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Radiation Techniques in Health and Environment†

A.K. Azad Chowdhury1*, Nusrat Jahan Shawon2, and Mohammad Mahfujur Rahman3
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Abstract: Radiation science has become a cornerstone of modern medicine, offering powerful tools for both diagnosis 
and treatment. Diagnostic imaging technologies such as X-ray, ultrasonography, computed tomography (CT), magnetic 
resonance imaging (MRI), positron emission tomography (PET), and gamma camera systems utilize radiation to 
provide high-resolution visualization of internal structures. Therapeutic applications have evolved from conventional 
radiotherapy to highly sophisticated techniques including Photon Beam Radiotherapy using LINAC, Gamma Knife, 
and CyberKnife systems. Advanced modalities such as Stereotactic Radiosurgery (SRS), and Stereotactic Body 
Radiation Therapy (SBRT) allow for precise delivery of high-dose radiation to tumors while minimizing exposure 
to surrounding healthy tissue. Emerging techniques such as FLASH radiotherapy, which delivers radiation at very 
high speeds, and carbon ion therapy, which is effective against resistant tumors, are bringing major improvements to 
cancer treatment. Cherenkov radiation is being explored for its role in treatment visualization and dosimetry, while 
Targeted Radionuclide Therapy (TRT) uses tumor-specific radioactive agents to deliver internal radiation precisely 
to cancer cells. Adaptive Radiation Therapy (ART) modifies treatment plans during therapy to account for tumor or 
patient changes. These developments are shaping the future of oncology, with an emphasis on precision, safety, and 
therapeutic efficiency. Beyond medicine, radiation is also applied in environmental protection. It is used for purifying 
wastewater through radiolysis, sterilizing hazardous solid waste, facilitating the breakdown of plastics, and detecting 
pollutants using nuclear analytical methods. These applications highlight the broader utility of radiation in supporting 
both health and environmental sustainability.

Keywords: Radiation, Gamma Irradiation, FLASH Radiotherapy, Targeted Radionuclide Therapy, Environmental 
Radiation Applications.

1.    INTRODUCTION

Radiation has been a cornerstone of medical science 
since its discovery in the late 19th century, providing 
powerful tools for both diagnosis and treatment of 
diseases, particularly cancer [1]. Radiation therapy, 
the therapeutic application of ionizing radiation, is a 
major modality in cancer management, with nearly 
50% of patients receiving radiotherapy during 
their illness to inhibit tumor growth and maximize 
curative outcomes [2]. The underlying principle of 
radiotherapy relies on the ability of high-energy 
radiation to damage the genetic material (DNA) of 
cancer cells, preventing their proliferation while 
minimizing exposure to surrounding healthy tissue 

[3]. The energy transported by radiation is governed 
by Einstein’s mass-energy equivalence equation E 
= mc2 [4], while the interaction of electromagnetic 
fields with biological tissues is described by 
Ampère-Maxwell’s law, 𝛻B = (J + ) [5]. 
Furthermore, the quantum nature of radiation is 
captured by the Planck-Einstein relation, E = hν, 
linking photon energy to frequency [6] and by 
Einstein’s photoelectric equation, KE = hν − ϕ, 
which describes the kinetic energy of ejected 
electrons as a function of photon energy and the 
material’s work function [7]. 

Radiotherapy not only serves curative purposes 
but also plays a pivotal role in palliative care, 



alleviating symptoms such as pain, obstruction, or 
compression caused by tumors. Thus, the integration 
of physics, imaging, and clinical expertise has made 
radiation a vital component of modern medical 
practice, offering both life-saving treatment 
and improved quality of life for patients [1].

2.    MEDICAL IMAGING TECHNIQUES

2.1. X-ray

X-rays are a form of ionizing radiation with 
wavelengths of 0.01–10 nm, widely used in 
medical imaging for visualizing internal structures 
based on differential absorption and transmission 
through tissues. Modern X-ray systems, including 
computed radiography, flat-panel detectors, and 
CT, provide high-resolution 2D and 3D images 
essential for diagnosing fractures, bone disorders, 
soft tissue abnormalities, and guiding surgical or 
interventional procedures. Advances in detector 
technology and imaging techniques have improved 
image quality while reducing patient radiation 
exposure [8, 9].

2.2. Ultrasonography

Ultrasonography has rapidly advanced, offering 
high-resolution real-time imaging of anatomy, 
pathology, and blood flow. It is safe, quick, and 
often superior to CT or MRI in uncooperative or 
lean patients, though limitations exist with obesity, 
gas, and bone interfaces. High-quality sonography 
requires extensive training and expertise, while 
handheld devices hold promise for screening and 
enhancing routine clinical diagnosis [10].

2.3. Computed Tomography (CT)

Computed tomography (CT) provides high-
resolution, cross-sectional images that accurately 
distinguish tissues, enabling precise assessment 
of body composition, including adipose tissue, 
skeletal muscle, bones, and organs. Modern 
multidetector CT (MDCT) allows rapid acquisition 
of three-dimensional volume images with sub-
millimeter resolution, improving both speed and 
reproducibility of measurements. CT can also 
quantify bone mineral density and fat infiltration 
in muscles or liver, making it a reliable tool for 
clinical evaluation and research [11, 12].

2.4. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a 
non-invasive technique that produces high-
resolution images using strong magnetic 
fields and radiofrequency radiation, providing 
excellent soft tissue contrast. It is widely used in 
clinical diagnostics, radiotherapy planning, and 
pharmaceutical research to study tissue structure, 
tumor margins, and in vivo drug delivery [13-15].

2.5. Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a functional 
imaging technique widely used in oncology for 
tumor staging, treatment response assessment, and 
radiotherapy planning, providing early insights into 
tumor metabolism beyond anatomical imaging. 
PET imaging has evolved from early research 
tools to sophisticated clinical scanners with 3D 
acquisition, iterative reconstruction, and time-of-
flight technology, improving sensitivity, image 
quality, and quantitative tumor assessment [16, 17].

3.    ADVANCED RADIOTHERAPY
       MODALITIES

3.1. Gamma Knife

Gamma Knife radiosurgery has evolved over the 
past decades as a minimally invasive alternative for 
treating intracranial tumors, vascular malformations, 
and functional disorders, particularly medically 
refractory tumors. Its advantages include precise 
high-dose radiation delivery without craniotomy, 
making it suitable for patients unfit for invasive 
surgery [18].

3.2. CyberKnife

The CyberKnife system is a frameless, image-
guided radiosurgery platform that integrates a 
compact 6-MV LINAC with a robotic arm to 
deliver highly precise, non-isocentric radiation 
beams. Real-time imaging and motion correction 
allow accurate targeting of both intracranial and 
extracranial lesions without invasive stereotactic 
frames. Its treatment planning software supports 
multimodality imaging fusion, inverse planning, 
and dose optimization, enabling safe irradiation 
of complex tumor shapes while sparing adjacent 
structures. Since FDA approval in 2001, CyberKnife 
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has been widely adopted as an effective alternative 
to conventional surgery and radiosurgery systems 
such as the Gamma Knife [19-22].

3.3. LINAC

LINAC-based radiotherapy uses high-energy 
X-rays to precisely target tumors while sparing 
normal tissues. Modern techniques like IMRT and 
VMAT, combined with image guidance, improve 
dose accuracy, though CBCT has limitations in 
soft tissue visualization and motion management. 
The integration of MRI with LINAC (MR-Linac) 
allows real-time imaging, adaptive treatment, and 
better tumor targeting, enhancing efficacy and 
reducing toxicity [23, 24].

3.4. Stereotactic Radiosurgery (SRS) and
       Stereotactic Body Radiation
       Therapy (SBRT)

Stereotactic radiosurgery (SRS) and stereotactic 
body radiation therapy (SBRT) are noninvasive, 
high-dose radiotherapy techniques targeting cranial 
and extracranial tumors, respectively, using image 
guidance and stereotactic alignment for precise 
delivery. SRS typically involves a single high-dose 
session for brain lesions, while SBRT delivers a few 
large doses to extracranial tumors, including lung, 
liver, and prostate. Both modalities are effective in 
local tumor control, with ongoing studies refining 
their use and exploring combination with targeted 
systemic therapies [25].  

3.5. FLASH Radiotherapy (FLASH-RT)

FLASH radiotherapy (FLASH-RT) delivers ultra-
high dose-rate radiation within milliseconds, which 
has shown the ability to spare normal tissues while 
maintaining strong antitumor efficacy. Preclinical 
studies across multiple species and early clinical 
cases demonstrate reduced toxicity compared to 
conventional radiotherapy, making FLASH-RT a 
promising approach for overcoming radio-resistant 
tumors [26, 27].

3.6. Targeted Radionuclide Therapy (TRT) 

TRT delivers cytotoxic radiation to tumor cells 
using radiolabeled molecules such as antibodies, 
peptides, or small ligands, minimizing damage to 
normal tissues. Common applications include I-131 

for thyroid cancer, Y-90 ibritumomab tiuxetan and 
I-131 tositumomab for non-Hodgkin’s lymphoma, 
and Lu-177-DOTA-TATE or Y-90-DOTA-TOC for 
neuroendocrine tumors [28, 29].

3.7. Adaptive Radiation Therapy (ART) 

ART is a closed-loop radiotherapy approach that 
continuously adapts treatment plans using systematic 
feedback from patient-specific measurements. 
Unlike conventional radiotherapy that applies 
uniform margins based on population averages, 
ART customizes field margins and radiation doses 
to individual anatomical and positional variations, 
thereby enhancing both safety and effectiveness. 
This process employs advanced technologies such 
as CT imaging, electronic portal imaging devices, 
multileaf collimators, and computer-controlled 
systems to monitor changes and re-optimize 
treatment in real time. By accounting for organ 
motion, geometric target shifts, and treatment 
beam placement errors, ART reduces unnecessary 
radiation exposure to healthy tissues. It also allows 
for safer dose escalation by tailoring margins to 
the actual variability of each patient rather than 
generalized estimates. Ultimately, ART represents 
a dynamic, patient-centered strategy that refines 
radiation delivery and improves therapeutic 
outcomes [30].

4.    ENVIRONMENTAL APPLICATIONS OF
       RADIATION

4.1. Wastewater Purification

Radiation technology, particularly gamma 
irradiation, has shown significant potential in 
purifying municipal wastewater by effectively 
reducing physical and organic contaminants. 
Laboratory studies indicate that gamma doses 
between 100 - 500 krad can degrade up to 88% of 
organic pollutants while inactivating pathogenic 
microorganisms, thus lowering biochemical 
oxygen demand (BOD) and chemical oxygen 
demand (COD). The method also improves sludge 
compactness and settling capacity, making it a 
promising alternative to conventional treatments. 
With optimized radiation parameters and pilot-
scale validation, this technology can provide 
cost-effective and environmentally compatible 
wastewater treatment [31, 32].
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4.2. Solid Waste Treatment

Radiation technologies have emerged as effective 
tools for the treatment and disinfection of solid and 
liquid wastes, addressing growing global concerns 
over pollution and public health. Techniques such 
as gamma irradiation, electron-beam, ultraviolet, 
and X-rays have been applied to sterilize sewage 
sludge, biomedical wastes, and industrial effluents, 
while also degrading toxic contaminants in soils. 

Gamma irradiation, particularly using 
cobalt-60, has demonstrated practical efficacy in 
field-scale applications, providing pathogen-free, 
nutrient-rich sludge suitable for agricultural use. 
These technologies offer significant advantages, 
including odorless, easily handled waste and 
elimination of withholding periods before crop 
use, making radiation a promising approach for 
sustainable waste management [33].

4.3. Pollutant Detection

Radiation techniques, particularly laser-based 
absorption spectroscopy, are increasingly used 
to detect and quantify gaseous pollutants in the 
atmosphere. By targeting specific infrared absorption 
bands of pollutants such as carbon monoxide, nitric 
oxide, sulfur dioxide, and ozone, lasers provide 
high sensitivity and selectivity even at very low 
concentrations. The collimated, high-power laser 
beams allow long-distance transmission and 
multiple-pass absorption, overcoming limitations 
of traditional light sources and enhancing real-time 
environmental monitoring [34].

4.4. Plastic Waste Degradation

Radiation processing, using gamma rays or electron 
beams, effectively modifies the structure of synthetic 
and natural polymers, enhancing properties such as 
thermal stability, biodegradability, and mechanical 
strength. It facilitates plastic waste degradation, 
accelerates breakdown of cellulose into viscose, 
and improves chitin/chitosan processing without 
toxic chemicals.

Electron beam and gamma irradiation 
offer environmentally friendly alternatives to 
conventional chemical methods, providing cost-
effective and sustainable polymer modification for 
industrial and environmental applications [35].

5.    CONCLUSIONS  

Radiation technologies have become indispensable 
across medicine and environmental management, 
offering precise, efficient, and versatile solutions. 
In healthcare, advances in diagnostic imaging 
and targeted radiotherapy improve tumor control, 
minimize normal tissue damage, and enable 
personalized treatment strategies. Environmentally, 
radiation applications in wastewater purification, 
solid waste sterilization, and pollutant detection 
provide sustainable and effective approaches to 
safeguard public health. Together, these innovations 
underscore the transformative potential of radiation 
science in enhancing both human health and 
environmental protection.
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Abstract: All over social media and internet platforms, Roman Urdu content is extremely casual, inconsistent, and 
linguistically diversified, which makes it hard to interpret through conventional Natural Language Processing (NLP) 
techniques. This paper proposes a strong topic-classification framework for Roman Urdu, integrating Stochastic 
Gradient Descent (SGD)-optimized machine learning, dictionary-assisted stemming, and custom lexical normalization 
in order to overcome those challenges. The method consists of structured preprocessing, reduction of repeated letters, 
rule-based normalization, extraction of TF-IDF features, and the evaluation of a few classifiers including Logistic 
Regression (LR), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), K-Nearest Neighbors 
(KNN), along with the proposed model of SGD. The proposed classifier outperformed all the baseline models with 
an accuracy of 95%, according to the experimental results on the four-class dataset comprised of Politics, Sports, 
Education, and Religion. The results depict the importance of stemming and normalization to improve feature quality 
and reduce orthographic variability in low-resource languages. All things considered, this study provides a repeatable 
and efficient pipeline for Roman Urdu subject classification and thus lays a concrete foundation for further Roman 
Urdu NLP research.

Keywords: Roman Urdu Stemmer, TF-IDF, Stochastic Gradient Descent, Topic Classification, Machine Learning.

1.    INTRODUCTION

Topic classification using Natural Language 
Processing (NLP) is a major application, where 
machines classify texts into predefined categories. 
Topic classification refers to classifying a document 
into predefined topics such as social media, news, 
or reviews. Efficient topic classification systems for 
multiple languages are becoming more important 
with the rapid increase in online contents, 
especially social media contents. Large Language 
Models [1] or deep learning models for specialized 
domains [2] are some of the recent advancements 
that were taken into consideration. Efficient topic 
classification systems for multiple languages are 
becoming increasingly important with the rapid 

growth in online contents, especially social media 
contents. In South Asia, Roman Urdu which is a 
form of Urdu written in Latin script is frequently 
practiced. Roman Urdu undergoes an informal 
language with limited resources, regardless of its 
increasing popularity, which leads to substantial 
challenges for automated text classification [3]. 
By formulating a high accuracy topic classification 
system particularly for Roman Urdu, integrating its 
lexical variation and morphological irregularities, 
this study aims to address these shortcomings. 
Roman Urdu is used in a significant portion of South 
Asian discussion forums because Urdu is one of the 
languages that are most frequently used in the world 
[4]. Roman Urdu’s lack of standard orthographic 
structures and a more informal atmosphere of social 



media have contributed to the growing number of 
non-standard spellings, which makes automated 
text categorization far more challenging [5, 6].  For 
that reason, it is vital to build such tools that can 
arrange and classify this massive amount of user-
generated content for improved information access 
and interpretation.

Roman Urdu has received little attention 
in recent studies, which mainly focused on text 
classification for high resource languages like 
English. Techniques using deep learning for text 
classification have been previously investigated by 
Minaee et al. [7]. These techniques perform well 
in settings where resources are abundant, but they 
show limitations when applied to languages with 
limited resources such as Roman Urdu. In this 
regard, Gasparetto et al. [8] studied algorithms for 
text categorization and also demonstrated how hard 
it can be to apply these approaches to unstructured 
and informal texts such as Roman Urdu. While 
TF-IDF (Term Frequency-Inverse Document 
Frequency) is an established feature extraction 
method [9], it has yet to be studied extensively on 
Roman Urdu due to the presence of nonstandard 
spelling and irregular forms in the language 
that render such methods very difficult to apply. 
Similarly, Hussain et al. [10] carried out a detailed 
study on Roman Urdu sentiment detection but did 
not present any preprocessing mechanism, which is 
considered crucial in topic classification. Similarly, 
the study carried out by Arshad et al. [11] on the 
recognition of emotions in Roman Urdu text failed 
to consider the specific preprocessing requirements 
of the language.

Although, Pakray et al. [12] focused on 
low resource language processing, issues related 
to Roman Urdu were not sufficiently focused 
on, where its informal expressions and spelling 
irregularities make classification a highly 
challenging job. As far as stemming is concerned, 
although it has been well studied for languages like 
English, it does not suffice to handle Roman Urdu, 
and an efficient stemmer for Roman Urdu remains 
missing. Adimulam et al. [13] focused on transfer 
learning in languages with very minimal resources. 
However, the unique morphological constraints 
pertaining to Roman Urdu were not clearly explored 
in this work. Avetisyan and Broneske [14] made an 
effort to review low resource languages but did not 
provide any customized solution for Roman Urdu, 

which further gives weight to the importance of 
effective preprocessing. Similarly, Ògúnremí et 
al. [15], while discussing decolonizing NLP for 
low resource languages, did not explore those very 
unique complexities existing in Roman Urdu text.

