnA is 
involved in hydrolysis of phosphonoacetate [76]. 
The WbtL drives formation of dTDP-glucose from 
glucose 1-phosphate and dTTP [26].  The TolQ is a  
part of Tol-Pal system which plays a role in outer 
membrane invagination during cell division and is 
important for maintaining outer membrane integrity 

[77]. Knowledge of subcellular localization is 
significant in identification of therapeutic targets. 
Cytoplasmic proteins are preferred as drug targets 
compared to membrane proteins because of the 
following reasons: (i) membrane proteins have low 
permeation rate thus can block the access of drugs 
to the biological target, (ii) the presence of energy 
driven efflux systems may use the drug as effluxing 
substrate for broad specificity. The comparative 
subcellular localization for the virulent proteins is 
illustrated in Fig. 2. According to PSORTb, majority 
of the proteins were found in the cytoplasmic 
membrane (73%), followed by cytoplasmic 
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3 in inner membrane and 2 were in outer 
membrane. By comparative analysis, only 3 
proteins: wcaj, qseC, and wbtL were selected 
as cytoplasmic proteins and forwarded along 
the framework.  

Table 1. Virulent proteins screened in the study. 

Gene 
 

Protein Name  Bit 
score  

 

Identity  

 

wcaj Hydrogen peroxide-
inducible genes 
activator 

 

226 65 

oppF Oligopeptide 
transport ATP-
binding protein  

 

157 56 

qseC Sensor histidine 
kinase QseC 

107 31 

phnA Protein PhnA 

 
32 3 

wbtL Glucose-1-phosphate 
thymidylyltransferase 

 

381 64 

tolQ Biopolymer transport 
protein TolQ 

 

 

86 43 
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proteins (18%), 9% of unknown proteins, 0% of 
outer membrane, inner membrane and periplasmic 
proteins. Cello demonstrated majority of the 
proteins as cytoplasmic (46%), inner membrane 
(27%), outer membrane (18%), periplasmic (9%), 
cytoplasmic membrane and unknown (0%). 
Lastly, Cello2Go revealed 55% cytoplasmic, 45% 
outer membrane, 0% of cytoplasmic membrane, 
periplasmic, and unknown proteins. It was found 
that around 5 proteins were cytoplasmic, 1 was 
periplasmic, 3 in inner membrane and 2 were in 
outer membrane. By comparative analysis, only 
3 proteins: wcaj, qseC, and wbtL were selected 
as cytoplasmic proteins and forwarded along the 
framework. 

3.2  Physicochemical Characterization 

The physicochemical characterization of shortlisted 
proteins was an important consideration for 
shedding light on the suitability of selected proteins 
for a wet lab analysis [42]. The major parameter 
during this analysis was to compute the molecular 
weight of proteins. The proteins having <110 kDa 
molecular weight are preferred as drug and vaccine 
targets because of their easy purification [42, 53]. It 
was estimated that all four proteins have a molecular 
weight less than the threshold and can be used in 
the development of the novel drug. The stability of 
the protein is the next most important characteristic 
of protein. The proteins having an estimated <40 
stability index are considered stable while those 
proteins with >40 are regarded as unstable. For 
all three proteins, stability were calculated <40 

while no protein stability value was > 40. The 
GRAVY negative score of all the stable proteins 
indicates the hydrophilic nature of the proteins. The 
theoretical pI value of 2 proteins (wcaJ, qseC) were 
greater than 7 represented the basic nature of the 
protein and the 1 protein (wbtL) with less than 7 pI 
value indicating the acidic nature of drug-protein. 
The aliphatic index value for the proteins ranged 
from 117.9 - 95 show the high thermal stability of 
proteins. The physicochemical parameters for the 
shortlisted 3 proteins are tabulated in Table 2.    

3.3  Selection of Drug Target

The G1PTT enzyme was selected as the potential 
drug target against the pathogen based on its 
cytoplasmic location, involvement in virulent 
pathways, suitable molecular weight, theoretical 
PI, instability index, and GRAVY index. Another 
parameter for the target selection was the non-
availability of experimental structure and 
availability of a suitable template. The G1PTT is 
involved in the biosynthesis of different antibiotics, 
polyketide sugar unit biosynthesis, and acarbose 
and validamycin biosynthesis pathways. As the 
target is an enzyme, involved pathogen-specific and 
selective pathways, structure modeling, molecular 
docking, and dynamics simulation can provide an 
excellent platform for designing antibiotics against 
this target enzyme.   

3.4 Comparative Structure Modelling

The 3D structure of the selected protein was not 
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Table 2. Physiochemical characterization of selected cytoplasmic proteins. 
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Q5NEZ2 wcaJ 

Hydrogen 
peroxide-

inducible genes 
activator 

 

205 
23.3 

 
9.4 

 
33.1 

 
95.5 

 
-0.073 

 

Q5NIH6 qseC 
Sensor histidine 

kinase QseC 
4745 

54.7 
 

7.1 
 

31.8 
 

105.0 
 

-0.22 
 

Q5NF04 wbtL 

Glucose-1-
phosphate 

thymidylyltransfe
rase (G1PTT) 

 

294 32.4 
5.5 

 
39.1 

 
104.1 

 
-0.052 

 

 Selection of Drug Target 
 

The G1PTT enzyme was selected as the 
potential drug target against the pathogen 
based on its cytoplasmic location, involvement 
in virulent pathways, suitable molecular 
weight, theoretical PI, instability index, and 
GRAVY index. Another parameter for the 
target selection was the non-availability of 
experimental structure and availability of a 
suitable template. The G1PTT is involved in 
the biosynthesis of different antibiotics, 
polyketide sugar unit biosynthesis, and 
acarbose and validamycin biosynthesis 
pathways. As the target is an enzyme, involved 
pathogen-specific and selective pathways, 
structure modeling, molecular docking, and 
dynamics simulation can provide an excellent 
platform for designing antibiotics against this 
target enzyme.    