While the studies of Sandu et al. [16] and Chen 
et al. [17] focused on text extraction techniques 
for social media, they did not cater specifically to 
Roman Urdu but rather focused their approach on 
strongly resourced languages. Ghafoor et al. [18] 
studied multilingual text processing, but again, 
their work did not cover methods that could cater 
to the rich lexical features of Roman Urdu. Even 
though TF-IDF is a widespread feature extraction 
technique, it needs further tuning to deal with 
informal writing patterns of Roman Urdu. Kumar 
et al. [19] assessed deep learning for hyperspectral 
image classification, failing to assess the challenge 
of text classification for low-resourced languages 
like Roman Urdu. Additionally, Faheem et al. [20] 
investigated part of speech tagging for Roman Urdu 
but did not expand their work to topic classification 
and Hussain et al. [10] addressed the challenges 
of emotion recognition in Roman Urdu; however, 
their work did not discuss topic categorization, 
which considers a broader perspective of Roman 
Urdu textual characteristics.

Roman Urdu text categorization has drawn 
more interest, especially in view of complications 
linked with the detection of sentiment and 
emotions. The work of Ilyas et al. [21] identified 
the recognition of emotions in code mixed Roman 
Urdu-English text, their research has avoided 
specific challenges that arise when dealing with 
pure Roman Urdu text, such as the irregular spelling 
and lack of standardization of the language. 

In the same direction, Chandio et al. [22] 
have proposed an attention-driven Residual Unit–
Bidirectional LSTM (RU-BiLSTM) framework for 
sentiment analysis targeting Roman Urdu, but they 
failed to take into account carefully the difficulty of 
the topic classification, opening a way to deal with 
a greater variety of textual structures. Nabeel et al. 
[23] used machine learning (ML) models to classify 
emotions in Roman Urdu posts but the struggles 
of classifying topics within this language context 
were not taken into account by them. Khan et al. 
[24] worked on the sentiment analysis for Roman 
Urdu from a multilingual point of view, they 
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predominantly focused on emotion identification, 
leaving a gap in the establishment of broader 
topic classification systems. More generalized 
issue of topic categorization, which has not yet 
explored, was also ignored by Rana et al. [25], who 
contributed in the area of Roman Urdu language 
by offering an unsupervised method for analysis of 
sentiments on social media short text classification.

Tejaswini et al. [26] examined social media 
text interpretation using NLP methods and hybrid 
deep learning models for detecting depression, and 
the work of Lavanya and Sasikala [27] explored 
text classification in social healthcare settings using 
NLP and deep learning, both of these studies mainly 
relied on sentiment analysis and did not address the 
specific challenges of topic classification, which 
is the focus of our work. The need for improved 
approaches to Roman Urdu text processing 
becomes clear when considering that Akhter et 
al. [28] focused on identifying abusive language 
in both Urdu and Roman Urdu but did not extend 
the analysis to topic categorization. Similarly, 
Mehmood et al. [29] proposed a discriminant 
approach for feature spamming and played their 
role in the analysis of sentiment for Roman Urdu; 
however, their research work did not incorporate 
topic classification.

Mehmood et al. [30] used a hybrid approach 
for sentiment analysis of Roman Urdu through the 
Xtreme multi-channel technique. However, their 
work still had some shortcomings since it missed 
the aspect of topic classification. Saeed et al. [31] 
worked on the area of toxic comment classification 
for Urdu and Roman Urdu by developing the 
PURUTT corpus, which aimed at enhancing the 
detection of toxic comments. However, their work 
does not tackle the key issue of topic classification. 

In conclusion, despite some progress 
made in sentiment analysis and toxic comment 
detection for Roman Urdu-Urdu, there is still a 
gap in the application of such techniques to topic 
classifications. Feature extraction techniques such 
as TF-IDF and n-gram techniques have gained 
considerable attention, however, issues such as non-
standard spelling, colloquial language use, and small 
datasets still exist. Therefore, the proposed study 
strengthens the Stochastic Gradient Descent (SGD) 
by developing a more accurate topic classification 
technique and a Roman Urdu stemmer.

2.    MATERIALS AND METHODS

Roman Urdu stemming and a vast amount of 
ML experiments form the basis of this study’s 
methodology. Logistic Regression (LR) [9], Support 
Vector Machine (SVM) [30], SGD, K-Nearest 
Neighbors (KNN), Naïve Bayes (NB) and Decision 
Tree (DT) [32] were among the algorithms whose 
performances we assessed. The establishment of a 
method for Roman Urdu text topic classification 
using SGD is a major accomplishment of this study. 
Figure 1 is a conceptual illustration of our proposed 
methodology. Our method incorporates the use 
of the TF-IDF weighting scheme, but just before 
inserting the data into the model, a lexical dictionary 
is utilized to guide a critical stemming process. By 
contemplating the various spellings and variations 
in Roman Urdu, this dictionary contributes in 
standardizing the text. The main purpose of this 
step is to improve the feature selection process.

It starts with data cleaning, which deletes 
irrelevant symbols and punctuation marks from 
the text. Next, lexical normalization is conducted 
by using a rule-based approach, followed by 
stemming. Together, these form the preprocessing 
stage of the work, which is really important to 

Fig. 1. Proposed model methodology workflow.
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handle the irregularities present in Roman Urdu 
text. A TF-IDF vectorizer was then applied for 
feature extraction, while a number of ML models 
were subsequently used for the classification.

2.1. Dataset

The Roman Urdu dataset1 used in this research 
has been collected from Kaggle, a well monitored 
platform acknowledged for its rich dataset 
repository and data science competitions. This 
dataset is a very valuable collection of text data, 
particularly in the Roman Urdu language, which 
covers a wide range of topics and sentiments. The 
corpus is collected from online forums and social 
blogs, hence offering a rich and reliable repository 
of real-world linguistic interactions and individual 
opinions. It provides a very useful insight into 
how people express their sentiments and opinions 
in Roman Urdu about diverse topics. The dataset 
consists of 4065 comments, hence, the data is 
labeled with categories like politics (1398), sports 
(1092), education (851), and religious (724). The 
politics and sports categories are most represented, 
followed by the education and religious comments, 
as captured in Figure 2, thereby reflecting an 
imbalanced yet diverse distribution in the corpus.

2.2. Preprocessing

Preprocessing is important as it retains only the 
significant words and removes  the rid of rest. Filler 
words like “punch lines,” “number characters” 
and  “stop words” were deleted. The data 
preprocessing decreases computation time and size 
of the  data. Doing that in NLTK library (Python), 
several operations are performed including 
removing the unnecessary  words and characters, 
auto correcting and stemming.

2.2.1. Remove Stopping Words

Stop words are those common and repetitive words, 
which do not appear as useful information for the 
sentiment  prediction. The idea  of stop words was 
first introduced by Luhn [33]. In this paper, we 
perform a manual selection  for these stop words. 
We will use a curated set of Urdu stop words to 
efficiently remove irrelevant words, reducing the 
data  processing step. Figure 3 shows the stop 
words of Roman  Urdu.

2.2.2. Data Auto Correction

For the unstructured Roman Urdu used in informal 
comments over the web, people usually use incorrect 
syntactical structures, hence the mining process is 
complicated. Hence, someone might stretch  out 
characters of a word “bohtttttttttt khubbbbbb” 
instead of the desired “boht khub” meaning “well 
done” in response to this our system attempts to 
resolve these ill formedness as by identifying the 
correct syntactic composition of words  in order to 
facilitate better analysis [34].

Fig. 2. Roman Urdu Dataset.

Fig. 3. Stop words in Roman Urdu.
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2.2.3. Normalization and Stemming

A rule-based approach named hashing with the 
incorporation of lexical strategies for normalizing 
the Roman Urdu text is utilized by researchers 
of [35]. We have developed some guidelines to 
overcome this issue. These guidelines attempt to 
minimize the use of shared suffixes and infixes of 
the Roman Urdu words. In Table 1, an indication of 
the end of a string or suffix is shown by ‘$’ sign, the 
start of any string by ‘∧’ sign, and repetition of any 
alphabet is ‘+’.

So, for example, words such as “khamian” 
(flaws), “achaaiyaan” (goodness), and “kitabain” 
(books) become “khami”, “achai”, and “kitab” 
respectively. One of the interesting things that can 
be noticed here is that the suffix “an” is removed 
when the letter “i” is observed before it. Also, 
expressions such as “taqreebaat” (ceremonies), 
“chakkay” (Sixes), and “haqooq” (rights) become 
“taqreb”, “chakka”, and “haq” respectively. 
Moreover, repeated letters are reduced to a single 
representation, as noticed in the normalizations of 
“qanooon” to “qanon” and “boohatt” to “bohat”. 
Finally, after the application of these guidelines, 
the normalized text is then standardized using a 
human-annotated lexical dictionary.

The stemmer used in the data preprocessing 
step is intended to reduce words to their root form. 
Though there could be scenarios where the stem 
does not match with the root, this is still effective 
since related words tend to belong to the same stem 
despite the root not being proper itself. There are 
numerous stemmers for the English language or 
any other language that is gifted with rich linguistic 
resources. Examples of such stemmers include the 
Porter stemmer [36] and the Snowball stemmer 
[37]. The situation of stemming words for Roman 
Urdu is far more complex as compared to other 
languages.

Table 1 provides some examples of lexically 
normalized words. It is clear that the words in Table 
2 have the same sound or pronunciation but with 
varying spellings. The stem word generation is 
dependent on a mapping function that is precisely 
given by f: N → S, where N denotes a finite set of 
words against which we strive to link plausible stem 
words that belong to set S. This function of mapping 
is set to establish the correct stem word S for the 

term N, boosting the efficiency of the stem word 
generation. If the mapping function is unsuccessful 
in identifying a stem word, then the root word is 
used. So, for ensuring effective search for the stem 
word, there is separate indexing of each word by 
means of a hashing function. Therefore, by using 
the map function, the entire document is exposed to 
the stemming process to remove any possibilities of 
inconsistencies or anomalies.

2.3. Model Training and Validation Phase

The data was divided into model’s training and 
validation subsets as part of the dataset partitioning 
process [38, 39]. In particular, 70% of the dataset 
was reserved for model training, and the left over 
30% was allocated for validation. Further insights 
into this division are provided in Table 3, revealing 
that 2845 comments were incorporated for model’s 
training, and 1220 comments were employed for 
validation purposes.

2.4. Pipeline

A pipeline combines various estimation procedures 
into a single step, simplifying the ML process [38]. 
A pipeline involves the progressive implementation 
of a set of transformers (data modeling), followed 

Sr. No. String Replacement
1. “ian” $ ‘i’
2. “niat” $ “ni”
3. “iy+” ‘i’
4. “ia” ‘i’
5. “ih” “eh”
6. “ay” ‘e’
7. “ie” $ ‘y’
8. “ee+” ‘e’
9. “es” ‘is’
10. “ar” ‘r’

Table 1. Rules for Lexical Normalization.

Roman Words Stemming English

siasat, syasat, sayasat syast Politics

parhaye, parhaee, parhai prhai Study

kitabain, kitaabain, ketabain kitab Books

taqreebaat, tareebat, taqrebaat taqreeb Ceremony

achaiyaan, achaian, achaiyan achai Goodness

Table 2. Stemming of Roman Urdu.
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by an estimator at the end (ML model) [39]. The 
transformation stage includes the methods fit() 
and transform(), while the estimator includes 
fit() and predict(). Although an estimator always 
implements fit(), it may not necessarily implement 
predict(). Briefly, pipelines are designed with fit(), 
transform(), and predict() capabilities, allowing the 
entire pipeline to be fitted to the training data and 
then applied consistently to the test data without 
repeating each step manually. A pipeline is then 
built to convert words into vectors, extract features, 
and fit the model. In this work, function names such 
as fit(), transform(), and predict() are written with 
parentheses to indicate that they refer to callable 
methods (the () denotes that these are functions that 
can be executed with arguments), as commonly 
defined in machine learning libraries.

2.5. Feature Extraction

The step of feature selection involves the utilization 
of TF-IDF weighting scheme, a widely used method 
in text classification [32, 34]. This scheme assigns 
specific weights to individual vocabulary terms, 
belonging to the set V = {v1, v2... vn}, for each 
document within the text corpus, in order to estimate 
their importance [7]. These weights, denoted as W = 
{w1, w2... wk}, aim to reflect the significance of each 
vocabulary term. Nevertheless, the term frequency 
(TF) approach’s shortcoming lies in its tendency to 
give higher weights to frequently appearing terms, 
which could lead to the neglect of crucial terms and 
subsequent subpar feature selection. Through the 
following characteristics, size of the feature can be 
evaluated.

2.6. TF-IDF Vectorizer

Term Frequency Inverse Document Frequency (TF-
IDF) approach has broader utilization to transform 
text into a numerical illustration for prediction after 
training the ML models [8]. TF-IDF vectorizer 
takes into account a word’s average prominence 

in a document [32]. When dealing with the most 
frequently used words, this is a great method. We 
can penalize them by using it. TF-IDF vectorizer 
applies a frequency-based weighting factor to 
the word counts. Table 4 displays the example 
of feature extraction using TF-IDF. Equation (1) 
shows the formulation of TF − IDF value in a 
particular document ‘d’ for a specific ‘t’ th term:

	 (1)

The term frequency TF (t, d) is for ‘t’ th term in 
document ‘d’. While Inverse Document Frequency 
for ‘t’ th term throughout the corpus is represented 
as IDF (t).

2.7. Classification Scheme

Our classification framework employs a diverse 
set of ML algorithms to classify topics in Roman 
Urdu text. These algorithms include Multinomial 
Logistic Regression (MLR), SVM, Naive Bayes, 
LR, Decision Tree, and our proposed approach 
based on SGD to explore the classification schemes 
that most suit the requirements of Roman Urdu 
text. The framework we have devised for topic 
classification is rooted in the utilization of the 
SGD algorithm [40]. This approach is used for the 
effective classification of topics in multi-class text 
reviews. The best algorithm emerged here is SGD, 
which showed the highest accuracy in categorizing 
Roman Urdu text. SGD is also an iterative 
optimization algorithm that plays a key role in the 
training of ML models [41]. 

It plays a very contributive role in text 
classification for Roman Urdu text in our research. 
The algorithm updates model parameters in an 

Table 3. Training and Testing Sets Description.

Class Training Set Test Set Total
Politics 994 404 1398
Sports 748 344 1092
Education 596 255 851
Religious 507 217 724
Total 2845 1220 4065

Sr. No. Words TF-IDF
1. talem 0.53109389
2. games 0.57735026
3. cricket 1.69314718
4. hamesha 0.29207003
5. reham 0.41802398
6. khelta 0.70710678
7. hifazat 0.26017797
8. insan 0.24783099
9. afsos 0.28194161
10. tawajo 0.33762465

Table 4. Feature Extraction by using TF-IDF.
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iterative manner, where it considers sometimes 
a single training example or a small batch every 
time. Inherent with this stochastic nature, it 
introduces randomness into the process, allowing 
the algorithm to avoid local minima and enabling 
quick convergence, especially in the case of large 
datasets.

This can be given, mathematically, by an update 
rule for SGD as:

		  (2)

Here θt represents the model’s parameter vector 
at iteration t. ∇ f (θt; xi; yi) denotes the gradient of 
the loss function, f with respect to θt, evaluated on 
training example (xi, yi). While η, a hyperparameter, 
is the learning rate and decides the step size in 
the updates of the parameters. In this scenario, 
xi shows input feature vector and yi displays its 
respective target label for i-th data point used in the 
computation of the gradient of the loss function.

We implemented an SGD model based on 
a well-organized pipeline approach. This was 
composed of two significant parts: the TF-IDF 
vectorizer and the SGD classifier. The TF-IDF 
vectorizer played an important role in converting 
the text data into a numerical representation by 
assigning words with numeric values according to 
their weights in TF-IDF. These weights determine 
the importance of words within the text corpus. The 
processed data would then serve as an input to the 
SGD classifier, which utilizes the SGD optimization 
technique in training a linear classifier for binary 
classification problems. The “hinge” choice of loss 
function played an instrumental role in informing 
the optimization process, while the “l2” penalty 
contributed toward regularization. The parameter 
“max_iter” controlled the maximum number of 
iterations that should result from the optimization 
process. Through these components and by 
combining them in a pipeline configuration, we 
have successfully engineered a robust and flexible 
SGD model that can be applied to text classification 
tasks.

3.    RESULTS AND DISCUSSION

The main results of our work demonstrate the 
efficiency of the proposed methodology for Roman 
Urdu topic classification. Our model, enhanced 

through the integration of SGD and a custom Roman 
Urdu stemmer, outperforms well-established models 
like LR, SVM, NB, DT, and kNN with regularity, 
which is also supported by prior works that state 
that quality preprocessing has a great effect on the 
classification result in low-resource languages [7, 
10]. An achieved accuracy of 95 percent reflected 
the importance of efficient cleaning and TF-IDF 
transformation, such a relation is also supported 
through previous studies on Roman Urdu text 
processing [32]. A number of factors create this 
improvement. First of all, Roman Urdu-specific 
stemming rules and customized normalization 
reduce spelling inconsistencies and noise, thereby 
mitigating known limitations in previously reported 
Roman Urdu classification works [10, 42]. Second, 
TF-IDF is able to provide a sparse feature space that 
is efficiently handled by the linear SGD classifier, 
which further supports the previously found 
observations regarding the efficiency of linear 
models for short and informal text [7]. Overall, 
our results confirm that combining language aware 
preprocessing with an optimized linear classifier 
leads to more accurate topic categorization and 
offers strong potential for broader Roman Urdu text 
classification applications [32].

3.1. Evaluation Metrics

The efficiency of the classifier’s is then assessed 
by using recall, F1-score and precision. Confusion 
Matrix of our proposed model is also displayed to 
illustrate the model’s functionality.

3.1.1. Accuracy

From the perspective of examining classification 
models, accuracy is a fundamental metric. The 
magnitude of successful predictions of a model 
is an elementary description of its accuracy. 
Mathematically, we can formulate it as:

	 (3)

In the context of binary classification, accuracy is 
simplified in terms of negatives and positives as:

		  (4)

3.1.2. Precision and recall

In the context of information extraction, precision 
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and recall are most commonly applied. The record 
numbers that have been reclaimed are considered 
precision, whereas the total record numbers 
that have been recovered are termed as recall. 
Meanwhile Precision and recall are inversely 
related, this highlights the impact of having a 
reliable classification system to offer context for 
their variances.

Mathematical interpretation of both terms in 
classification task is given as:

	 (5)

	
 (6)

3.1.3. F1-score

F-measurement, F-score or F1 are similar calculation 
of the check. The percentage of correctly recognized 
positive outcomes is a common way to measure 
precision p, which are divided by percentage of all 
samples classified as positive, while recall r is the 
percentage of correctly identified positive results, 
which are divided by percentage of all examples 
categorized as positive. 