3.3 Comparative Structure Modelling 
 

The 3D structure of the selected protein was 
not present in the PDB, therefore, a 

comparative structure prediction approach was 
used. The X-ray crystallographic structure of a 
template ―PDB id: 1H5T‖ was selected for the 
model building process with 98% query 
coverage and 64% sequence identity. For the 
selection of the best model, a detailed 
comparison of stereochemical properties was 
performed as tabulated in Table 3.  Based on 
quality assessment measurements, Phyre2 
predicted structure was selected having 97.9% 
residues in the favored region of the 
Ramachandran plot. The number of residues in 
the allowed and outlier region was 1.7% and 
0.3%, respectively. ERRAT, Verify3D, and Z-
score were 93.116, 93.10%, and -8.41, 
respectively thus further confirmed the 
reliability of the optimal model selected for 
antibiotics screening. Moreover, the 
superimposed structure of the template and the 
target unraveled Root Mean Square Deviation 
(RMSD) of 0.001 Å is in a highly acceptable 
range and shown in Fig. 3.  The tertiary 
structure of G1PTT can be found in Fig. 4. 

	 Drug Designing for Multidrug-Resistant Francisella tularensis	 7



13 
 

Table 3. Stereo-chemical properties of comparative homology modeled structure. 

Structure Resources Favored region Allowed region outlier region Errat Z-score Verify-3D 

Modeller 1 279 (96.5%) 
 

9 (3.1%) 
 

1 (0.3%) 
 

83.039 
 

-8.41 
 

88.32% 
 Modeller 2 279 (96.5%) 

 
6 (2.1%) 

 
4 (1.4%) 

 
84.099 

 
-8.41 

 
90.38% 

 Modeller 3 280 (96.9%) 
 

8 (2.8%) 
 

1 (0.3%) 
 

83.746 
 

-8.73 
 

96.22% 
 
 

Modeller 4 279 (96.5%) 
 

8 (2.8%) 
 

2 (0.7%) 
 

80.565 
 

-8.32 
 

94.50% 
 Modeller 5 279 (96.5%) 

 
9 (3.1%) 

 
1 (0.3%) 

 
84.452 

 
-8.47 

 
92.44% 

 Phyre 2 282 (97.9%) 
 

5 (1.7%) 
 

1 (0.3%) 
 

93.116 
 

-8.41 
 

93.10% 
 Swiss-Model 1 1073 (93.1%) 

 
55 (4.8%) 

 
24 (2.1%) 

 
96.791 

 
-8.39 

 
 

93.10% 
 Swiss-Model 2 220 (93.6%) 

 
12 (5.1%) 

 
3 (1.3%) 

 
83.772 

 
-8.04 

 
99.16% 

 I-TASSER 
 

271 (92.8%) 
 

14 (4.8%) 
 

7 (2.4%) 
 

97.895 
 

-8.75 
 

98.64% 
 RaptorX 

 
280 (95.9%) 

 
10 (3.4%) 

 
2 (0.7%) 

 
80.42 

 
-8.4 

 
98.80% 

  
 3.4 Pharmacophore Model Generation and 

Virtual Screening 
A pharmacophore model was generated to 
shortlist druglike compounds from Zinc 
database druglike libraries that share 
molecular features necessary for recognizing a 
ligand by druggable biological 
macromolecules. Pharmacophore model-based 
virtual screening of 1,000,000 drug molecules 
was then performed to shortlist the best 
possible drug molecules. The screening 
filtered 152 compounds. Structures of these 
compounds are tabulated in Table S2. These 
compounds were energetically minimized 
using the MMFF94 force field and further 
utilized in molecular docking studies. 

 3.5 Molecular Docking  
 

The sequence 8GGSGTR13 was found 
conserved in all orthologues of the G1PTT 
enzyme. The coordinates oxygen atom from 
Gly9 was selected for molecular docking 
studies. Comparative docking performed using 
two different tools: GOLD and AD-Vina. In 
molecular docking, structure-based virtual 
screening of 152 drug-like compounds 
extracted based on pharmacophore-based 

virtual screening. All the inhibitors were 
docked into the enzyme active site using 
GOLD, and  AD-Vina. The top ten best 
inhibitors based on descending order of GOLD 
fitness score together with AD-Vina binding 
energy and drug-likeness are shown in Table 
4. The correlation coefficients between GOLD 
fitness score and AD-Vina binding energy of 
the compounds can be found in Fig. 5. 
Compound ZINC23121280 ((3R)-N-(6-amino-
1-benzyl-2,4-dioxo-pyrimidin-5-yl)-1-
cyclopentyl-5-oxo-N-propyl-pyrrolidine-3-
carbox) was selected as the best-docked 
inhibitor with GOLD fitness score and AD-
Vina binding energy of 64.02 and -7.2 
kcal/mol, respectively. The complex was 
selected based on several parameters including 
strong interactions between ligand and target 
protein, drug-likeness of the compound, and its 
pharmacokinetics. In both tools, the inhibitor 
was investigated to dock in the same position 
and interacts with almost the same residues of 
the active site (Fig. 6). Visual inspection of 
complexes from both GOLD and AD-Vina 
revealed inhibitor binding with active residues: 
Leu6, Ala7, Gly8, Gly9, Ser10, Gly11, Arg13, 
Lys23, Gln24, Pro83, Gly85, Leu86, Leu106, 
Gly107, Asp108,  Glu194, and Gly225.   