	 (7)

3.1.4. Confusion matrix

Error matrix is another name for confusion matrix, 
in ML and classification. It is a table that clearly 
shows where a model makes mistakes. It helps 
illustrate model’s effectiveness or efficiency by 
comparing its predictions with the original results. 
The main goal is to analyze the classifier’s efficiency. 
By depicting both predicted and actual values, the 
confusion matrix offers a visual representation of 
disparities. This evaluation draws on insights from 
the confusion matrix, illustrated in Figure 4. Which 
encompasses metrics for topic classification. 
Correct predictions are positioned along the 
diagonal for visualization with the proper labelling 
of Politics, Sports, Education and Religious classes.

3.2. Topic Classification 

In the context of the experimental study, various ML 
techniques of classification were used for the task. In 
order to ensure an unbiased comparison, replication 

of the earlier proposed solutions was carried out 
for measurement of the efficiency and validity of 
the ML models. Table 5 shows the experimental 
results of various solutions of classification with 
regard to Roman Urdu topic classification tasks. 
These experimental results clearly show that the 
proposed solution of SGD with enhancement 
of the stemmed solution outperformed all other 
solutions with its enhanced performance capability. 
In addition, various other solutions using ML also 
found effective solutions. It is pertinent to note 
that solutions by LR and by SVM found solutions 
equivalent to that of our proposed solution for 
better understanding with various metrics like 
recall, precision, F1, and accuracy.

Apparently, the class-wise accuracy of analysis 
models, as shown in Figure 4, clearly reveals that 
religious class shows better advancement in terms 
of each recall, F1-measure, precision, and total 
accuracy. At the same time, there was a slight drop in 
precision and recall for politics and support classes. 
Though Table 5 shows the efficiency of our models 
relative to other models. When comparing, there 
was a relative low accuracy of 61% by the SVM 
model developed by Mehmood et al. [30] relative to 
our fine-tuned models. Notably, even the proposed 
models by us showed better efficiency relative to 
the deep learning models Recurrent Convolutional 
Neural Network (RCNN) with an accuracy of 63%. 
Moreover, the KNN models [32] showed better 
efficiency relative to precision with a precision of 
(70%), though relative to recall, it is ineffective 

Fig. 4. Confusion Matrix of proposed model (SGD) for 
Topic Classification of Roman Urdu.
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with low recall that caused the lowest accuracy of 
47%. At the same time, the Random Forest models’ 
approach [42] showed relative efficiency relative to 
NB models, though it gained an accuracy of below 
60%, which is unsatisfactory. Additionally, Naive 
Bayes showed relative efficiency with achieved 
accuracy of 62%, though it failed to achieve better 
efficiency relative to the SGD models [43]. At the 
same time, the efficiency of DT models showed 
moderate result with the precision of 59%, recall 
of 57%, and F1-measure of 0.58. Finally, LR and 
SVM models showed relative efficiency relative to 
ours with impressive accuracy of 94%. This shows 
that it is effective relative to regression models as 
well as classifications.

Figure 5 summarizes the detailed analysis of 
various models of ML for sentiment classification. 
This graph is more of a representation of the 
efficiency of the model in terms of Precision, 
Recall, F1 Score, and Accuracy of six models: LR, 
SVM, NB, DT, k-NN, and proposed model. This 

graph aptly expresses the measures of the models 
using four bars for each of the models, representing 
each of the mentioned factors. It is worthy to 
note that the proposed model gets the maximum 
number of counts via these factors, highlighting the 
effectiveness of the proposed model for sentiment 
analysis.

4.    CONCLUSIONS

In this work, we discussed topic classification for 
Roman Urdu text with several ML algorithms, 
including MLR, SVM, NB, Random Forest, DT, 
and our proposed SGD model supplemented with 
a Roman Urdu Stemmer. Our approach included 
extensive data preprocessing and feature extraction 
so that an optimal classification pipeline was 
achieved. Among all of the tried models, the SGD 
model performed best, achieving the maximum 
accuracy value of 95%. That means the proposed 
parameter optimization method in the SGD model 
showed better performance improvement in 
topic classification for Roman Urdu text. Though 
promising, we note some limitations of the current 
study, namely, the adoption of a single train/test 
split without any evaluation by other measures such 
as cross-validation that more completely showcases 
the generalization of the model. Furthermore, further 
works are needed to address the issues of class 
imbalance and the application of more advanced 
methods, such as cross-validation, which could 
make the results more robust. This study provides 
validation significant for Roman Urdu topic 
classification. This could be used in social media 
monitoring, content categorization, and public 
discourse studies. Future work will concentrate on 
refining the SGD model, expanding the dataset, and 

Model Precision Recall F1-Score Accuracy
LR 0.94 0.94 0.94 0.94
SVM 0.94 0.93 0.94 0.94
Naïve Bayes 0.90 0.84 0.86 0.86
Decision Tree 0.83 0.83 0.83 0.84
KNN 0.87 0.86 0.87 0.87
SVM [30] 0.59 0.58 0.58 0.61
KNN [32] 0.70 0.37 0.48 0.47
LSTM [42] 0.65 0.64 0.65 0.66
Random Forest [43] 0.63 0.61 0.62 0.59
RCNN [44] 0.64 0.62 0.63 0.63
Proposed SGD 0.95 0.94 0.94 0.95

Table 5. Comparative evaluation metrics for proposed and existing models.

Fig. 5. Comparison of models’ performances for Roman 
Urdu text classification.
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integrating additional linguistic features to enhance 
classification performance further.
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Structure Prediction of the Bombyx mori Sericin 4 Protein
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Abstract: Natural silk (Bombyx mori) has been found to contain sericin 1, sericin 2, sericin 3, and sericin 4 proteins. 
The sequence of amino acid residues in them has also been well studied. However, there is little information on the 
molecular structure of sericin 4. We conducted studies on the prediction of the sericin 4 molecule’s structure using 
the AlphaFold3 and YASARA computational servers. Molecular dynamics simulations were performed in aqueous 
solution to evaluate the stability and determine the most favourable conformation of the predicted sericin 4 structure. 
We mainly used the ProSA-web, Ramachandran Z and Molprobity score to evaluate the predicted structure of sericin 
4, and the reliability of the predicted model was determined. The predicted molecular structure serves as a preliminary, 
yet robust, model of sericin 4.

Keywords: Sericin 4, Silk, Ramachandran Z-Score, Minimum Energy, Solubility, Structure.

1.    INTRODUCTION

Proteins extracted from natural silk raw materials 
are considered as important biomaterials that are 
the focus of current research. Silk sericin protein 
is important due to its water solubility, antioxidant 
properties, biodegradability, and suitability for 
the preparation of biomaterials for medicine [1-
3]. Sericin is often recognised as an “adhesive” 
protein, enveloping the silk fibroin of Bombyx mori 
and constituting 20–30% of its total mass [4]. In 
recent years, sericin has been widely employed in 
nanocomposites, hydrogels, and tissue engineering 
(for instance, in skin regeneration and wound 
healing), yielding positive outcomes in its clinical 
trials [5, 6]. To evaluate and consider the potential 
uses of sericin, knowledge of its properties, 
structure, and composition is required [7, 8].

Sericin is a globular protein characterised 
by the presence of random coils and β-sheet 
structures. Several external factors, including 
temperature, humidity, and mechanical stress, can 
influence the transition of sericin from a random-
coil conformation to a β-sheet arrangement. Sericin 
is highly soluble in water at temperatures of 50 
°C and above [9]. This structural transition is 
thermodynamically linked to a reduction in entropy, 

and parameters such as pH and ionic strength 
further affect the kinetics of gel formation [10]. For 
example, at physiological pH (pH 7), the gelation 
process can proceed two to three times faster. In 
contrast, at lower temperatures, the solubility 
of sericin diminishes, promoting the conversion 
of random coils into β-sheets and consequently 
leading to gel formation [11]. Moreover, it has been 
demonstrated that higher sericin concentrations 
accelerate the gelation process [12]. Sericin is 
a hydrophilic protein, distinguished by a high 
proportion of free hydroxyl (-OH), carboxyl (C=O), 
and other polar functional groups within its amino-
acid residues [13]. Its amino acid composition is 
dominated by serine (Ser, 37%), glycine (Gly, 
16%), and aspartic acid (Asp, 15%), which ensures 
its high hydrophilicity [14].

It has been found that there are 4 different 
types of sericin 1, sericin 2, sericin 3, and sericin 4 
proteins in Bombyx mori silk fiber [4]. These sericin 
proteins in silk fiber glue together two fibroin 
fibers. The structure and composition (amino acid 
sequence) of sericin 1, sericin 2, as well as sericin 
3 proteins have been well studied by previous 
researchers [15, 16].  Komatsu [17] determined 
the amounts of sericin 1, sericin 2, sericin 3, and 
sericin 4 proteins in an aqueous solution of sericin 



extracted from Bombyx mori cocoons, and showed 
that the amount of sericin 4 was 3.1%. The low 
content of sericin 4 indicates its specific role in 
interaction with fibroin, it is primarily located 
in the inner layers and contributes to mechanical 
strength. This protein serves as a protective and 
binding component that surrounds the fibroin 
filaments. Therefore, determining the molecular 
structure of sericin 4 provides not only insight into 
its unique physicochemical properties but also a 
deeper understanding of the surface behaviour of 
silk-based biomaterials.

The structural uniqueness of sericin 4 is 
reflected in its amino acid composition and 
polypeptide chain arrangement. It is rich in polar 
amino acids such as serine, asparagine, and 
threonine, which impart a highly hydrophilic 
character to the protein. As a result, sericin 4 readily 
interacts with water molecules, thereby contributing 
to the surface moisture of silk. This property 
enhances the biocompatibility of silk materials 
and is particularly important for their biomedical 
applications, such as in wound dressings, drug 
delivery systems, and biopolymer films [18].

Information about sericin proteins is also 
included in the Uniprot and Swiss databases. The 
Uniprot database accurately describes the 3D 
molecular structures of sericin proteins and their 
amino acid sequences [19, 20]. Many scientific 
publications have been published that fully confirm 
this information. However, the 3D molecular 
structure of the sericin 4 protein is poorly understood. 
It should also be noted that successful work has been 
carried out to determine the amino acid sequence 
of sericin 4 [21]. However, the molecular structure 
of the sericin 4 molecule remains elusive. To some 
extent, it is possible to predict the formation of the 
sericin 4 protein to solve this problem. Using the 
latest AlphaFold3 and RoseTTAFold models, it is 
possible to predict the approximate 3D structure 
of sericin 4, which may reveal its β-sheet richness 
(45%) and potential disulphide bridges [22].

Protein structure prediction relies on the 
amino acid sequence. The secondary and tertiary 
structures are inferred from the primary structure. 
It should be noted, however, that the predicted 
structure may differ slightly from the protein’s 
actual conformation [23]. The protein chain can 
adopt numerous conformations due to rotation 

around the φ and ψ torsion angles at the Cα atom. 
This conformational freedom contributes to 
variations in the three-dimensional architecture of 
proteins. Peptide bonds within the chain are polar, 
containing carbonyl and -NH- groups that are 
capable of forming hydrogen bonds. As a result, 
these groups interact within the protein and play 
a crucial role in stabilising its structure. Glycine 
holds a distinctive position in protein architecture, 
as its minimal side chain grants it increased local 
flexibility. In contrast, cysteine residues may react 
with one another to form disulfide bonds, creating 
cross-links that reinforce the overall stability of the 
protein. Protein structure is commonly described 
in terms of secondary structural elements, such as 
α-helices and β-sheets. Within these motifs, regular 
hydrogen-bonding patterns arise between the -NH- 
and C=O groups of neighbouring amino acids, 
and the residues typically possess similar φ and ψ 
torsion angles [24].

The development of secondary structural 
elements enables the hydrogen-bonding potential 
of peptide bonds to be effectively fulfilled. These 
secondary structures may be densely packed 
within the hydrophobic core of a protein, although 
they may also be found on the surface where the 
environment is polar. Each amino-acid side chain 
occupies a finite volume and can engage in only 
a limited range of interactions with neighbouring 
residues; such steric and interaction constraints 
must be carefully considered in molecular 
modelling and sequence alignment studies [25]. 
The Ramachandran plot is employed to identify the 
energetically allowed regions for φ and ψ torsion 
angles, thereby demonstrating the thermodynamic 
favourability of β-sheet formation in Sericin 4.

Protein structures can be experimentally 
identified using methods such as X-ray 
crystallography, cryo-electron microscopy, and 
nuclear magnetic resonance (NMR) spectroscopy. 
However, these approaches are both costly and 
time-consuming. Over the past six decades, 
experimental efforts have resolved the structures of 
approximately 170000 proteins, despite the fact that 
more than 200 million proteins are known across all 
forms of life. By 2025, the AlphaFold database had 
predicted structures for over 214 million proteins, 
yet certain rare proteins, including sericin 4, have 
not been fully verified experimentally. Throughout 
recent decades, numerous computational strategies 
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have been developed to infer three-dimensional 
protein structures directly from amino-acid 
sequences. In the most successful cases, homology-
based modelling grounded in molecular evolution 
has achieved accuracy approaching that of 
experimental methods, such as NMR spectroscopy 
[26]. Precise protein-structure prediction holds 
major importance in fields such as drug discovery 
and biotechnology [27-29].

Protein structure prediction represents 
one of the central objectives of computational 
biology and is closely related to the resolution of 
the Levinthal paradox. Levinthal’s paradox is a 
conceptual experiment in the context of protein-
folding studies, highlighting that protein folding 
involves identifying the most energetically stable 
conformation. Exhaustively searching all possible 
structural conformations to locate the lowest-energy 
state would be computationally impractical. Yet, in 
nature, proteins fold extremely rapidly - even when 
adopting highly complex topologies - indicating 
that folding proceeds through a rugged energy 
landscape that guides the molecule efficiently 
towards a stable configuration [30]. Levinthal 
also demonstrated that, in cases where the global 
minimum energy state is not kinetically accessible, 
proteins may adopt a metastable conformation with 
slightly higher energy [31]. The most effective 
approaches in structural bioinformatics tend to 
be those that build upon existing biological and 
structural knowledge, rather than attempting to 
model protein folding entirely from first principles.

When predicting a protein structure or 
evaluating the quality of a homology model, it is 
highly beneficial to first examine a large number 
of experimentally determined structures to gain an 
understanding of what the actual protein may look 
like. This comparative insight facilitates a more 
accurate assessment of the model’s reliability and 
structural validity. Many servers have been created 
for protein structure prediction. The AlphaFold3 
server occupies a special place in protein structure 
prediction and is the leading server. AlphaFold3 
is not limited to single-chain proteins, as it can 
also predict the structures of RNA, DNK, post-
translational modifications, and protein complexes 
with selected ligands and ions. The AlphaFold3 
server allows for structure prediction of proteins 
consisting of sequences of up to 5000 amino acid 
residues [32-34].

The Ramachandran Z-score is also regarded 
as a reliable indicator for the overall assessment 
of protein structures. Hooft et al. introduced this 
numerical measure, known as the Ramachandran 
Z-score (Rama-Z), to characterise the distribution 
of φ and ψ torsion angles in the Ramachandran plot. 
Its primary significance lies in its ability to indicate 
the structural credibility of newly determined 
protein models. The Rama-Z score functions as 
a global metric, offering an overall evaluation of 
model quality, although it does not identify local 
deviations in main-chain geometry. In addition to 
the single global score, separate Rama-Z values 
are also computed for β-strands, α-helices, and 
loop regions. Nevertheless, the global Rama-Z 
score remains the most informative measure for 
general structural validation. The value of the 
Rama-Z score correlates with the proportion of 
residues that fall within the favourable regions 
of the Ramachandran plot. Analyses of models 
resolved at 1.2–5 Å resolution demonstrated that 
28% exhibited Rama-Z < -2, 14% had Rama-Z < 
-3, 0.19% displayed Rama-Z > 2, and only 0.01% 
had Rama-Z > 3. Based on these observations, a 
protein structure is considered acceptable when its 
Rama-Z score lies within the range -3 to 3 [34].

We attempted to demonstrate the 3D molecular 
structure of sericin 4 based on the latest information 
on its amino acid sequence, and studies have been 
conducted. In this work, the potential conformations 
of sericin 4 are analysed using AlphaFold3 and 
molecular dynamics (MD) simulations, which may 
reveal its novel applications as a biomaterial.

2.    MATERIALS AND METHODS

Using the AlphaFold3 server, CIF and JSON files 
were generated (by entering the amino acid residue 
sequences of sericin 4) for five distinct models 
of the predicted protein structure. However, the 
generated models contain structural errors. The 
model with the fewest errors was identified using 
dedicated evaluation servers. ProSA-web and 
Ramachandran Z-scores were employed to provide 
an overall assessment of the protein structures. The 
ProSA-web server determines the similarity of 
protein structures to those characterised by X-ray 
and NMR analyses; low similarity may indicate the 
presence of structural errors [25, 26]. The sericin 
4 structure was evaluated using MolProbity, one 
of the most reliable validation tools available. To 
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achieve favourable validation metrics, defects 
in the protein structure were minimised using 
the YASARA minimization server [35]. This 
server performs an energy minimisation using the 
YASARA force field. Iterative refinement of the 
sericin 4 molecular model was performed via this 
server to optimise the structure. Subsequently, the 
stability of the sericin 4 model in aqueous solution 
was investigated through molecular dynamics 
(MD) simulations. Computations were conducted 
using the OPLS-AA/L force field and the SPCE 
water model within the GROMACS MD package, 
as implemented in the BioExcel Building Blocks 
Workflows platform. The reliability of the optimised 
model was reassessed using MolProbity.

3.    RESULTS AND DISCUSSION

The presence of four sericin proteins in Bombyx 
mori silk has been reported in the literature [4, 17]. 
UniProt, Swiss-Prot, and other protein databases 
contain extensive information on the composition, 
structure, and other properties of sericin 1, sericin 
2, and sericin 3. These databases do not contain 
information about sericin 4. However, studies 
have been conducted to determine the structure of 
sericin 4, and positive results have been reported. 
Ping Zhao et al. have published research on the 

sequence of amino acid residues in the sericin 4 
molecule. They analysed sericin 4 in terms of its 
chain segments based on the amino acid residue 
sequence [20]. This study did not, however, provide 
information on the complete structure of sericin 4.