present in the PDB, therefore, a comparative 
structure prediction approach was used. The X-ray 
crystallographic structure of a template “PDB id: 
1H5T” was selected for the model building process 
with 98% query coverage and 64% sequence 
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antibiotics screening. Moreover, the superimposed 
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Root Mean Square Deviation (RMSD) of 0.001 
Å is in a highly acceptable range and shown in               
Fig. 3. The tertiary structure of G1PTT can be 
found in Fig. 4.
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Structures of these compounds are tabulated in 
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minimized using the MMFF94 force field and 
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molecular docking studies. Comparative docking 
performed using two different tools: GOLD and 
AD-Vina. In molecular docking, structure-based 
virtual screening of 152 drug-like compounds 
extracted based on pharmacophore-based virtual 
screening. All the inhibitors were docked into the 
enzyme active site using GOLD, and  AD-Vina. The 
top ten best inhibitors based on descending order of 
GOLD fitness score together with AD-Vina binding 
energy and drug-likeness are shown in Table 4. The 
correlation coefficients between GOLD fitness score 
and AD-Vina binding energy of the compounds 
can be found in Fig. 5. Compound ZINC23121280 
((3R)-N-(6-amino-1-benzyl-2,4-dioxo-pyrimidin-
5-yl)-1-cyclopentyl-5-oxo-N-propyl-pyrrolidine-3-
carbox) was selected as the best-docked inhibitor 
with GOLD fitness score and AD-Vina binding 
energy of 64.02 and -7.2 kcal/mol, respectively. The 
complex was selected based on several parameters 
including strong interactions between ligand and 
target protein, drug-likeness of the compound, and 
its pharmacokinetics. In both tools, the inhibitor 
was investigated to dock in the same position 
and interacts with almost the same residues of the 
active site (Fig. 6). Visual inspection of complexes 
from both GOLD and AD-Vina revealed inhibitor 
binding with active residues: Leu6, Ala7, Gly8, 
Gly9, Ser10, Gly11, Arg13, Lys23, Gln24, Pro83, 
Gly85, Leu86, Leu106, Gly107, Asp108,  Glu194, 
and Gly225.  
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Fig. 3. Superimposition of selected optimum model (purple) over the template (sienna). 

 

Fig. 4.Tertiary structure of G1PTT enzyme.
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The binding mode of the compound in 
the G1PTT pocket in GOLD was positioned 
as such to allow deep binding of  6-amino-1-
(cyclohexylmethyl)-5-(ethyl(methyl)amino)-
hexahydropyrimidne-2,4-diol ring and covered the 
major portion of the active site (Fig. 7). The oxygen 
atom of the ring was observed in hydrogen bond 
interaction with Gly85 and Pro83. The ring, (4R)-
4-(hydroxymethyl) pyrrolidin-2-ol, bind in the 
cavity of the active site and the nitrogen atom of 
the ring was observed to interact hydrophilically 
with Gly09. It also forms interactions with Ser10, 
Leu106, Asp108, and Lys23.

At the drug design stage, unveiling drug-
likeness and pharmacokinetic behavior of drugs are 
important as it reduces the number of unsuccessful 
hits in clinical trials [78]. In addition, it also enables 
chemists to select the most appropriate compounds 
for lead optimization and novel drug development. 
The compound completely follows Lipinski’s rule 
of five: molecular weight (453.53 g/mol), number 
of H-bonds acceptors (4), number of H-bonds 
donors (2), topological polar surface area (TPSA) 
value (130.78 Å²), and LogP value (1.53). The 

number of heavy atoms in the compound is 33, 
while aromatic heavy atoms and rotatable bonds are 
12 and 8, respectively. The molar refractivity of the 
compound is 127.95. An important consideration 
of drugs is their lipophilicity, which describes the 
compound’s ability to be dissolved in lipophilic 
solutions (non-aqueous). Lipophilicity determines 
the compound’s ability to permeate across different 
biological membranes [79]. Higher LogP, higher the 
capacity of drugs to cross biological membranes and 
hence can access targets for inhibition. The efficient 
delivery of a drug to the target site depends on the 
tendency of drugs to retain in blood for an extended 
period [78]. This was disclosed using the plasma 
protein binding (PPB) feature of the compound 
(described as LogK). The different ADMET 
properties of the best 10 inhibitors screened in the 
study can be found in Table 5.

3.7  Molecular Dynamics Simulation
 
The MD Simulations for 100-ns of the enzyme 
complex were carried out to investigate system 
stability. There are different examples in which 
time-dependent MD simulations have been applied 
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Fig. 5. Correlation coefficient between GOLD scores and binding free energies of 152 inhibitors. 