The three-dimensional structure of Sericin 4 
was predicted using the AlphaFold server based on 
its amino acid sequence, and comparative analyses 
were performed to select the most reliable structural 
model. The sericin 4 protein consists of 2296 amino 
acid residues, with the largest proportions being 
Lys (9.7%), Thr (9.4%), Ser (9.4%), Glu (8.9%), 
and Gly (7.4%). The theoretically calculated 
isoelectric point (pI) is 6.25. As shown in Figure 
1, the following structural models were predicted 
by the AlphaFold server based on the amino acid 
residue sequence of sericin 4.

Calculations were carried out using the 
ProSA-web server to evaluate which of the derived 
sericin 4 molecular models was the most reliable. 
ProSA-web determines an overall quality score for 
the submitted structure. If this score falls outside 
the range typical of native proteins, the structure 
may contain errors. The local quality score diagram 
highlights problematic regions within the model. 
A three-dimensional molecular representation 

Fig. 1. Models of the sericin 4 molecule created using the AlphaFold3 computational server (Five different molecular 
models: (a) Compact β-barrel-rich globular model, (b) Extended loop-dominant unfolded-like model, (c) Intermediate 
partially folded β-sheet model, (d) Globular model with central β-barrel core’, and (e) Elongated multi-domain flexible 
model).
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can also be generated to aid in the identification 
of such areas. ProSA-web is applicable to both 
low-resolution structures and approximate models 
obtained during the early stages of structural 
determination.

The Z-score reflects the overall quality of the 
model. Its value is displayed on a graph containing 
the Z-scores of all experimentally determined 
protein chains, with those derived from different 
experimental techniques (X-ray and NMR) 
indicated in distinct colours [25, 26]. The Z-score 
of a protein is defined as the energy separation 
between the local fold and the mean value of an 
ensemble of misfolded folds, expressed in units 
of the ensemble’s standard deviation. It has been 
reported that calculated Z-scores are generally 
smaller than experimental values [32, 33].

The results showing the Z-scores for the sericin 
4 models generated by the AlphaFold server, and 
indicating chain segments with relatively higher 
energy, are presented in Figure 2. The Z-scores for 
models “a”, “b”, “c”, “d”, and “e” of sericin 4 were 
0.53, -7.55, -1.52, -6.3, and -8.51, respectively. 
Examination of these values reveals that the lowest 
score (-8.51) corresponds to the “e” model structure.

In Figure 2(I-V), illustrating problematic or 
erroneous regions of the structures, positive values 
indicate faulty areas. The single-residue energy 
diagram typically exhibits large fluctuations and is 
therefore of limited use in model assessment. The 
greater the number of lines representing negative 
energy regions, the fewer the structural defects, and 
thus the more reliable the model. Based on these 
results, the “e” model of sericin 4 (Z-score -8.51) 
can be regarded as the most reliable structure.

The sericin 4 models were also evaluated 
using the global Ramachandran Z score (Rama-Z). 
The results obtained are presented in Table 1.

The Rama-Z score serves as a global indicator 
for assessing the overall quality of a protein model 
and does not provide information on local backbone 
alignment issues. It is important to highlight that, 
in addition to the single global Rama-Z value, 
individual Rama-Z scores are also determined for 
coils, helices, and β-sheets. A model is generally 
considered accurate and reliable when its Rama-Z 
score falls within the range of -3 to 3 [34]. Based 
on the structural evaluation of sericin 4, it can be 
observed that the Rama-Z score for the “e” model 
lies relatively close to -3.

Fig. 2. Diagrams showing high-energy chain segments in models of the sericin 4 molecule: (I) a-Compact β-barrel-
rich globular model, (II) b-Extended loop-dominant unfolded-like model, (III) c-Intermediate partially folded β-sheet 
model, (IV) d-Globular model with central β-barrel core’, and (V) e-Elongated multi-domain flexible model.
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The YASARA minimisation server was used to 
correct energetically unfavourable regions in the “e” 
model chain of the sericin 4 molecule and to improve 
its geometry. The YASARA minimisation server is 
invaluable in protein structure determination, as 
it provides a realistic impression of the protein’s 
native conformation and demonstrates how to 
assess the accuracy of the refined model [35]. Using 
the YASARA minimisation server, the energy of the 
“e” model of sericin 4 was reduced to its minimum 
state (Figure 3).

The model was energy-minimised using the 
YASARA minimisation server for 57 cycles. The 
Rama-Z score was again used to evaluate the overall 
structure of the energy-minimised model. The 
model exhibiting the best Rama-Z score of -2.72 
and a minimum energy value of -1069996.7 kJ/mol 
is presented in Figures 3 and 4. However, according 
to the MolProbity analysis, among all energy-
minimised structures, the model obtained after 
51 optimisation cycles in the YASARA program 
demonstrated the highest quality score, indicating 
the lowest level of structural errors (Figure 5).

MolProbity is a widely recognised platform 
for evaluating the geometrical and all-atom quality 
of three-dimensional macromolecular models, 
including proteins, nucleic acids, and ligands. It 

provides detailed validation metrics such as clash 
scores, Ramachandran plot and rotamer outliers, 
Cβ deviations, and the overall MolProbity score 
[36]. The model optimised 51 times achieved 
a MolProbity score of 1.25, suggesting a high-
quality and well-refined structure. The summarised 
validation results are presented in Table 2.

MolProbity analysis reveals that the protein 
structure is of high quality: Clashscore 0.45 
(99th percentile) and MolProbity score 1.25 (99th 
percentile) - placing it within the top 1% of PDB 
entries. Steric clashes and overall geometry are 
excellent. Ramachandran favoured 88.49% (<98%) 
- slightly low, but outliers (0.96%) remain within 
acceptable limits. CaBLAM (6.1%) and CA 
outliers (3.14%) are acceptable for lower-resolution 
structures.

Molecular model Ramachandran Z-score Side-chain Z-score
a) Compact β-barrel-rich globular model -6.08 -2.27 ± 0.22
b) Extended loop-dominant unfolded-like model -4.52 -1.14 ± 0.22
c) Intermediate partially folded β-sheet model -5.31 -1.80 ± 0.22
d) Globular model with central β-barrel core' -5.30 -1.91 ± 0.21
e) Elongated multi-domain flexible model -4.51 -0.89 ± 0.22

Table 1. Ramachandran Z score values of sericin 4 molecular models.

Fig. 3. Minimum energy results of the “e” model of 
sericin 4 in iterative calculations using the YASARA 
minimisation server.

Fig. 4. Rama-Z scores of “e” model sericin 4 that were 
re-minimised 57 times in the YASARA minimisation 
server.

Fig. 5. Energy minimised model of sericin 4 by the 
YASARA minimisation server.
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To mitigate structural inconsistencies 
observed in the sericin 4 model, the Rosetta Relax 
refinement was applied [37]. This approach resulted 
in a notable improvement in the overall structural 
quality, as evidenced by the evaluation metrics 
presented in Table 3.

Molecular dynamics (MD) simulation is one 
of the most powerful computational techniques 
for investigating the structural and functional 
properties of proteins at the atomic level. Unlike 
static crystallographic structures, MD provides a 
realistic description of the time-dependent dynamic 

Clashscore, all atoms 0.45 99th percentile*(N=1784, all resolutions)
Poor rotamers 0.90% Goal: <0.3%
Favored rotamers 96.65% Goal: >98%
Ramachandran outliers 0.96% Goal: <0.05%
Ramachandran favored 88.49% Goal: >98%
Rama distribution Z-score -2.24 ± 0.15 Goal: abs(Z score) < 2
MolProbity score^ 1.25 99th percentile* (N=27675, 0Å - 99Å)
Cβ deviations >0.25Å 0.19% Goal: 0
Bad bonds: 0.25% Goal: 0%
Bad angles: 0.39% Goal: <0.1%
Cis Prolines: 8.70% Expected: ≤1 per chain, or ≤5%
Twisted Peptides: 0.04% Goal: 0
CaBLAM outliers 6.1% Goal: <1.0%
CA Geometry outliers 3.14% Goal: <0.5%
Chiral volume outliers 0/2720

Waters with clashes 0.00% See UnDowser table for details

Table 2. Molprobity analysis of Sericin 4 molecular structures optimised 51 times using YASARA minimisation 
server.

Clashscore, all atoms: 1.96 99th percentile*(N=1784, all resolutions)
Poor rotamers 0.00% Goal: <0.3%
Favored rotamers 99.95% Goal: >98%
Ramachandran outliers 1.05% Goal: <0.05%
Ramachandran favored 94.07% Goal: >98%
Rama distribution Z-score -0.78 ± 0.16 Goal: abs(Z score) < 2
MolProbity score^ 1.36 99th percentile* (N=27675, 0Å - 99Å)
Cβ deviations >0.25Å 0.00% Goal: 0
Bad bonds: 0.07% Goal: 0%
Bad angles: 0.13% Goal: <0.1%
Cis Prolines: 8.70% Expected: ≤1 per chain, or ≤5%
Twisted Peptides: 0.00% Goal: 0
CaBLAM outliers 5.4% Goal: <1.0%
CA Geometry outliers 2.49% Goal: <0.5%
Chiral volume outliers 0/2720
Waters with clashes 0.00% See UnDowser table for details

Table 3. MolProbity analysis of sericin 4 structures refined with Rosetta Relax.
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behaviour of biomolecules. Through MD, the motion 
of each atom within the protein is computed based 
on Newtonian mechanics, allowing the exploration 
of energetically favourable conformations, internal 
flexibility, and vibrational motions within the 
system. By evaluating the stability of a protein 
structure, MD simulation helps to identify the 
lowest potential energy conformation, which 
often corresponds to its biologically active form. 
Therefore, it significantly contributes to energy 
minimisation and a more accurate representation of 
the native structural state. Moreover, the simulation 
enables the analysis of a protein’s flexibility, its 
response to environmental conditions such as 
temperature and pH, and its interaction mechanisms 
with ligands or substrates.

Additionally, molecular dynamics 
complements experimental methods such as 
X-ray crystallography and NMR spectroscopy by 
providing time-resolved atomic-level information. 
The combination of MD data with experimental 
results allows researchers to construct a more 
complete and realistic molecular model that 
explains the functional mechanism, stability, and 
conformational transitions of the protein. Based 
on this data, calculations were performed using the 
MD method for the sericin 4 molecule.

Molecular dynamics (MD) simulations 
were performed on the BioExcel Building Blocks 
Workflows platform using the GROMACS MD 
package with the OPLS-AA/L force field and the 
SPCE water model [38]. In the simulation setup, 
a single protein molecule was solvated with 
10000 water molecules, 956 Na⁺ ions, and 910 Cl⁻ 
ions. The net charge of the protein was -46. The 
simulation lasted for 100 nanoseconds (ns), and the 
molecular structure was optimised.

The RMSD (Root mean square deviation) 
graph shows how the shape of the molecule 
changes over time (Figure 6). In the graph, the 
RMSD increases from 0 ps to 500 ps and stabilises 
around 0.4 nm. This indicates that the molecule 
initially underwent a rapid conformational 
adjustment (adaptation phase) and subsequently 
reached a stable state. The RMSD value suggests 
that the molecule has deviated to some extent 
from its initial conformation; however, this does 
not imply instability. Rather, it is associated with 
the molecule’s transition to a new, energetically 

favourable conformation. Structural stability was 
achieved after approximately 200-300 ps, and the 
system remained stable overall.

The radius of gyration (Rg) was also analysed, 
and the corresponding results are shown in the 
graph. Rg reflects the compactness or degree of 
expansion of the molecule. The overall Rg value 
remained nearly constant at around 4.8 nm. The 
RgX, RgY, and RgZ values along the three axes 
also showed very little fluctuation. This indicates 
that the molecule maintained its general shape, 
meaning that it neither compressed nor expanded 
noticeably. Therefore, compactness and structural 
stability were preserved throughout the entire 
simulation. Conformational changes were minimal, 
and the molecule remained in a stable configuration 
(Figure 7).

The energetic states of sericin 4 were assessed 
based on the “GROMACS Energies” plot, which 
shows the potential and total energy (Figure 8). 
Both energy values remained nearly constant over 
500 ps, with only minor fluctuations. The potential 
energy stabilised around -16·106 kJ/mol, and the 

Fig. 6. Root mean square deviation plot of sericin 4 
molecule.

Fig. 7. Stability analysis of sericin 4 based on radius of 
gyration (Rg).
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total energy around -13.5·106 kJ/mol. The very 
small fluctuations indicate that the system reached 
thermal equilibrium. No significant variations or 
signs of instability were observed in the results 
(Figure 9).

The molecular weight, isoelectric point, and 
other parameters of sericin 4 were determined 
using the ExPASy (ProtParam) server. The results 
are presented in Table 4. This server can help to 
accurately calculate many protein parameters [39-
41].

The CamSolpH computational server was 
used to theoretically study the dependence of 
the solubility of the improved model of sericin 4 
on the pH value of the medium in the YASARA 
minimization server. CamSolpH provides a 
solubility profile, where regions with a score 
greater than 1 indicate highly soluble regions and 
regions with a score less than -1 indicate poorly 
soluble regions. The entire sequence is given an 
overall solubility score. This score can be used to 
rank different protein variants with high accuracy 
according to their solubility [42].

If we look at Figure 10, the CamSolpH score 
is greater than 1 in the range of pH values in the 
solvent (water) medium from 1 to 14. This value 
theoretically confirms that sericin 4 has good 
solubility. When comparing the relative solubility 
at different pH values, it can be seen that the 
solubility is lowest at pH = 10. It can be assumed 
that the solubility of sericin 4 is highest in solvents 
with a pH value of up to 4. However, an increase 
in solubility can be observed in solvents with a pH 
value higher than 10.

4.    CONCLUSIONS 

In this study, a comprehensive computational 
investigation was carried out to predict and 
analyse the structural and dynamic properties of 
the sericin 4 protein from Bombyx mori. Since 
no experimental data are available in protein 
databases, structural prediction was initially 
performed using the AlphaFold server, yielding five 
possible molecular conformations. Comparative 
evaluation through ProSA-web analysis identified 
the “e” model (elongated multi-domain flexible 
model) as the most reliable structure, with the 
lowest Z-score (-8.51). Further refinement using the 
YASARA minimisation server reduced the overall 
potential energy of the structure to its minimum 
state and improved its geometry. Furthermore, 

Fig. 8. Potential and total energy stability of the sericin 4 
protein during MD simulation.

Fig. 9. Conformational state of the Sericin 4 molecule 
resulting from molecular dynamics simulation.

Molecular model Parameters
Amino acid number 2296
Molecular weight 254369.63 Da
Isoelectric point 6.25
Extinction coefficients
(in water, 280 nm) 175395 M-1·cm-1

The instability index 43.88

Table 4. Some calculated parameters of sericin 4.

Fig. 10. Solubility index of sericin 4 in solvents (water) 
with different pH values.
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refinement with the Rosetta Relax resulted in an 
additional improvement of the sericin 4 structure. 
MolProbity validation confirmed the high quality 
of the optimised model (MolProbity score 1.36, 
Clashscore 1.96, 99th percentile, Rama distribution 
Z-score -0.78 ± 0.16, favored rotamers 99.95%), 
suggesting that the refined model accurately 
represents the likely native conformation of sericin 
4. Molecular dynamics (MD) simulations performed 
with GROMACS (OPLS-AA/L force field and the 
SPCE water model) demonstrated the structural 
stability of the sericin 4 molecule over a 100 ns 
trajectory. The RMSD and radius of gyration (Rg) 
analyses indicated that the protein achieved a stable 
conformational equilibrium after approximately 
200-300 ps, maintaining compactness and structural 
integrity throughout the simulation. Potential 
and total energy profiles remained constant, 
confirming thermal and conformational stability. 
Solubility profiling performed using the CamSolpH 
calculation server revealed that sericin 4 exhibits 
high solubility across a wide pH range (1-14), with 
a slight decrease observed around pH 10.

Overall, these results provide the first detailed 
computational insight into the structure, stability, 
and solubility properties of the sericin 4 protein. The 
findings not only contribute to filling the existing 
knowledge gap regarding this protein but also 
establish a reliable structural model that can serve 
as a foundation for future experimental studies on 
its biological functions, material properties, and 
potential biotechnological applications. 
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Abstract: This paper introduces a flexible scalar-splitting (f-SCSP) iterative scheme and examines its convergence 
properties. The approach also yields a straightforward matrix-splitting preconditioner for the original linear system. 
To confirm the theoretical results and evaluate practical performance, comprehensive numerical examinations are 
performed on various test cases. The findings indicate that the proposed method is practical, reliable, and more efficient 
than existing techniques for handling demanding classes of complex symmetric linear systems.
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1.    INTRODUCTION

We focus on the iterative resolution of linear 
systems.

(1)

where  and . In Equation (1), 
 is a matrix which is non-Hermitian and 

symmetric  with  
are real and symmetric, and  and  are positive 
definite and positive semidefinite matrices, 
respectively. In this text, the imaginary quantity 
iota, , is denoted by the symbol . Let there 
be a splitting   of the matrix  
i.e.,  is nonsingular and . This 
splitting gives rise to a fixed-point iterative method 
of the following form.

,	     (2)

where  is a given starting vector.

Systems corresponding to Equation (1) appear 
frequently throughout computational science and 

in numerous branches of engineering, where they 
form a core component of many modelling and 
simulation tasks. A few notable examples include 
Diffuse Optical Tomography (DOT); very helpful 
for small animal imaging, breast cancer detection, 
and functional brain imaging [1]. Because of the 
nature of light propagation in scattering media 
and the usage of complex coefficients to simulate 
absorption and diffusion, the mathematical 
modelling and numerical computation required 
in DOT frequently result in complex symmetric 
linear systems. When time-dependent PDEs are 
treated with FFT-driven schemes, the resulting 
discretisations commonly lead to complex 
symmetric linear algebraic systems, particularly in 
frequency-domain formulations or in spectral and 
pseudo-spectral frameworks [2].