At the drug design stage, unveiling drug-
likeness and pharmacokinetic behavior of 
drugs are important as it reduces the number of 
unsuccessful hits in clinical trials [78]. In 
addition, it also enables chemists to select the 
most appropriate compounds for lead 
optimization and novel drug development. The 
compound completely follows Lipinski's rule 
of five: molecular weight (453.53 g/mol), 
number of H-bonds acceptors (4), number of 

H-bonds donors (2), topological polar surface 
area (TPSA) value (130.78 Å²), and LogP 
value (1.53). The number of heavy atoms in 
the compound is 33, while aromatic heavy 
atoms and rotatable bonds are 12 and 8, 
respectively. The molar refractivity of the 
compound is 127.95. An important 
consideration of drugs is their lipophilicity, 
which describes the compound's ability to be 
dissolved in lipophilic solutions (non-

Fig. 5. Correlation coefficient between GOLD scores and binding free energies of 152 inhibitors.
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aqueous). Lipophilicity determines the 
compound's ability to permeate across 
different biological membranes [79]. Higher 
LogP, higher the capacity of drugs to cross 
biological membranes and hence can access 
targets for inhibition. The efficient delivery of 
a drug to the target site depends on the 

tendency of drugs to retain in blood for an 
extended period [78]. This was disclosed using 
the plasma protein binding (PPB) feature of 
the compound (described as LogK). The 
different ADMET properties of the best 10 
inhibitors screened in the study can be found 
in Table 5. 

Table 4. Docking scores of top ten docked inhibitors. 

Compounds 
GOLD 
Fitness 
Score 

AD-Vina 
binding energy 

(kcal/mol) 

Druglikenss rule 
violations 

 
ZINC23121280 

64.06 -7.2 No violations 

 
 
 
 
 
 
 
 
 

ZINC02629047 

58.94 -6.4 No violations 

 
 
 
 
 
 
 
 

ZINC14511277 

 
55.86 

 

 
-6.6 

 

 
Egan rule (1 violations: 

TPSA>131.6) 
 

17 
 

 
 
 
 
 
 
 
 

ZINC03348170 

 
55.62 

 

 
-6.6 

 

 
Veber rule (1 violation: 

TPSA>140), 
Egan rule (1 violation: 

TPSA>131.6) 
 

 
 
 
 
 
 
 
 
 

ZINC12763362 

54.31 -6.1 No violations 

 
 
 
 
 
 
 
 

ZINC06221653 

53.85 -6.6 No violations 

 
 
 
 
 
 
 
 
 

ZINC28807288 

53.69 -6.4 No violations 

 
 
 
 
 
 
 
 
 

ZINC08343860 

 
53.46 

 

 
-6.6 

 

 
Veber rule (1 violations: 

TPSA>140), 
Egan rule (1 violations: 

TPSA>131.6), 
Muegge filter (1 violation: 

TPSA> 150) 
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ZINC05678255 53.44 -7.3 No violations 

 
ZINC13135410 

53.44 -7 No violations 

 

 
Fig. 6. Interacting residues of the enzyme with the ligand in AD-Vina (a) and GOLD (b). 
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Fig.7. Binding mode and interactions of ZINC23121280 in the binding pocket of the G1PTT enzyme. 
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Fig. 7. Binding mode and interactions of ZINC23121280 in the binding pocket of the G1PTT enzyme.
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Fig.7. Binding mode and interactions of ZINC23121280 in the binding pocket of the G1PTT enzyme. 
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3.6. Molecular Dynamics Simulation 
 

The MD Simulations for 100-ns of the enzyme 
complex were carried out to investigate system 
stability. There are different examples in 
which time-dependent MD simulations have 
been applied on docked complexes to explore 
the protein-ligand interactions, conformational 
fluctuations, structural, architectural changes, 
and dynamical shifts of the proteins [80]. The 

MD simulations aid in understanding the 
dynamic behavior of the complex and also 
highlight the important residues playing a vital 
role in identifying and binding the ligand [81]. 
To shed light on biomolecular movements 
within a solvated environment, RMSD, RMSF, 
B-factor, and radius of gyration were plotted 
as a function of time (Fig. 8). Investigation of 
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Fig.7. Binding mode and interactions of ZINC23121280 in the binding pocket of the G1PTT enzyme. 
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3.6. Molecular Dynamics Simulation 
 

The MD Simulations for 100-ns of the enzyme 
complex were carried out to investigate system 
stability. There are different examples in 
which time-dependent MD simulations have 
been applied on docked complexes to explore 
the protein-ligand interactions, conformational 
fluctuations, structural, architectural changes, 
and dynamical shifts of the proteins [80]. The 

MD simulations aid in understanding the 
dynamic behavior of the complex and also 
highlight the important residues playing a vital 
role in identifying and binding the ligand [81]. 
To shed light on biomolecular movements 
within a solvated environment, RMSD, RMSF, 
B-factor, and radius of gyration were plotted 
as a function of time (Fig. 8). Investigation of 

on docked complexes to explore the protein-
ligand interactions, conformational fluctuations, 
structural, architectural changes, and dynamical 
shifts of the proteins [80]. The MD simulations 
aid in understanding the dynamic behavior of the 
complex and also highlight the important residues 
playing a vital role in identifying and binding 
the ligand [81]. To shed light on biomolecular 
movements within a solvated environment, RMSD, 
RMSF, B-factor, and radius of gyration were 
plotted as a function of time (Fig. 8). Investigation 
of the enzyme in ligand-bounded form led to the 
assessment of structural minor structural variations 
and atomic level transitions [27]. The deviation 
of the backbone Cα atoms was observed first for 
the complete production run. The average RMSD 
value calculated for the complex is 2.25 Å, with 
a maximum of 3.10 Å at 70th ns. No substantial 
structural movements were reported that elucidates 
complex stability. The average RMSF value for 
the complex was 1.16 Å. The regions illustrating 
higher fluctuation were loops: that involve the 
regular conversion of sheets into helix and helix 
into the sheet. The graph indicates that most of the 
residues of the active site have remained stable. 
The highest peak of the graph indicates the region 
in the loop region. The β-factor is a thermal dis-
orderness calibrating function which stipulates 
the structural stability at the atomic position in 
term of RMSF. Therefore, its value depends on 
the level of atomic fluctuations which collectively 
contribute to the global vibrational movements of 
the protein and its thermal stability. The pattern of 
β-factor for protein is consistent with the RMSF 
trend. The β-factor average value calculated for 
the complex was 47 Å. To evaluate the structural 

compactness, radius of gyration was calculated as a 
time function. The average value of 25.3 Å for the 
docked protein denotes the stability of the protein 
structure. Snapshots at different ns of the docked 
enzyme complex over simulation period of 100-ns 
is presented in Fig. 9.

3.8  RDF Analysis
 
The RDF is a key tool to describe the probability 
of the distance ‘r’ between two particles in a 
system [82]. The distribution of atoms, molecules, 
and species around a specific residue of targeted 
protein can be described by RDF. For this, the first 
vital residues of the enzyme involved in hydrogen 
bonding with the inhibitor toward the end of the 
simulation were identified using an in-house 
script in VMD. It was found that TRP221 is the 
main residue from the enzyme active pocket that 
contributes significantly to ligand binding. The RDF 
graphs were generated for all the three hydrogen 
interactions of TRP221 atoms: HE1 and HH2 as 
illustrated in Fig. 10. The highest distribution was 
observed between HE1 atom of TRP221 and ligand 
N atom, at a distance of 4.50 Å with a g(r) value of 
0.16. The highest distribution of TRP221: HE1 and 
N1 atom of ligand was observed at 3.89 Å having 
a g(r) value of 0.20. The third plot describes the 
highest distribution at 3.39 Å with a g(r) value of 
0.26 between the HH2 atom of TRP221 and the N4 
atom of the ligand.

3.9  Binding Free Energy Calculations
 
MM_PBSA/GBSA methods of the AMBER14 
were used to describe the binding free energy of the 
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Fig. 9. Snapshots of structural variations of the docked complex at different ns. Dark red color indicates loop converted 
into the helix, the navy blue color indicates loop converted into the sheet, dark green indicates helix converted into a 
loop, and yellow color indicates the sheets convert into loops

Fig. 9. Snapshots of structural variations of the docked complex at different ns. Dark red color indicates loop converted 
into the helix, the navy blue color indicates loop converted into the sheet, dark green indicates helix converted into a 
loop, and yellow color indicates the sheets convert into loops 
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the enzyme in ligand-bounded form led to the 
assessment of structural minor structural 
variations and atomic level transitions [27]. 
The deviation of the backbone Cα atoms was 
observed first for the complete production run. 
The average RMSD value calculated for the 
complex is 2.25 Å, with a maximum of 3.10 Å 
at 70th ns. No substantial structural movements 
were reported that elucidates complex 
stability. The average RMSF value for the 
complex was 1.16 Å. The regions illustrating 
higher fluctuation were loops: that involve the 
regular conversion of sheets into helix and 
helix into the sheet. The graph indicates that 
most of the residues of the active site have 
remained stable. The highest peak of the graph 
indicates the region in the loop region. The β-

factor is a thermal dis-orderness calibrating 
function which stipulates the structural 
stability at the atomic position in term of 
RMSF. Therefore, its value depends on the 
level of atomic fluctuations which collectively 
contribute to the global vibrational movements 
of the protein and its thermal stability. The 
pattern of β-factor for protein is consistent 
with the RMSF trend. The β-factor average 
value calculated for the complex was 47 Å. To 
evaluate the structural compactness, radius of 
gyration was calculated as a time function. The 
average value of 25.3 Å for the docked protein 
denotes the stability of the protein structure. 
Snapshots at different ns of the docked 
enzyme complex over simulation period of 
100-ns is presented in Fig. 9. 

 

Fig. 8. Trajectories analysis. 

 

Fig. 8. Trajectories analysis.
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3.7. RDF Analysis 

 

The RDF is a key tool to describe the 
probability of the distance ‗r‘ between two 
particles in a system [82]. The distribution of 
atoms, molecules, and species around a 
specific residue of targeted protein can be 
described by RDF. For this, the first vital 
residues of the enzyme involved in hydrogen 
bonding with the inhibitor toward the end of 
the simulation were identified using an in-
house script in VMD. It was found that 
TRP221 is the main residue from the enzyme 
active pocket that contributes significantly to 
ligand binding. The RDF graphs were 

generated for all the three hydrogen 
interactions of TRP221 atoms: HE1 and HH2 
as illustrated in Fig. 10. The highest 
distribution was observed between HE1 atom 
of TRP221 and ligand N atom, at a distance of 
4.50 Å with a g(r) value of 0.16. The highest 
distribution of TRP221: HE1 and N1 atom of 
ligand was observed at 3.89 Å having a g(r) 
value of 0.20. The third plot describes the 
highest distribution at 3.39 Å with a g(r) value 
of 0.26 between the HH2 atom of TRP221 and 
the N4 atom of the ligand. 