Advanced scientific applications in structural 
dynamics, especially those involving damping, 
frequency-domain analysis, or non-proportional 
damping models, the governing equations lead 
to complex symmetric linear systems [3]. Lattice 
Quantum Chromo Dynamics (Lattice-QCD) 



[4] is a computational approach for examining 
QCD. Complex symmetric linear systems emerge 
naturally in various formulations of Lattice-QCD, 
particularly in fermion discretization such as 
staggered fermions or twisted mass fermions [5]. 
Numerical computations in molecular scattering is 
a crucial subject in quantum chemistry, chemical 
physics, and dynamics. The foundational theory 
relies on quantum scattering theory, resulting 
in extensive linear algebraic systems that are 
frequently complex and occasionally symmetrical 
under certain conditions [6].

Recently, Ahmed et al. [7] and Kanwal et 
al. [8] suggested that if the forward operator 

 is symmetric, iterative over-relaxation can 
solve (1) efficiently. Axelsson and Kucherov [9] 
presented an iterative method for real matrices, 
Benzi and Bertaccini [10] proposed a block 
preconditioning for real-valued iterative algorithms, 
Bai [11] and Bai et al. [12, 13] introduced a modified 
Hermitian and skew-Hermitian splitting (MHSS) as 
well as preconditioned-MHSS (PMHSS) iterative 
methods and Wang et al. [14] improved the PMHSS 
method. Various preconditioning techniques have 
been developed to enhance the convergence rate of 
these iterative methods. For instance, Salkuyeh et 
al. [15], Hezari et al. [16], Axelsson and Salkuyeh 
[17], Xie and Li [18], Xiang and Zhang [19], 
and Salkuyeh [20], Zhao et al. [21] put forward 
a Single-Step-MHSS method (SMHSS) and its 
variants with a flexible-shift (f-SMHSS). Wen et al. 
[22, 23] also suggested some iterative methods and 
respective preconditioning techniques. Vorst and 
Melissen [24], Freund [25], while, Bunse-Gerstner 
and Stöver [26] presented the conjugate gradient-
type methods; Clements et al. [27] introduced 
Krylov-type methods. In particular, Hezari et al. 
[28] proposed the Scale-Spliting (SCSP) method 
employing a scaling approach. Later Salkuyeh [29] 
suggested a two-step SCSP method, while Salkuyeh 
and Siahkolaei [30] introduced a two-parameter 
SCSP (TSCSP). Zheng et al. [31] also introduced 
a double-step scale splitting iterative method. Li et 
al. [32, 33] put forward a dual-parameter double-
step splitting iteration method, and two iterative 
methods with quasi-combining real and imaginary 
parts. However, the scaled parameters mentioned 
above are given in advance. Motivated by the 
optimization models given by Zhao et al. [21], this 
study introduced a flexible-scalar strategy based 
on the SCSP iterative method, which the scaled 

parameters  are determined by minimizing the 
residuals at each iteration. 

Following we present the essential notations. 
The set of  real (complex) arrays and the 
-dimensional real (complex) vector space are 
represented as  and  (  and ) 
respectively. The conjugate and transpose of a 
matrix or a vector  is  and  repectively. A 
matrix  ( ) is said to be Hermitian 
(symmetric) positive definite (or semidefinite), 
denoted by  (or ); if it is Hermitian (or 
symmetric) and for all  
( ) holds true. The real and imaginary parts 
of a complex number  are denoted by  and 

, respectively.  is used to represent the 
spectral radius of a matrix  and  represents the 
spectrum set of the matrix. The condition number 
of a matrix  is denoted by . The splitting of 
, defined as ,  is said to be convergent if 

.

A broad range of preconditioning strategies 
has been introduced in past to accelerate the 
convergence behavior of such iterative schemes. 
For instance, a double-step scale splitting iterative 
method employing a scaling approach given by 
Salkuyeh and Siahkolaei [30]. By multiplying 
two parameters  and  both sides 
of the Equation (1), two equivalent systems can be 
respectively yielded, i.e.,  
and , where  is a real 
positive number. Then two fixed-point equations 
can be generated as follows:

	,          (3)

.        (4)

Zheng et al. [31] expanded on the PMHSS 
iterative method, suggested by Bai et al. [13], and 
proposed the following alternative iterative scheme:

,	

whereas the Equations (3) and (4) are in fact two 
preconditioned systems in Equation (2) when 

 and , that is to say, 
the preconditioned matrices are both the scalar 
matrices. Equations (3) and (4) are one when , 
therefore, the alternation of the DSS iterative method 
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was only carried out in twins of two preconditioned 
systems. This work focuses on linear systems whose 
coefficient matrices are complex symmetric yet not 
Hermitian. We focus on the scaled preconditioned 
splitting iterative methods generally and consider 
the systems in Equation (2) when  
with ,  are both real numbers in this study.

2.    MATERIALS AND METHODS

To provide context and completeness, this section 
begins with a brief overview of existing methods for 
solving linear systems whose coefficient matrices 
are complex symmetric but non-Hermitian, as in 
Equation (1). We then introduce the Flexible-Scalar 
Splitting (f-SCSP) scheme.

2.1. The Relevant Methods

2.1.1. MHSS method [12, 13]:

The MHSS iteration method: Let  be 
an initial guess. For , until  
converges, compute   according to the 
following sequence:

where  is a given positive constant.

2.1.2. The SMHSS and f-SMHSS methods [21]:

(1) The SMHSS iteration method: Let 
 be an initial guess. For 

, until   converges, compute   
according to the following sequence 

(2) The f-SMHSS iteration method: Let  
be an initial guess, for , , until  

 converges, the single-step iteration formula 
for computing the next   is as follows.

Step 1: Compute .

Step 2: Solve the equation

where the flexible shift  is the solution 
to the following optimization problem: 

 
with

 
.

Step 3: If  , stop; otherwise, set  
and return to Step 1.

2.1.3. The scale-splitting (SCSP) method [28]:

Let  be a real positive constant and the matrix 
 be nonsingular. By multiplying the 

complex number  through both sides of 
Equation (1), the following equivalent system can 
be obtained.

			   (5)

Where . By 
rewriting it as the system of fixed-point equations:

the SCSP iteration method can be summarized as 
follows.

The SCSP iteration method: Let  be 
an initial guess. For , until  
converges, compute  according to the 
following sequence:

    (6)
where  is a given positive constant.

2.2. Proposed Iterative Method: The Flexible-
       Scalar Splitting (f-SCSP)

The variant system can be obtained by multiplying 
the complex number ,

To use the flexible-scalar strategy, the f-SCSP 
method is formulated as follows:

       (7)

where,

	 (8)

with ,  .
Remark: In fact, the exact solutions of the quadratic 
programming models in Equation (8) can be given 
theoretically by simple computing. To avoid the 
tedious computation of 1( )kW Tα −+ , we can use the 
inexact line search to find the approximations of .
In matrix-vector form, the scheme presented in 
Equation (7) can be equivalently rewritten as:

     (9)

	 Scaled Preconditioned Splitting Iterative Methods	 303



where,
  (10)

Here,  is the iteration matrix of the f-SCSP 
method. In fact, Equation (9) is also generated by 
the splitting,  with

Moreover, 
and  can be identified 

as a preconditioner to all linear systems of type 
Equation (1).

Consequently, the preconditioned system can be 
expressed as follows.

			   (11)

We now investigate the optimal parameter selection 
and the spectral radius characteristics of the iteration 
matrix, and assess the convergence behavior of the 
previously described f-SCSP method.

Theorem 2.1: Let be a non-Hermitian but symmetric 
matrix , ( ) 
with both  being symmetric,  and 

 being both positive definite positive. Let  be 
positive real numbers and  and  be the 
extremal eigenvalues of the matrix . Then 
the following statements hold true:
(i) In the f-SCSP method, the upper bound of the 
spectral radius  is:

	 	 (12)

(ii) The sequence  produced by Method 2.1 
converges to the unique solution to Equation (1) for 
any initial guess , provided that:

In particular, the iterative scheme presented in 
Equation (6) is convergent if  for the case that  
is a positive semidefinite matrix.

Proof (i): By Equation (12) and direct calculations, 
we have:

 
 
 

 

In the last step, the equality holds since  is a 
symmetric positive definite matrix, and then so is 

.
It is known that is positive. By introducing the 
following function:

it is obtained that  is a decreasing function

with respect to  since .

Thus Equation (12) provides the upper bound of 
.

Proof (ii): For the case that  is 
equivalent to  by simple calculations. 

And then , so the sequence  
produced by the f-SCSP method converges to the 
unique solution to Equation (1) for any initial guess 

.
For the case that , then  
at that time. Thus,  is only equivalent to 

.

It is well-known that  if  is a positive 
semidefinite matrix. And then , the 
iterative scheme in Equation (6) is convergent if 

. The proof is completed.

Corollary 2.1: Assuming the conditions of 
Theorem 2.1 hold, the optimal the parameters  
that minimises the upper bound  of the spectral 
radius  is given by:

	 (13)

A similar proof is presented in [28, theorem 1], 
which is omitted here.

Theorem 2.2: Let be a non-Hermitian, symmetric 
matrix , with  
being both symmetric, also,  being positive-
definite and  positive definite or semidefinite. 
Then  if for all , it holds that 

.

Proof:  Let an eigenvalue of the matrix  
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be  with the corresponding eigenvector 
, i.e., , which means, 

. Then we have from 
the assumptions that:

We obtain  by direct calculations 
under . The theorem is proved.
Remark: Theorem 2.2 implies that all eigenvalues 
of the matrix  lie along the imaginary axis.
The last of this section, a property of the matrix 

 can be given.

Theorem 2.3: Let  be a non-
Hermitian but symmetric matrix (
) with   be real, symmetric, and  
being positive-definite and  positive definite or 
semidefinite. Assuming that   is any eigenvalue 
of the matrix  defined by Theorem (2.2), the 

.
Proof: Let  be an eigenvalue of the matrix  
and  be the corresponding eigenvector of the 
eigenvalue  with . It is known that:

So, we have:

From assumptions, . 
Then we yield .

3.    RESULTS AND DISCUSSION

This section presents a series of numerical 
experiments designed to evaluate the practicality, 
reliability, and computational efficiency of the 
proposed f-SCSP method in comparison with 
existing approaches. The evaluation is based on 
three key performance metrics: the number of 
iterations to convergence (IT), the total processing 
time taken by our computer in seconds for 
convergence (CPU), and the final residual norm 
(RES). These measures provide a comprehensive 
assessment of both the convergence characteristics 
and computational cost of each method.

The performance of f-SCSP is assessed 
in comparison with four well-known iterative 
techniques. The MHSS method [12, 13], SMHSS 
method [21], the f-SMHSS method [21], and the 

SCSP method [28], which were introduced and 
discussed in Section 2. In all numerical experiments, 
the initial guess is taken as the zero vector, and the 
iterations are terminated once the relative residual 
norm meets the predefined stopping criterion, set 
here as an -norm of the residual . The 
iteration process is considered unsuccessful if 
convergence is not achieved within a maximum 
of 8000 iterations. This limit guarantees an 
equitable assessment among all techniques and 
aids in avoiding excessive computation time when 
convergence is not reached as expected. All these 
experiments are done with different vector space 
sizes  given ; the results provide 
empirical validation of the theoretical analysis 
and demonstrate the performance of the proposed 
method.

Example 3.1 [28]: The linear system of equations 
in (1) represents the form , with 

 
and  where , 

,  
and . The vector  on the 
right-hand side can be choosen as , 
where  is the vector with all entries equal to 1.

Example 3.2 [28]: The complex linear systems (1) 
is of the form:

where  denote the driving circular frequency, 
with  and  representing the inertia and 
stiffness matrices, and  and  are denoting 
the viscous and hysteretic damping matrices. 
The viscous damping is modelled as  
where  is given as the damping coefficient, 

, , , with 
, and mesh

size . Accordingly,  takes the form

of an  block-tridiagonal matrix with block 
dimension . We further specify 
, , and construct the right-hand vector 

, where  denotes the vector with all 
components equal to . To standardise the system, 
we pre-multiply both sides by thereby obtaining 
a normalised formulation.

Example 3.3: Consider the two-dimensional 
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convection-diffusion equation:

,
the region of interest is considered over the unit 
square domain  assuming constant 
coefficient  and imposing Dirichlet boundary 
conditions. Employing the five-point central 
difference discretisation leads to the linear system 
(1), characterised by the following coefficient 
matrix:

 and ,
where the matrices  and  are given by:

with , being the mesh Reynolds number, 
and  being the equidistant step-size. 
Moreover, the right-hand side vector  is taken to 
be , with  being 
the true solution.

In the conducted experiments, matrices 
with dimensions approaching  (i.e., 

) were examined. 
The numerical results are summarized in Tables 
1–3. Evidently, the SCSP and f-SCSP methods 
perform commendably; the f-SCSP method 
achieves convergence in the fewest iterations, 
whereas the SCSP method demonstrates superior 
computational efficiency in most tests. The 
challenge of balancing iteration count and 
execution time to develop an enhanced method 
constitutes a key direction for forthcoming research. 

When compared against its counterparts, 
SCSP, f‑SMHSS, SMHSS and MHSS, the proposed 
f‑SCSP method exhibits a compelling balance 
between iteration count and computational cost. 
Table 1 shows results from Example 3.1, and that 
SCSP is achieving convergence in 10-103 iterations 
across increasing problem sizes, closely matching 
the iteration efficiency of flexible f-SCSP but 
requiring only approximately half the CPU time (e.g., 
0.0153s vs. 0.0592s for ), highlighting 
its lower overhead in parameter selection. Although 
f‑SCSP attains marginally fewer iterations in some 
cases, its per‑iteration optimization of  sustain 
a significant time penalty. In contrast, classical 
SMHSS and MHSS methods demand up to an order 
of magnitude more iterations and substantially 
longer runtimes, often exceeding SCSP by factors 
of 5-10, reflecting the superior conditioning induced 
by the scaled preconditioning. Overall, f-SCSP 

converges in fewer iterations with better efficiency 
in all system sizes compared to MHSS, SMHSS, 
and f-SMHSS. The comparison between f-SCSP 
and SCSP is however subtle; f-SCSP converges 
with fewer iterations and a slightly better relative 
residual in larger system sizes, but the CPU time 
shows that SPSC is the most efficient throughout. 
Similarly, Table 2 shows results from Example 3.2, 
and again f-SPSC and SPSC are very close, with 
f-SPSC convergeing in fewer iterations and with 
better relative residual, and SPSC being faster in 
terms of CPU computational time. All the other 
methods follow f-SCSP and SCSP. In Table 3, 
we see results from Example 3, which show that 
f-SCSP performs superior to all of the existing 
methods, including SCSP, in terms of all, number of 
iterations required to converge, the relative residual, 
and the required CPU time for computation, while 
SMHSS variants exceed hundreds to thousands of 
iterations. This consistent performance highlights 
SCSP’s robustness and its practical advantage for 
large‑scale complex symmetric systems.

A catch is the use of the initial guess. All 
our experiments use , but many practical 
solvers benefit from warm starts. Finally, while the 
convergence proofs (Theorems 2.1-2.3) guarantee 

 under stated assumptions, the potential 
for combining f-SCSP with Krylov acceleration 
can be addressed, representing an opportunity for 
further speed‑ups in challenging regimes.

Our numerical results presented in the tables 
are given in line plots. Figure 1 shows the CPU 
time of taken by the respective methods plotted 
vs the vector space size  in Example 3.1. The 
f-SCSP is much faster than most other methods, 
and it performs very close to the existing SCSP. 
Similarly, Figure 2 show that in 3.2, as the system 
size increases, the SCSP performs better than the 
proposed method. However, it can be seen in Figure 
3 for Example 3.3 that both methods perform 
equally well for all system sizes. Figure 4 show 
the convergence behavior of the proposed method 
in Example 3.1 with different system sizes. The 
residual error is plotted vs the number of iterations, 
and f-SCSP outperforms the existing methods 
in all tests, as demonstrated. Similarly, Figure 5 
shows how f-SCSP outperforms all of the existing 
methods in convergence in Example 3.2. In Figure 
6, the difference in convergence between f-SCSP 
and SCSP looks tight, especially in figure 6(b), 
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m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 10 10 16 18 54

16 CPU Time (s) 0.015 0.059 0.048 0.026 0.160
Res. Err. 5.218e-7 9.694e-7 8.918e-7 6.845e-7 8.238e-7
Iter. Count 16 16 26 24 131

32 CPU Time (s) 0.150 0.243 0.306 0.202 1.840
Res. Err. 9.321e-7 4.443e-7 9.043e-7 7.460e-7 9.525e-7
Iter. Count 22 20 32 36 171

48 CPU Time (s) 0.419 0.608 1.113 0.683 5.053
Res. Err. 5.287e-07 8.892e-07 7.711e-07 9.641e-07 9.716e-07
Iter. Count 28 26 49 55 191

64 CPU Time (s) 0.809 1.063 2.681 1.680 5.954
Res. Err. 6.803e-07 8.043e-07 9.987e-07 8.918e-07 9.875e-07
Iter. Count 63 46 119 108 306

128 CPU Time (s) 5.971 6.999 13.862 9.638 52.724
Res. Err. 8.541e-07 9.464e-07 9.601e-07 8.168e-07 9.893e-07
Iter. Count 63 60 325 332 997

256 CPU Time (s) 28.805 42.680 199.335 302.205 804.894
Res. Err. 8.258e-07 8.122e-07 9.949e-07 9.929e-07 9.981e-07
Iter. Count 103 84 1093 7080 3345

512 CPU Time (s) 252.411 510.790 3640.200 17965.00 22926.00
Res. Err. 9.731e-07 9.537e-07 9.962e-07 9.995e-07 9.993e-07

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 37 40 268 268 34

16 CPU Time (s) 0.053 0.104 0.772 0.372 0.094
Res. Err. 8.345e-07 8.514e-07 9.782e-07 9.667e-07 9.539e-07
Iter. Count 42 38 245 244 49

32 CPU Time (s) 0.243 0.364 1.729 1.107 0.557
Res. Err. 8.969e-07 9.367e-07 9.600e-07 9.878e-07 8.624e-07
Iter. Count 44 39 231 231 82

48 CPU Time (s) 0.584 0.808 2.900 1.795 1.310
Res. Err. 8.230e-07 9.204e-07 9.940e-07 9.771e-07 8.920e-07
Iter. Count 45 40 222 222 128

64 CPU Time (s) 1.147 1.101 6.738 3.955 6.312
Res. Err. 7.628e-07 7.895e-07 9.781e-07 9.625e-07 9.766e-07
Iter. Count 46 41 200 199 440

128 CPU Time (s) 4.321 5.710 49.653 30.106 138.168
Res. Err. 7.429e-07 7.176e-07 9.574e-07 9.870e-07 9.928e-07
Iter. Count 46 41 177 177 835

256 CPU Time (s) 18.428 26.657 225.347 143.796 1118.5
Res. Err. 8.145e-07 7.801e-07 9.778e-07 9.643e-07 9.998e-07
Iter. Count 46 41 153 152 3160

512 CPU Time (s) 140.608 186.084 581.892 355.640 17228.00
Res. Err. 8.371e-07 7.998e-07 9.613e-07 9.838e-07 9.987e-07

Table 1. Tests from Example 3.1. The first column lists the system sizes in . The second column shows iteration 
count, CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS 
respectively.