Fig. 10. RDF plots for G1PTT enzyme TRP221 atoms: HE1 and HH2. 

3.8. Binding Free Energy Calculations 
 

MM_PBSA/GBSA methods of the AMBER14 
were used to describe the binding free energy 
of the system as well as molecular interactions 
between the protein and ligand. The 
MM_PBSA/GBSA technique combines the 
molecular mechanical energies with the 

continuum solvent approaches. The values of 
binding free energy were explained in Table 6. 
The entropy term is eliminated because of 
convergence problems in some cases, and it 
cannot be calculated.   

Fig. 10. RDF plots for G1PTT enzyme TRP221 atoms: HE1 and HH2.

system as well as molecular interactions between 
the protein and ligand. The MM_PBSA/GBSA 
technique combines the molecular mechanical 
energies with the continuum solvent approaches. 
The values of binding free energy were explained 
in Table 6. The entropy term is eliminated because 
of convergence problems in some cases, and it 
cannot be calculated.  

The formation of the complex leads to highly 
favorable columbic interactions (−30.15 kcal/
mol) as opposed to non-favorable contributions 
from the polar part of solvation free energy (44.79 
kcal/mol in case of PB and 40.93 kcal/mol in 

GB). The total electrostatic contribution is 10.41 
kcal/mol in GB and 15.71 in PB calculations, 
respectively. The binding energy value for van der 
waal interactions is -35.93 kcal/mol, which depicts 
system stability. The total binding free energies in 
PB and GB were determined as -1.07 and -29.59 
kcal/mol, respectively. The difference in values 
due to the solvation energy which was 66.11 kcal/
mol in MMPBSA compared to 36.85 kcal/mol 
from MMGBSA. The binding energy of active 
site residues are as follow:  Leu6 (-0.2 kcal/mol), 
Ala7 (-0.0 kcal/mol), Gly8 (-0.03 kcal/mol), Gly9 
(-0.50 kcal/mol), Ser10 (-0.55 kcal/mol), Gly11 
(-0.09 kcal/mol),  Arg13 (-0.36 kcal/mol), Lys23 
(-0.13 kcal/mol),  Gln24 (-0.01 kcal/mol), Pro83 
(-0.04 kcal/mol), Gly85 (-0.0 kcal/mol), Leu86 
(-0.58 kcal/mol), Leu106 (-1.22 kcal/mol), Gly107 
(-0.02 kcal/mol), Asp108 (-0.56 kcal/mol), Glu194 
(0.24 kcal/mol) and Gly225 (-0.17 kcal/mol). 
These values indicate that the overall system was 
stable as described in RMSD and RMSF earlier. 
The fluctuations pattern observed in RMSD and 
MM(PB/GB)SA analyses were almost identical and 
indicates the system stability.

4.   CONCLUSION

The current study was based upon a combinatorial 
approach highlighting the G1PTT enzyme of F. 
tularensis as a potential drug target. The findings 
revealed ZINC23121280 ((3R)-N-(6-amino-1-
benzyl-2,4-dioxo-pyrimidin-5-yl)-1-cyclopentyl-
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Table 6. Binding energies values. 

Contribution 
Energy Values  

( kcal.mol-1) 
Van der Waals energy − 35.93 
Columbic energy − 30.15 
Gas phase energy − 66.44 

Polar solvation free energy (PB)     44.79 
Solvation free energy (PB)      66.11 
Total binding free energy (PB)      − 1.07 

Polar solvation free energy (GB)      40.93 

Solvation free energy (GB)      36.85 
Electrostatic energy (PB) 
 

     15.71 
Electrostatic energy (GB)      10.41 

 Total binding free energy (GB)    − 29.59 

 

The formation of the complex leads to highly 
favorable columbic interactions (−30.15 
kcal/mol) as opposed to non-favorable 
contributions from the polar part of solvation 
free energy (44.79 kcal/mol in case of PB and 
40.93 kcal/mol in GB). The total electrostatic 
contribution is 10.41 kcal/mol in GB and 
15.71 in PB calculations, respectively. The 
binding energy value for van der waal 
interactions is -35.93 kcal/mol, which depicts 
system stability. The total binding free 
energies in PB and GB were determined as -
1.07 and -29.59 kcal/mol, respectively. The 
difference in values due to the solvation 
energy which was 66.11 kcal/mol in 
MMPBSA compared to 36.85 kcal/mol from 
MMGBSA. The binding energy of active site 
residues are as follow:  Leu6 (-0.2 kcal/mol), 
Ala7 (-0.0 kcal/mol), Gly8 (-0.03 kcal/mol), 
Gly9 (-0.50 kcal/mol), Ser10 (-0.55 kcal/mol), 

Gly11 (-0.09 kcal/mol),  Arg13 (-0.36 
kcal/mol), Lys23 (-0.13 kcal/mol),  Gln24 (-
0.01 kcal/mol), Pro83 (-0.04 kcal/mol), Gly85 
(-0.0 kcal/mol), Leu86 (-0.58 kcal/mol), 
Leu106 (-1.22 kcal/mol), Gly107 (-0.02 
kcal/mol), Asp108 (-0.56 kcal/mol), Glu194 
(0.24 kcal/mol) and Gly225 (-0.17 kcal/mol). 
These values indicate that the overall system 
was stable as described in RMSD and RMSF 
earlier. The fluctuations pattern observed in 
RMSD and MM(PB/GB)SA analyses were 
almost identical and indicates the system 
stability. 

 

 

 

 

 

4. CONCLUSIONS 

The current study was based upon a 
combinatorial approach highlighting the 

G1PTT enzyme of F. tularensis as a potential 
drug target. The findings revealed 
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5-oxo-N-propyl-pyrrolidine-3-carbox) as potential 
inhibitor of the enzyme. Although the inhibitor 
seems to show good binding efficacy for the enzyme 
the still these predictions required experimental in 
vivo and in vitro validation.  These findings can be 
used to design and develop more specific, efficient, 
and potent drugs against F. tularensis. 
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Name of Compounds 

1. N-(6-amino-1-butyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-N-methylbenzenesulfonamide
 

2. 5-amino-6-hydroxy-1-o-tolylpyrimidine-2,4(1H,3H)-dione  
 

3. N-(6-amino-1-butyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-N-methylbenzamide  

 

4. N/A 
 

5. N-(6-amino-2,4-dioxo-1-o-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)-N-methylbenzenesulfonamide
 

6. N-(6-amino-2,4-dioxo-1-o-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)-N-ethylbenzenesulfonamide
 

7. N-(6-amino-2,4-dioxo-1-o-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)-N-propylbenzenesulfonamide
 

8. N-(6-amino-2,4-dioxo-1-o-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)-N-methylbenzamide  
 

9. N-(6-amino-2,4-dioxo-1-o-tolyl-1,2,3,4-tetrahydropyrimidin-5-yl)-N-methylbutane-1-sulfonamide
 

10. 6-amino-5-(methylamino)-1-o-tolylpyrimidine-2,4(1H,3H)-dione  
 

11. 6-amino-5-(ethylamino)-1-o-tolylpyrimidine-2,4(1H,3H)-dione  
 
 

1.	 N - ( 6 - a m i n o - 1 - b u t y l - 2 , 4 - d i o x o -
1 , 2 , 3 , 4 - t e t r a h y d r o p y r i m i d i n - 5 - y l ) - N -
methylbenzenesulfonamide

2.	 5 -amino-6-hydroxy-1-o- to ly lpyr imid ine -
2,4(1H,3H)-dione

3.	 N - ( 6 - a m i n o - 1 - b u t y l - 2 , 4 - d i o x o - 1 , 2 , 3 , 4 -
tetrahydropyrimidin-5-yl)-N-methylbenzamide

4. 	 N/A
5.	 N - ( 6 - a m i n o - 2 , 4 - d i o x o - 1 - o - t o l y l -

1 , 2 , 3 , 4 - t e t r a h y d r o p y r i m i d i n - 5 - y l ) - N -
methylbenzenesulfonamide

6.	 N - ( 6 - a m i n o - 2 , 4 - d i o x o - 1 - o - t o l y l -
1 , 2 , 3 , 4 - t e t r a h y d r o p y r i m i d i n - 5 - y l ) - N -
ethylbenzenesulfonamide

7.	 N - ( 6 - a m i n o - 2 , 4 - d i o x o - 1 - o - t o l y l -
1 , 2 , 3 , 4 - t e t r a h y d r o p y r i m i d i n - 5 - y l ) - N -
propylbenzenesulfonamide

8.	 N- (6 -amino-2 ,4 -d ioxo-1 -o - to ly l -1 ,2 ,3 ,4 -

tetrahydropyrimidin-5-yl)-N-methylbenzamide
9.	 N- (6 -amino-2 ,4 -d ioxo-1 -o - to ly l -1 ,2 ,3 ,4 -

tetrahydropyrimidin-5-yl)-N-methylbutane-1-
sulfonamide

10. 	6-amino-5-(methylamino)-1-o-tolylpyrimidine-
2,4(1H,3H)-dione

11.	 6-amino-5-(ethylamino)-1-o-tolylpyrimidine-
2,4(1H,3H)-dione

12.	 N- (6 -amino-2 ,4 -d ioxo-1 -o - to ly l -1 ,2 ,3 ,4 -
tetrahydropyrimidin-5-yl)benzenesulfonamide

13.	 N- (6 -amino -1 -benzy l -2 ,4 -d ioxo -1 ,2 ,3 ,4 -
tetrahydropyrimidin-5-yl)benzenesulfonamide

14.	 N- (6 -amino -1 -benzy l -2 ,4 -d ioxo -1 ,2 ,3 ,4 -
t e t r a h y d r o p y r i m i d i n - 5 - y l ) - 4 - f l u o r o - N -
methylbenzenesulfonamide

15.	 N- (6 -amino -1 -benzy l -2 ,4 -d ioxo -1 ,2 ,3 ,4 -
tetrahydropyrimidin-5-yl)-N-methylfuran-2-
sulfonamide

Name of Compounds
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Table 2S. Supplementary Table 2
Supplementary Table 2 

                            ZINC09255350 
 

ZINC02629047 
 

ZINC21083072 
 

ZINC20968846 
 

ZINC12688361 
 ZINC20968850 

 

ZINC21056749 
 ZINC09503746 

 

ZINC12688372 

 

ZINC21056754 
 

ZINC20968860 
 

ZINC14656215 
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ZINC20968864 

 

ZINC06973908 
 

ZINC20968868 
 ZINC14670047 

 

ZINC20968872 
 

ZINC21056767 
 

ZINC21056749 
 ZINC09503746 

 

ZINC12688372 

 