Table 2. Tests from Example 3.2. The first column lists the system sizes in . The third column shows iteration count, 
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.
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but f-SCSP outperforms SCSP both in number of 
iterations and final residual error, taking half the 
number of iterations.

Moreover, Figure 7 shows the eigenvalues spread 
of the preconditioned matrix vs the actual system 
matrix in Examples 3.1 for a system size of 
. The real part of an eigenvalue is directly related to 
how a system behaves over time. If the real part is 
positive, the system grows exponentially, meaning 
it becomes unstable over time. If the real part is 
negative, the system decays exponentially, meaning 

it settles down to zero. In all preconditioned cases, 
we see that the eigenvalues have a real part of 
one and that the system has no fast growing or 
decaying. Instead, it might oscillate or stay at a 
constant amplitude. This doesn’t guarantee that the 
matrix is strictly stable, but it demonstrates that the 
matrix is not unstable either. The same behaviour 
of strong clustering of the spectrum resulting due to 
preconditioning can also be observed in Figures 8 and 
9 for Example 3.2 and 3.3, respectively, where the 
preconditioned matrix  evidently has a faster 
convergence compared to the original matrix  .

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 6 3 131 131 150

16 CPU Time (s) 0.009 0.010 0.468 0.201 0.443
Res. Err. 5.645e-07 2.396e-07 9.467e-07 9.374e-07 9.449e-07
Iter. Count 6 3 226 226 238

32 CPU Time (s) 0.040 0.036 1.938 1.241 1.934
Res. Err. 5.645e-07 2.396e-07 9.974e-07 9.955e-07 9.782e-07
Iter. Count 6 3 345 323 347

48 CPU Time (s) 0.080 0.080 5.208 3.519 5.710
Res. Err. 5.645e-07 2.396e-07 9.934e-07 9.809e-07 9.956e-07
Iter. Count 6 3 437 428 624

64 CPU Time (s) 0.158 0.155 11.377 7.933 15.952
Res. Err. 5.645e-07 2.396e-07 9.876e-07 9.973e-07 9.848e-07
Iter. Count 6 3 815 751 912

128 CPU Time (s) 0.887 0.852 121.434 83.248 177.660
Res. Err. 5.645e-07 2.396e-07 9.942e-07 9.898e-07 9.914e-07
Iter. Count 6 3 1426 1350 1905

256 CPU Time (s) 3.062 2.553 1091.90 814.111 1906.40
Res. Err. 5.645e-07 2.396e-07 9.955e-07 9.950e-07 9.973e-07
Iter. Count 6 3 4712 4421 5233

512 CPU Time (s) 15.015 13.637 11507.4 17269.0 42689.00
Res. Err. 5.645e-07 2.396e-07 9.9966e-07 9.994e-07 9.9989e-07

Table 3. Tests from Example 3.3. The first column lists the system sizes in . The third column shows iteration count, 
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

Fig. 1. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.1. f-SCSP performs 
better than its most counterparts.

Fig. 2. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.2. f-SCSP performs 
better than its counterparts, and is close to SCSP, if not 
matches its performance. f-SCSP takes a little longer to 
converge for larger system sizes.
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Fig. 3. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.3. f-SCSP performs 
better than its counterparts, and performs equally well as 
SCSP, matching its performance.

Fig. 4. The convergence behavior of f-SCSP vs its 
counterparts. (a) show tests from Example 3.1 with 
vector space  and (b) shows . Clearly, the 
convergence in f-SCSP dominates others with a margin.

Fig. 5. The convergence behavior of f-SCSP vs its 
counterparts. (a) test results from Example 3.2 with 
vector space  and (b) shows results with vector space 

. f-SCSP dominates others in convergence with a 
margin. (a) show the dominance of f-SCSP clearly; 
whereas (b) shows convergence line of f-SCSP close to 
SCSP; however, f-SCSP convergence in fewer iterations 
and with lower residual error.

Fig. 6. The convergence behavior of f-SCSP vs its 
counterparts. (a) test results from Example 3.3 with 
vector space  and (b) shows results with vector space 

. f-SCSP dominates others in convergence with a 
margin. (a) show the dominance of f-SCSP clearly; 
however, (b) shows almost overlapping lines for f-SCSP 
and SCSP; but f-SCSP convergence in half the number 
of iterations required by SCSP and with lower residual 
error.
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4.    CONCLUSIONS 

In this paper, we have presented a flexible-scalar 
splitting iterative methods based on the SCSP 
method for effectively solving a broad category 
of complex symmetric linear systems. Special 
attention is given to the structure and properties 
of the equivalent systems  
particularly in cases where the parameters  is 
chosen to preserve the symmetry and improve the 
conditioning of the original system. Theoretical 
analyses have been conducted to demonstrate 
that the proposed method is convergent under 
reasonable and practically relevant assumptions. 
Moreover, explicit expressions linking the optimal 
parameters  to the spectral radius of the associated 
iteration matrix have been established, offering a 
rigorous theoretical basis for parameter tuning and 
enhanced convergence rates.

To evaluate the practical efficacy of the proposed 
approaches, extensive numerical experiments were 
performed comparing the f-SCSP method against 
four established algorithms from the literature [28]. 
The findings consistently highlight the proposed 

Fig. 7. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.1. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.

Fig. 8. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.2. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.

Fig. 9. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.3. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.
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method’ reliability, robustness, and computational 
efficiency. Notably, the f-SCSP method exhibit 
equal or superior convergence rates and iteration 
counts, thereby confirming their suitability for 
tackling complex symmetric linear systems.
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Abstract: This paper introduces a modified twentieth-order method for solving nonlinear equations that commonly 
arise in physicochemical models. The proposed method is designed to efficiently handle the complex problems that 
normally occur in the van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium conditions. 
The traditional method has a lower order of convergence and uses higher-order derivatives. However, proposed 
method has twentieth-order convergence with only one first derivative used in each iteration. A detailed convergence 
order has been carried out to demonstrate the theoretical order of accuracy. Various numerical experiments have also 
been carried out to validate the performance of the proposed method. The results show the significantly improve the 
accuracy and taking a smaller number of iterations, number of function evaluations, and CPU time when applied to 
nonlinear equations arises in van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium 
conditions and basin of attraction further validate the stability of proposed method.

Keywords: Nonlinear Physicochemical Models, Iterative Method, Convergence Analysis, Weight Function, Hermite 
Interpolation, Basin of Attraction.

1.    INTRODUCTION

One of the key challenges in numerical analysis is 
solving nonlinear equations that arise in engineering 
problems, specifically in arises in van der Waals 
equation for real gases, Planck’s radiation law, 
and chemical equilibrium conditions. Iterative 
methods, like newton’s method, are commonly 
employed for this purpose. In this context, this 
article focuses on iterative techniques aimed at 
finding a simple root , such that  and 

, for a nonlinear equation  [1]. 
High precision is most significant for numerical 
computation, highlighting the importance of 
higher-order numerical methods [2]. Many scholars 

have proposed higher-order methods for solving 
nonlinear algebraic and transcendental equations 
[3-5]. Similarly, a number of researchers have also 
introduced a higher-order convergence optimal 
method [6-8]. Bracketing/closed method [9-13] 
have also have their importance because they have 
always been convergent, but their convergence is 
very slow. So now the researchers are more intend 
to introduce higher order method using weight 
function techniques [14-16].

2.    DERIVATION

We use the Newton technique [1] as the first step in 
the suggested approach.



	 (1)

In the second step of the proposed method, we 
utilize a variant of the double Newton method [17] 
and modify it by substituting  with  in 
this step.

 		     (2)

From Equations (1) and (2) we get:

(3)

To enhance the  accuracy and convergence, 
introduce  the weight function  see in Thukral [18] 
in the step 2 of Equation (3).

We get

(4)

And add one more step of newton by using  
and , 

(5)

In three-step formula mentioned in Equation (5) 
we estimate  using existing data, thereby 
reducing the number of function evaluations needed 
per iteration. At the nodes  and , we have four 
values  and . In the third step 
of the iterative scheme in Equation (5), we use the 
approximation  to approximate  
using Hermite’s interpolating polynomial of degree 
3. This algorithm takes the following form.

  (6)

And its derivative is:
	        (7)

The unknown coefficients will be determined using 
available data from the conditions:

.

Putting into Equations (6) and (7) we get 
 and . The coefficients  

and are obtained from the system of two linear 
equations formed by using the remaining two 
conditions  in Equation (6) and we 
obtain:

 

By putting the values of  in Equation 
(7) we get:

		       (8)

We replace  in third step of Equation (5) by 
Equation (8)  we get:

(9)

Now add one more step of newton by using  
and .
And finally, we got:

(10)

Equation (10) is the twentieth-order method with 
four function evaluations and three first derivatives.

3.    CONVERGENCE ANALYSIS

Theorem:  represents an open interval containing
 as a first estimate of . Let  be a simple 

root of a function  that is suitably 
differentiable. Under these conditions, Equation 
(10) yields Twentieth-order of convergence and 
requires only four function evaluations along with 
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three first derivative calculations in each complete 
iteration, with no need for second or higher-order 
derivatives.

Proof.
The Taylor series expansion for the function  
can be expressed as:

    
 (11)

For simplicity, we assume that

and assume that . Thus, we have:
For step one:

	     (12)

    	       (13)

From Equations (12) and (13):

Step 1. 

          (14)

		           

(15)

Step 3.	  

	      		   

(16)

Step 4. 
 	

(17)

Lastly, the efficiency index of the proposed approach 
mentioned in Equation (10) is 1.534127405, the 
rate of convergence is twenty, and each iteration 
requires three first derivative evaluations and four 
function evaluations.

Method Root & absolute 
function value 1st iteration 2nd iteration 3rd iteration 4th iteration

PM  

A1 20th  

A2 20th  

A3 20th  

4.    NUMERICAL EXPERIMENT AND DISCUSSION 

Problem 1. A chemical equilibrium problem (see [19-21])

	

Table 1. Numerical results for problem 1 for first four iterations and their absolute function values at 
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The performance of the PM method in solving 
problem 1 is evaluated against A1 20th, A2 20th, and 
A3 20th up to the fourth iteration. Results presented 
in Table 1 indicate that PM achieves higher accuracy 
and faster convergence, as depicted in Figure 
1, which illustrates PM’s quicker convergence 
relative to the other methods. Table 2 provides 

detailed metrics, showing that PM requires only 
4 iterations and 28 function evaluations, whereas 
the other methods necessitate 5 iterations and 35 
evaluations. Additionally, PM consumes less CPU 
time to achieve a tolerance of 1 × 10-5, with Figure 
2 reinforcing its superior CPU time performance 
compared to alternative methods.

Table 2. Numerical results for the problem , error fixed at  1 × 10-5.
Method

PM

A1 20th

A2 20th

A3 20th

Fig. 1. Graphical Representation of of Table 1. 
by assuming the scale 1 × 10-3 = 1 × 10-1.

Fig. 2. CPU time (in sec) versus solution of problem 1 
by the proposed scheme and its counterparts.

Problem 2. Volume from van der Waals equation (see [8])

Table 3. Numerical results for problem 2 for first four iterations and their absolute function values at .

Method Root & absolute  
functional value 1st iteration 2nd iteration 3rd iteration 4th iteration

PM  

A1 20th  

A2 20th  

A3 20th  
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Table 3 shows that PM is more accurate and 
converges quickly than its counterpart approaches 
in problem 2. And Table 4 shows the iterations, 
function evaluations, and CPU time (in seconds), 
where A1, A2, and A3 need 5 iterations and 35 
function evaluations, whereas PM requires 4 and 

28. PM achieves a tolerance of δ = 1 × 10-5 more 
effectively than comparable approaches because 
of its decreased CPU time (in seconds). However, 
Figures 3 and 4 are graphical representations of 
Tables 3 and 4, also demonstrating that the proposed 
method is more accurate.

Table 4. Numerical results for problem 2, error fixed at  1 × 10-5.
Method

PM 

A1 20th 

A2 20th 

A3 20th 

Fig. 3. Graphical Representation of of Table 3. 
by assuming the scale 1 × 10-3 = 1 × 10-1.

Fig. 4. CPU time versus the solution of problem 2 with 
the proposed scheme and its counterparts.

Problem 3. Planck’s radiation law (see [20, 22-25, 27])

.

Table 5. Numerical results for problem 3 for first four iterations and their absolute function values at 

Method
Root &  
absolute 
functional 
value

1st iteration 2nd iteration 3rd iteration 4th iteration

PM      

A1 20th      

A2 20th      

A3 20th  
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Compared to its counterpart approaches in 
problem 3, PM is more accurate and converges 
faster, as Table 5 demonstrates. Additionally, Table 
6 displays the CPU time (in seconds), number of 
iterations, function evaluations. A1, A2, and A3 
require five iterations and thirty-five function 
evaluations, while PM needs four and twenty-eight. 
PM’s reduced CPU time (in seconds) allows it to 
achieve a tolerance of δ = 1 × 10-5 more efficiently 
than similar methods. Figures 3 and 4, on the other 
hand, are graphical depictions of Tables 5 and 
6, further proving the validity of the suggested 
approach. 

The visuals show that PM is more accurate, 
efficient, and consistent than alternative approaches.

5.    BASIN OF ATTRACTION

The stability of the solutions (roots) for the 
nonlinear function The concept of basins 
of attraction can be used to facilitate an iterative 
method [26].  MATLAB R2014a was used to 
generate a depiction of all basins within the range 

, with a total of  
points at a  density.  There were two 
criteria established: An error threshold of  

or a maximum iteration count of 10.  Each point in 
the R-range served as the starting condition for the 
iterative algorithms that are initiated.

The iterative algorithm assigned a unique 
color number  (other than black) to the initial 
point if the sequence converged to a root  of the 
polynomial of degree  within 10 iterations 
and a predetermined tolerance. On the other hand, 
if the iterative process started at a point  
and surpassed the maximum iteration limit of 10 
without converging to any root  or converged to a 
different value  such that , the 
starting point was classified as diverging. In these 
instances, the starting point was marked with the 
color black. The number of iterations for each point 
in another basin is represented, accompanied by a 
color scale for reference.

The visual representations presented in Figure 
7 show that PM has significantly higher stability 
than alternative methods.

Table 6. Numerical results for problem 3, error fixed at δ = 1 × 10-5.

Method

PM 

A1 20th 

A2 20th 

A3 20th 

Fig. 5. Graphical Representation of of Table 5. 
by assuming the scale 1 × 10-3 = 1 × 10-1.

Fig. 6. CPU time (in sec) versus solution of problem 3 
with the proposed scheme and its counterparts.
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Basin of 
attraction 
of

Basin of 
attraction 
of

Basin of 
attraction 
of

Basin of 
attraction 
of

Basin of 
attraction 
of

Basin of 
attraction 
of

Fig. 7. The left Figures shows roots, while the right Figures. shows the number of iterations at each initial point of  
 of problems 4 obtained by the proposed Twentieth-order method.
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6.    CONCLUSIONS

The proposed fourth step, the twenty-order method 
based on the weight function, is introduced for 
the solution of nonlinear equations arising in 
Physicochemical Models. In conclusion, we have 
derived the convergence order (theoretical) of the 
proposed method, various application problems 
from the Physicochemical Models have been tested 
and compared with counterparts A1, A2, and A3. 
In all cases proposed method outperforms existing 
methods in terms of accuracy, number of iterations, 
number of function evaluations, and CPU time. 
Furthermore, the Basin of attraction in the complex 
plane confirms the stability of the proposed method. 
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Abstract: This research aims to facilitate the early and precise identification of Alzheimer’s disease (AD), which 
remains one of the most prevalent neurodegenerative diseases impacting people’s health and quality of life around 
the world. Employing machine learning algorithms, this study aims to develop reliable and effective models that 
support clinical workflows and streamline processes, thereby reducing the burden on patients and their families and 
ultimately enhancing patient-centric diagnostic frameworks. An approach to data cleaning, involving data imputation, 
encoding categorical variables, normalization of certain features, and stratified training and testing data splitting with 
hyperparameter tuning, was employed. This approach utilized both grid search and stratified k-fold cross-validation. 
Traditional models, ensemble techniques, and hybrid models were tested, including Lasso + LightGBM, XGBoost 
+ SVM, and blended models such as LightGBM, CatBoost, Logistic Regression, and XGBoost. Lasso + LightGBM 
outperformed others in hybrid models. Lasso + LightGBM achieved an accuracy of 0.961240, precision of 0.943231, 
recall of 0.947368, and F1score of 0.945295, Cohen’s Kappa of 0.915284, Hamming Loss of 0.038760, and Jaccard 
Index with the value of 0.896266. This research contributes to UNSDG 3, “Good Health and Well-being”, by enhancing 
data-driven health education and resources, and an efficient diagnostic and management system for Alzheimer’s. It 
also promotes healthy aging globally among the population.

Keywords: Predictive Modeling, Biomedical Data Analysis, Feature Engineering, Gradient Boosting, Clinical 
Decision Support, Cross-Validation, Diagnostic Accuracy.