ZINC21056754 
 

ZINC20968860 
 

ZINC14656215 
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ZINC20968864 

 

ZINC06973908 
 

ZINC20968868 
 ZINC14670047 

 

ZINC20968872 
 

ZINC21056767 
 

ZINC14656232 
 

ZINC57329128 
 

ZINC57329133 
 
 
 

ZINC57329136 

 

ZINC39944073 
 ZINC57329148 
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ZINC13006236 
 
 

ZINC92996529 
 

ZINC22066775 

 

ZINC92958387 

 

ZINC12568770 

 

ZINC14720788 
 

ZINC19848781 

 

ZINC15480656 
 

ZINC14655663 
 

ZINC12935584 

 

ZINC14720612 

 

ZINC14511277 
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ZINC13098937 
 

ZINC14512098 
 

ZINC14584341 
 

 

ZINC10431910 
 

ZINC40061682 
 

 

ZINC24616811 

 

ZINC19848781 

 

ZINC15480656 
 

ZINC14655663 
 

ZINC12935584 

 

ZINC14720612 

 

ZINC14511277 
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ZINC13098937 
 

ZINC14512098 
 

ZINC14584341 
 

 

ZINC10431910 
 

ZINC40061682 
 

 

ZINC24616811 

 
ZINC72645280 

 

ZINC12821917 
 

ZINC09255029 

 

ZINC08343860 
 

ZINC20989147 

 

ZINC12417381 
 

30	 Javed et al



ZINC12417384  
 
 
 
 
 
 
 
 
 
 
 
 

ZINC03348170 
 

ZINC20989150 

 

ZINC78396862 
 

ZINC23121280 

 

ZINC21056728 

ZINC14656171 

 

ZINC65433956 

ZINC09255338 

 

ZINC21056731 

 

ZINC65433958 

 

ZINC21056736 
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ZINC14656171 

 

ZINC65433956 

ZINC09255338 

 

ZINC21056731 

 

ZINC65433958 

 

ZINC21056736 

 

ZINC15605260 

 

ZINC09235457

 

ZINC14670114 

 

ZINC44974019 

 

ZINC78396864 

 

ZINC78396865 
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ZINC15605260 

 

ZINC09235457

 

ZINC14670114 

 

ZINC44974019 

 

ZINC78396864 

 

ZINC78396865 

 

ZINC60392593 

 

ZINC14697665 

 

ZINC14655861 

 

ZINC78396872 

 

ZINC14655864 

 

ZINC11094122 
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ZINC05677220 

 

ZINC72498202 

 

ZINC14655870 

 

ZINC14720573 

 

ZINC72498204 
 ZINC78396879 

 

ZINC12804529 

 

ZINC78396883 

 

ZINC09467411 

 

ZINC09452073 

 

ZINC53264670 

 

 

ZINC78396886 
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ZINC12804529 

 

ZINC78396883 

 

ZINC09467411 

 

ZINC09452073 

 

ZINC53264670 

 

 

ZINC78396886 

 

ZINC28807288 

 

ZINC12270700 

 

ZINC78396891 

 

ZINC78396894 

 

ZINC13135410 

 

ZINC13536709 
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ZINC12804529 

 

ZINC78396883 

 

ZINC09467411 

 

ZINC09452073 

 

ZINC53264670 

 

 

ZINC78396886 

 

ZINC28807288 

 

ZINC12270700 

 

ZINC78396891 

 

ZINC78396894 

 

ZINC13135410 

 

ZINC13536709 
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ZINC28807288 

 

ZINC12270700 

 

ZINC78396891 

 

ZINC78396894 

 

ZINC13135410 

 

ZINC13536709 

 

ZINC12804529 

 

ZINC78396883 

 

ZINC09467411 

 

ZINC09452073 

 

ZINC53264670 

 

 

ZINC78396886 
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ZINC12804529 

 

ZINC78396883 

 

ZINC09467411 

 

ZINC09452073 

 

ZINC53264670 

 

 

ZINC78396886 

 

ZINC24833725 

 

ZINC12763362 

 

ZINC68713803 

 

ZINC04273915 

 

ZINC23121423 

 

ZINC44974155 
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ZINC12360655 

 

ZINC24004947 

 

ZINC24004945 

 

ZINC12922825 

 
ZINC12360656 

 

ZINC44974164 

 

ZINC14656013 

 

ZINC06205277 

 

ZINC21082940 

 

ZINC08486806 

 

ZINC06221643 

 

ZINC06221644 
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ZINC14656013 

 

ZINC06205277 

 

ZINC21082940 

 

ZINC08486806 

 

ZINC06221643 

 

ZINC06221644 

 

ZINC14119574 

 

ZINC06221650 

 

ZINC06221651 

 

ZINC06221653 

 

ZINC10442496 

 

ZINC08548182 

 

ZINC09244451 

 

ZINC14721420 

 

ZINC09509328 

 

ZINC95366855 
 

ZINC07763936 

 

ZINC30858638 
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ZINC09244451 

 

ZINC14721420 

 

ZINC09509328 

 

ZINC95366855 
 

ZINC07763936 

 

ZINC30858638 

 ZINC12873547 

 

ZINC07983874 
 

ZINC14584621 

 

ZINC03528638 

 

ZINC05678255 

 

ZINC21083027 
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ZINC94804951 
 

ZINC94804952 

 
ZINC94804953 

 
ZINC94804954 

 

ZINC21083040 
 

ZINC21056718 
 

ZINC57329501 
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