1.    INTRODUCTION

Alzheimer’s is a behavior and progressive dementia 
disorder that impacts behavior, and thinking to a 
major extent and memory. It is the most common 
form of dementia, which induces tremendous 
loss of cognitive ability as people grow older [1]. 
Diagnosing Alzheimer disease is challenging as 
it can resemble the aging process or other brain-
related diseases. In modern times, diagnosis is 
made through cognitive tests, brain scans, as well 
as clinical examinations, which are subjective and 
time-consuming [2, 3]. It does not have a single 
conclusive test, which is why detecting it early is 
a challenge, as it is crucial to the treatment and 
management of the condition. Following advances 
in machine learning (ML), a potent tool has emerged 

for enhancing the diagnosis of Alzheimer’s disease 
by analyzing large and complex medical data. 
Patterns in the patient data have been drawn using 
traditional statistical methods and simple ML 
algorithms like the Naive Bayes and K-Nearest 
Neighbor (KNN), and Support Vector Machine 
(SVM). These methods produce fast results; 
however, as with high-dimensional data, such as 
brain scans and genetic data, the methods are not 
particularly effective, which restricts their accuracy 
[4]. Ensembles and deep learning are sophisticated 
machine learning methods that help to mitigate 
these challenges. Cloud random Forests and 
gradient boosting are ensemble models that involve 
using a combination of models to improve the 
accuracy of predictions [5-7]. Deep learning-based 
models, such as Convolutional Neural Networks 



(CNNs), are indeed powerful tools that enable the 
processing of medical images and the detection of 
subtle changes in medical imaging (e.g., MRI, PET) 
associated with Alzheimer’s disease. It is possible to 
improve patient outcomes by enhancing diagnosis 
accuracy and reducing the diagnosis period, thereby 
decreasing the risks of human error and leading to 
a better situation for clients. By providing better, 
more accurate, and timely diagnostics, researchers 
will be able to improve both treatment strategies 
and disease prevention [8, 9].

Current techniques of Alzheimer’s disease 
(AD) diagnosis predominantly focus on genetic 
factors that involve machine learning and deep 
learning models, particularly by analyzing gene 
expression data for early detection of the disease. 
Studies have shown that deep learning (DL) models, 
including DGS-TabNet, outperform traditional ML 
algorithms by selecting more precise and efficient 
meaningful genes, obtaining superior classification 
performance (up to 93.8% accuracy and 98.53% 
Area under Curve (AUC) in binary classification 
tasks). Moreover, some key genes may also have 
biological significance by revealing their roles in 
other diseases, which could partly confirm that 
the use of network-based analyses in conjunction 
with traditional methods is valuable for identifying 
genetic markers related to AD [10]. Alzheimer’s 
disease prediction has been significantly enhanced 
by recent machine learning algorithms, particularly 
those utilizing ensemble models (e.g., LightGBM 
and Random Forest), which can achieve accuracies 
exceeding 96.35% on several databases [11]. The 
use of Shapley Additive Explanation (SHAP) and 
Local Interpretable Model-agnostic Explanation 
(LIME) enhances artificial intelligence (AI) 
explainability, and as a result, the model’s 
transparency leads to higher clinician trust in it. 
Compared to existing methods that are restricted by 
the number of datasets, data type, or interpretability, 
this method has improved efficiency and usability in 
AD diagnosis [12]. Mahamud et al. [13] developed 
a framework that uses data on handwriting to 
detect Alzheimer’s disease, which involves a two-
phase forward-backward selection of features via 
XGBoost. This strategy limits the workflow to a 
minimal set of tasks to increase interpretability to 
achieve 91.37% accuracy. The robust performance 
by using the leave-one-out cross-validation 
indicates that the sample size was adequate and 
transforms towards more friendly AD diagnosis. 

The present study also provides autography as a 
more reliable and straightforward strategy for early 
detection of AD. 

The proposed research problem in the present 
study is the Computer-Aided Diagnosis (CAD) 
of Alzheimer’s disease, which is addressed by 
designing and testing hybrid supervised machine 
learning models that combine adaptive feature 
selection, blended probability fusion, and gradient 
boosting. Responses to existing research have proven 
encouraging with the use of individual classifiers 
and the simple ensemble technique; however, they 
often fail to address high-dimensional, imbalanced, 
and heterogeneous clinical data, which ultimately 
results in poor generalizability and reduced clinical 
interpretability. To address these weaknesses, 
this work generalizes gradient boosting in a 
meta-modeling system, which has enhanced the 
robustness, discrimination, and interpretability of 
both linear and nonlinear learners.

The dataset used in the present study is the 
result of less controlled environments, specifically 
community-based and non-specialist clinical 
environments, where the data may be noisier, 
less standardized, and even completely missing, 
compared to strictly controlled research studies. 
This feature drove the adoption of hybrid designs 
that can tolerate uncertainty and variability while 
preserving the performance of diagnosis. In this 
connection, the objectives of this study will be the 
following:

•	 To build and test a set of hybrid machine 
learning models to classify Alzheimer’s disease, 
which incorporate feature selection (i.e., Lasso) 
with effective gradient-boosting algorithms (i.e., 
LightGBM, XGBoost, CatBoost).
•	 To evaluate the capabilities of such 
hybridization in terms of predictive reliability and 
robustness, in comparison with standalone methods 
and conventional ensemble methods reported in 
recent literature.
•	 To ensure that the final models can be interpreted 
clinically, where interpretability is measured by the 
sparsity of the chosen features and the transparency 
of the linear elements in the hybrid structures.

The present study focuses on integrating and 
benchmark existing strategies to address the issue 
in the Alzheimer’s CAD system. These issues 
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include data heterogeneity, small sample size and 
transparency of the model. Rather than proposing 
the new model, the approach in the present study 
aims to increase the effectiveness of current models, 
by developing the ML models that are clinically 
viable and applicable in practice. 

2.    METHODOLOGY

2.1. Dataset and Preprocessing

The Alzheimer’s disease dataset, which was 
submitted to Kaggle by Rabie El Kharoua in 
2024 and is released under the Attribution 4.0 
International (CC BY 4.0) license (DOI: 10.34740/
KAGGLE/DSV/8668279), is utilized in this 
research. 35 variables, including demographic, 
lifestyle, medical history, cognitive evaluation, 
symptoms, and diagnostic information pertaining 
to Alzheimer’s disease, are included in the dataset, 
which includes 2,149 patient records (IDs 4751-
6900). Because it is a binary variable that indicates 
whether Alzheimer’s disease is present (1) or not 
(0), the diagnosis column is the target variable.

2.1.1. Handling missing values

Missing values in the dataset can compromise 
the reliability of model predictions. Therefore, all 
missing data are imputed using the mode (i.e., the 
most frequent value) for each column [14]. This 
approach is mathematically expressed as:

	 (1)

Where  denotes the imputed value for feature i, 
while n represents samples. This method ensures 

the categorical and numerical integrity of the 
dataset, preserving both the sample size and 
variance structure.

2.1.2. Categorical encoding

To transform categorical variables into a numerical 
format, Label Encoding is applied to all features 
except the target column [15]. Each category is 
mapped to a unique integer, enabling the models to 
process categorical features mathematically:

      (2)

2.1.3. Normalization

For all continuous features, normalization using the 
Standard Scalar is performed, transforming the data 
to have a zero mean and unit variance [16].

                               (3)

where σ is the standard deviation, μ is the mean, and 
x is the initial value for each feature. To guarantee 
that feature-scaling-sensitive models (like SVM 
and KNN) operate at their best, this step is essential.

2.1.4. Feature importance 

The features of the Alzheimer’s disease dataset 
have been ranked based on the scores of feature 
importance from the model using Random Forests, 
as illustrated in Figure 1. Random Forest has been 
used because the dataset is not very large, and it 
is capable of handling a large number of features 
without any problem. Functional Assessment 
and ADL (Activities of Daily Living) were the 

Fig. 1. Top 10 feature importance for Alzheimer’s classification.
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most significant factors. Therefore, they are the 
most important in predicting whether a case is 
Alzheimer’s disease or non-Alzheimer’s disease. 

The other characteristics, such as the MMSE 
(Mini-Mental State Examination) and Memory 
Complaints, also play a significant role, showing 
that they are important in the clinical assessment 
of cognitive abilities. Conversely, the importance 
of features such as Cholesterol/Triglycerides, 
Sleep Quality, and Diet Quality is lower, which is 
a sign of weakness in these variable predictors in 
the dataset. This distribution is logical, given that 
functional and cognitive assessments are primary 
constituents for diagnosing Alzheimer’s disease, 
thereby confirming the dataset’s primary clinical 
relevance.

2.2. Data Splitting

A stratified train-test split is utilized to maintain 
class distribution in both sets. 70% of the data is 
allocated for training (Xtrain,ytrainX_{train}, 
y_{train}Xtrain​,ytrain​), and 30% for testing 
(Xtest,ytestX_{test}, y_{test}Xtest​,ytest​), ensuring 
that performance metrics generalize to unseen data.

            
   (4)

2.3. Model Training and Hyperparameter 
       Tuning

A variety of supervised learning models are 
compared, with a particular focus on hybrid models 
developed by combining model outputs or feature 
selection pipelines. We performed hyperparameter 
optimization using GridSearchCV with stratified 
k-fold cross-validation (k = 5) to optimize precision 
and recall. We aimed to optimize the F1-score as 
the basic criterion for the model selection. In this 
process, stratified fold cross-validation was used to 
preserve the properties of class, decreasing the risk 
of overfitting. Moreover, this strategy ensured that 
hyperparameter estimation remains robust. 

2.4. Used Models 

We trained models using grid search with traditional 
classifiers, including Random Forest, Support 
Vector Machine (SVM), K-Nearest Neighbors 
(KNN), Logistic Regression, and boosting and 
bagging techniques (XGBoost, LightGBM, 

CatBoost, AdaBoost, and Bagging Classifier). 
These may be used as standalone benchmarks or 
in conjunction with hybrid approaches. The model 
parameters are listed in Table 1.

2.4.1. K-nearest neighbors (KNN)

KNN is a non-parametric, instance-based algorithm 
where classification is based on the majority vote 
among the k closest training samples in the feature 
space [17]. The value of k is selected via grid 
search. The distance metric, typically Euclidean, is 
calculated as:

	 (5)

The size of the data affects this approach; 
hence, the previously mentioned normalization 
step is required. The curse of dimensionality 
can cause KNN’s performance to deteriorate in 
high-dimensional environments, yet it is still a 
useful baseline for tabular datasets with modest 
complexity [18].

2.4.2. AdaBoost

Adaptive Boosting, also known as AdaBoost, 
is a technique that builds a powerful classifier 
by repeatedly training weak learners, typically 
decision stumps. However, each new learner is 
modeled after its predecessors, focusing on their 
mistakes [19]. The last model is the weighted sum 
of such learners:

		  (6)

Where αt​ is the weight assigned to weak classifier 
ht(x). AdaBoost is especially robust to overfitting in 
many practical cases, but can be sensitive to noisy 
data and outliers.

2.4.3. Bagging (bootstrap aggregating)

Bagging trains multiple base estimators on different 
bootstrap samples of the dataset and averages 
their predictions to reduce variance. For binary 
classification:

   (7)

This strategy makes the models more stable 
especially, when using high variance base 
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learners like decision trees. Hyperparameters (e.g. 
estimators) are optimized with the help of cross-
validation [20].

2.4.4. Logistic regression

Standard Logistic Regression is used as a core 
linear baseline [21]. It estimates the probability of 
the binary outcome using the logistic function:

	 (8)

When the coefficients of  are estimated using the 

maximum likelihood method. C is a parameter that 
is regularized to control the model’s complexity. 
Despite being linear, Logistic Regression is likely 
to compete with biomedical data and provide 
understandable coefficients.

It is not new to use some of the models 
employed in the present study; however, when 
applied to a comparatively strict and data-driven 
technique for Alzheimer’s disease, which has high 
dimensionality and noise, they are instructive in 
science. Not merely accumulating, but this choice 
supposes the potential of an orderly examination 

Model Hyperparameter Name Hyperparameter Values
RandomForestClassifier n_estimators, max_depth, min_samples_split, 

min_samples_leaf, bootstrap
100, 10, 2, 1, True

SVM (Support Vector 
Machine)

C, kernel, gamma, degree, coef0, tol 1, rbf, scale, 3, 0.0, 1e-3

KNN (K-Nearest Neighbors) n_neighbors, weights, algorithm, leaf_size, p 5, uniform, auto, 30, 2
LogisticRegression C, penalty, solver, max_iter, tol 1, l2, lbfgs, 100, 1e-3
XGBoost n_estimators, learning_rate, max_depth, 

subsample, colsample_bytree, gamma
100, 0.1, 6, 0.8, 0.8, 0.1

LightGBM n_estimators, learning_rate, max_depth, 
num_leaves, min_child_samples, subsample

100, 0.1, 6, 31, 20, 0.8

CatBoost iterations, learning_rate, depth, l2_leaf_reg, 
subsample, colsample_bylevel

100, 0.1, 6, 3, 0.8, 0.8

AdaBoost n_estimators, learning_rate, algorithm 100, 1.0, SAMME.R
Bagging n_estimators, max_samples, max_features, 

bootstrap, n_jobs
100, 1.0, 1.0, True, -1

StackingClassifier estimators, final_estimator, cv RandomForestClassifier, 
XGBClassifier, 
LogisticRegression, 5

RF + Logistic Regression 
(Stacked)

rf__n_estimators, rf__max_depth, rf__min_
samples_split, rf__min_samples_leaf, lr__C, 
lr__penalty, lr__solver

100, 10, 2, 1, 1, l2, lbfgs

XGBoost + SVM (Stacked) xgb__n_estimators, xgb__learning_rate, 
xgb__max_depth, svm__C, svm__kernel, 
svm__gamma

100, 0.1, 6, 1, rbf, scale

Lasso + LightGBM (Hybrid) lasso__alpha, lgbm__n_estimators, lgbm__
learning_rate, lgbm__max_depth, lgbm__
num_leaves, lgbm__min_child_samples

0.1, 100, 0.1, 6, 31, 20

RF-FeatureSelection + LR 
(Hybrid)

rf__n_estimators, rf__max_depth, rf__min_
samples_split, rf__min_samples_leaf, lr__C, 
lr__penalty, lr__solver

100, 10, 2, 1, 1, l2, lbfgs

Blended Probabilities (LGBM 
+ CatBoost + XGB) + LR

lgbm__n_estimators, lgbm__learning_rate, 
catboost__iterations, catboost__learning_rate, 
xgb__n_estimators, lr__C

100, 0.1, 100, 0.1, 100, 1

Table 1. Hyperparameters tuned and their grid search values for each machine learning model.

This rigorous methodology underpins both the fairness and scientific validity of model comparison, ensuring that 
reported results are robust, replicable, and meaningful for biomedical decision-making.
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of model action and hybrid synergy, by which 
empirically information on what architectures will 
be evident in most clinically diverse situations. 
This is the gap, which is negatively addressed in 
the literature.

2.5. Hybrid Model Architectures

The study constructs and evaluates five advanced 
hybrid models, each leveraging the strengths of its 
constituent algorithms to address the nonlinearity, 
feature interaction, and potential collinearity within 
the dataset.

2.5.1. Hybrid 1: Random forest probabilities as 
          features for logistic regression (RF + LR)

First, a Random Forest classifier is trained on the 
original feature set, outputting class probabilities 
for each sample:

	 (9)

Where ht(x) is the prediction probability from tree 
t. The predicted probability ​ is then appended as 
a new feature to both the training and test datasets:

                        (10)

The hybrid RF+LR model follows a two-stage 
stacking formulation. Consider  is the 
random forest probability estimator then: 

                   (11)
	
We produce out of fold (OOF) predictions by using: 

                    (12)
	
The meta feature matrix becomes: 

                      (13)
	
Now the logistic regression function for the decision 
is given by:
 

       (14)

 represent the weight assigned to RF-derived 
probability, so the final hybrid prediction is 
computed using: 

              (15)

A Logistic Regression model is subsequently 
trained on X′, learning a linear boundary in 
the enriched feature space. This hybridization 
combines the nonlinear feature extraction capability 
of Random Forests with the interpretability and 
regularization strength of Logistic Regression. 
The hybrid model can potentially address 
nonlinearity and feature interactions missed by 
Logistic Regression alone. However, there is a 
risk of overfitting if the new probability feature 
is highly correlated with the target, particularly in 
small or unbalanced datasets. In this study, cross-
validation and the use of the test set mitigate such 
risks [22].

2.5.2. Hybrid 2: XGBoost probabilities as features 
          for SVM (XGBoost + SVM)

An XGBoost model, known for its gradient-boosted 
tree structure and robustness to feature collinearity, 
is first trained. The predicted probabilities for each 
sample, ​, are calculated:

       (16)

Where σ denotes the sigmoid function. These 
probabilities are appended as an additional feature 
to the input matrix, after which a Support Vector 
Machine (SVM) classifier is trained and OFF 
probabilities are concatenated with the input 
features:

                     (17)

The SVM with a radial bases function 
(RBF) kernel learns separating hyperplane in the 
augmented space:

	           (18)

The term  quantifies the contribution 
of initial stage boosted the probabilities to SVM 
margin. This hybrid combines XGBoost’s nonlinear 
learning capacity with the margin-maximizing 
properties of SVMs. This approach can significantly 
enhance performance if XGBoost probabilities 
encapsulate a high-level structure that is not 
easily captured by SVM alone. However, SVMs 
are sensitive to irrelevant features, so the benefit 
depends on the informativeness of the probability 
feature [23].
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2.5.3. Hybrid 3: Lasso feature selection followed 
          by LightGBM (Lasso + LightGBM)

A Logistic Regression model with L1 regularization 
(Lasso) is employed to perform feature s A Logistic 
Regression model with L1 regularization (Lasso) is 
employed to perform feature selection:

	 (19)

Where  is the likelihood,  are the coefficients, 
and  is the regularization parameter. Only features 
with nonzero coefficients are retained:

                      (20)

The reduced feature matrix is: 

                      (21)

LightGBM is trained on the reduced space: 

 		                   (22)

This hybrid is a sequential architecture an 
optimizing based selector followed by the gradient 
boosting. LightGBM, a fast and efficient gradient 
boosting implementation, is trained on the selected 
features. This hybrid is especially effective in high-
dimensional data, as it removes redundant and 
noisy variables before applying a strong tree-based 
learner. The risk is that overly aggressive feature 
selection can discard weak but informative features, 
potentially lowering overall model capacity [24].

2.5.4. Hybrid 4: Top N random forest feature 
          importance with logistic regression
         (RF-Feature Selection + LR)

Random Forests naturally provide feature 
importance measures based on mean decrease 
in impurity (MDI) or mean decrease in accuracy 
(MDA). Random forest computed the importance 
values by: 

               (23)

The top  features with the highest importance 
scores are selected:

      (24)

Logistic regression is trained on: 

                       (25)

The model is then given by: 

           (26)

This hybrid is featuring selection driven linear model 
contrasting with fully nonlinear boosters.  Logistic 
Regression is then trained on this reduced feature 
set. Selecting the most predictive variables reduces 
dimensionality and may improve generalization, 
especially for linearly separable relationships. 
However, feature importance scores can be unstable 
in the presence of multicollinearity or redundant 
predictors, and choosing N is somewhat heuristic 
[25].

2.5.5. Hybrid 5: Blended probabilities of multiple 
          boosting models with logistic regression 
         (Blended Probabilities + LR)

LightGBM, CatBoost, and XGBoost models are 
independently trained on the original dataset. For 
each sample, the predicted probabilities from each 
model are extracted:

                    (27)

                     (28)

                     (29)
 
These probabilities are concatenated with the 
original features to create a new, augmented feature 
space:

             (30)

Let the blended meta feature vector be: 

                          (31)

The final model is: 

   (32)

This is the probabilistic blending architecture that 
combines diverse gradient boosting models. 
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A Logistic Regression model is trained 
on X′′′, learning how to combine the output of 
diverse boosting models optimally. This method 
synthesizes predictions from heterogeneous 
boosting frameworks, enabling the final model to 
exploit differences in model behavior [26]. While 
potentially powerful, this approach increases the 
risk of overfitting if the boosting models themselves 
are highly correlated or overfit the training data.

The benefits of these hybrid models extend 
beyond the advantages of conventional classifiers 
(such as Random Forest and Logistic Regression) 
to more complex algorithms, including feature 
selection with Lasso, boosting on XGBoost, 
LightGBM, and CatBoost, as well as ensemble 
learning methods like Stacking and Blended 
Probabilities. The hybrid models that use the 
probabilities generated by one model as input for 
the other model are helpful for the consideration 
of complexities like intricate feature interactions 
and nonlinearity that providing a novel approach 
to increase the model performance.  A stronger 
decision is achieved using combined models, 
such as RF + LR, XGBoost + SVM, and Lasso + 
LightGBM, which present a novel perspective for 
processing high-dimensional imbalanced data.

2.6. Evaluation Metrics

The performance and robustness of these 
classification models are evaluated using specific 
metrics. These provide complementary information, 
accurately reflecting the overall correctness of the 
model, while precision measures how many of the 
predicted positives are truly positive. Recall shows 
how many actual positives are identified correctly 
and the F1-score balances the tradeoff between 
false positive and false negative. Cohen’s Kappa, 
Hamming loss, and Jaccard Index capture the 
nuances of agreement and multi-label performance. 
The use of these measures enables a more advanced 
and less biased assessment of predictive models in 
various situations under different data distributions 
[27].

             (33)

                   (34)

                      (35)

      (36)

                  (37)

      (38)

                   (39)

This rigorous methodology underpins both the 
fairness and scientific validity of model comparison, 
ensuring that reported results are robust, replicable, 
and meaningful for biomedical decision-making.

3.    RESULTS AND DISCUSSION

The cross-evaluation of model benchmarks reveals 
reasonable differences in various measures, 
indicating the impact of different machine learning 
and hybrid methods for classifying Alzheimer’s 
disease. Table 2 presents the evaluation metrics 
values for all models. The best accuracy is reported 
for , CatBoost, and Lasso + LightGBM, both 
scoring 0.961240, closely followed by XGBoost 
0.961041,  LightGBM and stacking at 0.958140 
and Blended Probabilities (LGBM + CatBoost 
+ XGB) + LR at 0.956589. This identifies the 
better performance of gradient boosting-based and 
ensemble hybrid methods for classifying the disease 
status. On the other hand, the KNN (0.737984) 
and RF-FeatureSelection + LR (0.846512) models 
exhibit relatively lower accuracy, which stems from 
high dimensionality and the sensitivity to feature 
selection, respectively. The accuracy achieved in 
this research is slightly higher than previous values 
of 0.9635 reported by Mahamud et al.  [13] and 
0.9380 recorded by Jin et al. [10].

Table 2 shows that the highest precision is 
recorded for CatBoost (0.951111) and XGBoost 
+ SVM (0.950893), which are higher than the 
previous values of 0.95 stated by Mahamud et al. 
[13] and 0.9396 (with proposed model), reported 
by Jin et al. [10]. Both are effective in minimizing 
false positive rates and thereby curtailing diagnosis 
overestimation, which is crucial for less invasive 
procedures in clinical practice. Traditional 
classifiers, such as SVM (0.774336) and KNN 
(0.680982), perform markedly worse and are 
often unable to manage the class imbalance and 
complexity of features, despite normalization.
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The XGBoost and Lasso + LightGBM achieved 
the highest values of recall, that are 0.943468 and 
0.947368, respectively, that is higher than the value 
of 0.9380, reported by Jin et al. [10]. This aspect 
is crucial in clinical practice, where this kind of 
performance is needed to minimize the number 
of missed cases. Models such as the KNN model 
(score = 0.486842) have vast potential for further 
improvement, indicating that a simple model is 
underfitted in the presence of complex data.

As shown in Table 2, XGBoost (0.941155), 
CatBoost (0.944812), and Lasso + LightGBM 
(0.945295) achieved the highest F1-score, 
indicating that they can balance the precision-recall 
tradeoff better than other models, which is crucially 
important for medical diagnosis. The error spread is 
small; therefore, we can expect good accuracy from 
these algorithms.

Table 3 presents the Cohen’s Kappa values 
of hybrid and ensemble approaches, including 
XGBoost (0.915284), CatBoost (0.914946), and 
Lasso + LightGBM (0.915284), which demonstrate 
considerable reliability in model classification 
consistency and performance, as well as reasonable 
performance. With Kappa point classification, 
the SVM (0.646527) and KNN (0.387154) are 
considered too soft, indicating that both have 

insufficient reliability to validate incomplete 
agreement. The hamming loss value is decreased 
with perfect classification and is particularly low 
when models XGBoost (0.038760), Catboost 
(0.038760) and Lass + LightGBM (0.038760) 
outperform the other models.  As expected, KNN, 
due to its loss, suffers significant losses, which 
remain at 0.262016, primarily due to poor recall 
and precision, resulting in numerous mismatches. 
The three algorithms, XGBoost, CatBoost, and 
Lasso + LightGBM, scored the best with scores of 
0.896266, 0.895397, and 0.896266, respectively, 
indicating that they have better predictive ability 
than other models and align more closely with the 
predicted true label. Many traditional and hybrid 
strategies like KNN (0.39642) and RF-feature 
Selection + LR (0.64388) performed below the 
chance level as expected due to their lower overall 
classification performance.  

These results support the reasoning behind 
the methodology’s focus on ensembles of hybrid 
models, as the integration of feature selection with 
probabilistic augmentation and gradient boosting 
is expected to improve performance significantly. 
The dataset underwent extensive preprocessing, 
including the meticulous imputation of missing 
values, label encoding, normalization, and 
stratified train-test splitting, which preserved class 

Model Accuracy Precision Recall F1-Score
RandomForest 0.941085 0.943925 0.885965 0.914027
SVM 0.838760 0.774336 0.767544 0.770925
KNN 0.737984 0.680982 0.486842 0.567775
LogisticRegression 0.838760 0.787037 0.745614 0.765766
XGBoost 0.961041 0.941831 0.943468 0.941155
LightGBM 0.958140 0.938865 0.942982 0.940919
CatBoost 0.961240 0.951111 0.938596 0.944812
AdaBoost 0.927132 0.891775 0.903509 0.897603
Bagging 0.947287 0.925439 0.925439 0.925439
Stacking 0.958140 0.942731 0.938596 0.940659
RF + LR 0.945736 0.940639 0.903509 0.921700
XGBoost + SVM 0.959690 0.950893 0.934211 0.942478
Lasso + LightGBM 0.961240 0.943231 0.947368 0.945295
RF-FeatureSelection + LR 0.846512 0.781659 0.785088 0.783370
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.956589 0.942478 0.934211 0.938326

Table 2. Performance metrics (Accuracy, Precision, Recall, F1-Score) for various machine learning models evaluated 
in Alzheimer’s disease classification.
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proportions to ensure the data’s integrity while 
enhancing model generalizability. Grid search with 
stratified cross-validation for class-preserved folds 
enabled extensive multi-criteria hyperparameter 
optimization, minimizing the risk of overfitting and 
further augmenting model performance through 
fine-tuned hyperparameter adjustment.

The complicated nonlinear correlations 
observed in clinical and demographic data cannot 
be fully represented by simpler models such as 
KNN and Logistic Regression, in addition to the 
more traditional boundary-defining approximations 
and closest neighbor assumptions. The successful 
use of feature engineering and hyperparameter 
tuning has led to the development of clinical 
decision support tools for testing, highlighting the 
potential of complicated ensemble models for early 
Alzheimer’s disease identification.

Figure 2 illustrates the pairwise distributions 
and interrelations between the significant predictors 
(Functional Assessment, ADL, MMSE, Memory 
Complaints, Behavioral Problems, and Sleep 
Quality) by diagnosis class. It is also easy to note 
clear differences between the Alzheimer and non-
Alzheimer groups of the Functional Assessment, 
ADL, and MMSE, which indicates their great 
discriminative power. Contrastingly, Memory 

Complaints and Behavioral Problems have a 
higher overlap, meaning a lower predictive ability 
independently. Such visual trends are reflected in 
the rankings of feature importance gained with 
the help of Random Forest and Lasso selection, 
with functional and cognitive measures prevailing. 
Feature selection methods like mRMR and mutual 
information have also explained their efficiency in 
enhancing the prediction of Alzheimer’s disease 
with an accuracy of 0.9908 [28].  

More importantly, the figure also presents 
qualitative data on why the hybrid and ensemble 
models (e.g., Lasso + LightGBM) performed well: 
these models can learn nonlinear and partially 
collinear relationships between features, especially 
between cognitive and behavioral variables. Such 
curved or overlapping boundaries are not easily 
modeled using standard linear classifiers (e.g., 
Logistic Regression), which is why such classifiers 
achieve relatively low recall and F1 scores. That 
is why a pair-plot is not only justifying feature 
selection, but also the models’ success, as it sets up 
the data structure visually and demonstrates where 
simple models may fail. 

3.1. Model Behavior and Error Analysis 

Lasso + LightGBM. L1 selection yielded a sparse 

Model Cohen Kappa Hamming Loss Jaccard Index
RandomForest 0.869284 0.058915 0.841667
SVM 0.646527 0.161240 0.627240
KNN 0.387154 0.262016 0.396429
LogisticRegression 0.642971 0.161240 0.620438
XGBoost 0.915284 0.038760 0.896266
LightGBM 0.908506 0.041860 0.888430
CatBoost 0.914946 0.038760 0.895397
AdaBoost 0.841049 0.072868 0.814229
Bagging 0.884671 0.052713 0.861224
Stacking 0.908324 0.041860 0.887967
RF + LR 0.880208 0.054264 0.854772
XGBoost + SVM 0.911455 0.040310 0.891213
Lasso + LightGBM 0.915284 0.038760 0.896266
RF-FeatureSelection + LR 0.664523 0.153488 0.643885
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.904834 0.043411 0.883817

Table 3. Cohen’s Kappa, Hamming Loss, and Jaccard Index scores for different machine learning models in 
Alzheimer’s disease classification.
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and lower-correlation subsample that reduces noise 
and redundancy; LightGBM then learned nonlinear 
interactions in this low-dimensional space, which 
are consistent with the more evident separations 
in the cases of Functional Assessment, ADL, and 
MMSE in Figure 2. Blended probabilities + LR. 
The base boosters had a high prediction correlation 
due to theoretical gains, which constrained the 
meta-learner’s ability to be diverse. In a small 
sample size, the inclusion of correlated probability 
enhanced variance and decreased net benefit; 
moreover, variation in probability calibration was 
likely a restraining factor for the LR combiner. 
The combination of RF with Adaboost achieved 
0.9255 accuracy which explained the benefits of 
ensemble learning in boosting model performance. 
The combination of DT, Adaboost and LR achieved 
highest accuracy of 0.9546 which shows the 
effectiveness of blending different models [29].

The study relies on a single dataset from 
Kaggle that may limit the generalizability of 
the model to clinical datasets. The models in the 
present study were evaluated only on provided 
dataset and external validation on an independent 
dataset was not performed. It is difficult to confirm 
the robustness and real-world applicability of the 
proposed models. Hybrid models such as Lasso + 
LightGBM and blended probabilities show strong 
performance; these may remain complex and less 

interpretable. This can limit their practical use in 
clinical settings where model transparency and 
interpretability are very important for clinical trust 
and decision-making. 

RF-FeatureSelection + LR. RF importances 
based on impurity can be unstable under collinearity 
and biased against specific types of features; in a 
top-N heuristic, weak yet informative variables 
can be discarded. A linear LR fitted on this subset 
underfits the nonlinear structure, shown in Figure 
2, which explains the gap between the accuracy 
and recall. Practical note: Future variants will (i) 
apply permutation/Boruta or stability selection to 
features, (ii) impose out-of-fold predictions and 
temperature/Platt calibration in blending, and (iii) 
take into account Elastic-Net LR or monotone-
constrained boosting to make the thus far observed 
structure more like reality.

To evaluate the robustness, consistency 
and adaptability of the models, we used many 
established mechanisms. Robustness and 
generalization were assessed by using the stratified 
5-folds cross validation, where models were trained 
and validate on multiple class preserving split ad 
by using was the out-of-fold (OOF) predictions to 
avoid the information leakage in hybrid stacking. 
Consistency was verified by using a various set of 
metrics like accuracy, precision, recall, F1score, 

Fig. 2. Pairwise feature relationships by Alzheimer’s diagnosis.
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kappa, hamming loss, Jaccard index that showed 
stable rankings within the Table 2 and Table 3. 
Adaptability was evaluated testing the models on 
heterogeneous mix of demographic. Cognitive, 
behavioral and clinical features. Lastly, all results 
were confirmed on a held 30% unseen test set to 
ensure the valid generalization. 

3.2. Comparative Discussion

Direct and cross-paper comparisons of point 
estimations (e.g., accuracy or F1) are necessarily 
constrained since results are highly dependent on 
the particular dataset (size, difficulty, feature set, 
and class balance) and preprocessing options, as 
well as the evaluation protocol. We therefore do not 
claim that we are better than previous studies solely 
because our point estimates (e.g., accuracy 0.961) 
are numerically larger than those obtained with 
other datasets and setups (e.g., 0.938). Rather, we 
place our findings on a par with ranges reported in 
recent literature on classifying ADs using gradient-
boosted and hybrid ensemble classifiers, with 
overall similar levels of accuracy and F1 where 
tasks and data are similar [10, 12, 13].

Future research must incorporate evaluation 
on common publicly available benchmarks (e.g., 
using the same train/test splits with ADNI, OASIS, 
or the same Kaggle dataset). It also incorporates 
the standardization of preprocessing pipelines to 
reduce variability and measurement of uncertainty 
(e.g. per-split results and 95% CIs through 
bootstrapping) and paired-sample tests (e.g., 
McNemar test to establish accuracy, DeLong test 
to establish AUC). Calibration and decision-curve 
analyses to supplement the results are indicated 
within these limits, we find that hybrid strategies 
(e.g., Lasso + LightGBM) can produce state-of-the-
art dataset competitive performance and practical 
interpretability in line with the trends of previous 
work [10, 12, 13]. 

4.    CONCLUSIONS	

The paper compared conventional, ensemble, and 
hybrid supervised classifiers in the classification 
of Alzheimer’s disease using tabular clinical data. 
CatBoost and Lasso + LightGBM (accuracy = 
0.96124) were the closest as the strongest point 
estimate, and XGBoost was considered the third 
closest (accuracy = 0.96104). All with a strong F1 

(0.94 - 0.95). Since we did not report any measures 
of variance or formal tests of significance, we do not 
claim to have been statistically better than the other 
models; instead, the models can be viewed as those 
that perform best and are statistically equivalent, 
given the evidence at hand. On a methodological 
level, the results are congruent with the hypothesis 
that, with L1-Based selection, features may be 
denoised and decorrelated, allowing a gradient-
boosting learner (LightGBM) to represent 
nonlinear feature interactions more effectively. 
Nevertheless, we have seen that the Lasso + 
LightGBM hybrid cannot be readily interpreted: 
Lasso produces sparse selections, but the black box 
model of the final boosted model remains a black 
box. Future studies will (i) quantify the uncertainty 
(per-fold results, bootstrap CIs, paired tests such 
as McNemar/DeLong) to find out whether small 
metric deltas are statistically significant; (ii) provide 
explanatory analyses (e.g. SHAP global summaries, 
local explanations, partial dependence/ICE, and 
calibration curves) to describe how the output 
of functional and cognitive measures drives the 
predictions; (iii) assess blending/stacking on out-
of-fold meta-features and probability calibration to 
increase the diversity among base learners. These 
criteria suggest that gradient-boosted and hybrid 
studies are dataset-competitive in AD classification 
on structured clinical data, and that an additional 
investigation into uncertainty and explainability 
is necessary to make comparative or clinical 
assertions.
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Abstract: The methoxy substituted phenylacetic acid (MeOPhA) and chloro substituted phenoxyacetic acid (ClPhA) 
were used to synthesize eight new Cd(II) based complexes. The nitrogen donor 2,2′- bipyridine (MeOPhA2, ClPhA2) and 
1,10-phenanthroline (MeOPhA3, ClPhA3) were used as auxiliary ligands for the synthesis of mixed ligand complexes. 
These complexes were characterized by FT-IR and multinuclear NMR (1H and 13C-NMR) spectroscopic techniques. 
The FT-IR spectra of the complexes showed characteristic COO- asymmetric and COO- symmetric vibrational bands 
indicating metal coordination through oxygen. Moreover, their difference, i.e., Δν reveal that the selected ligands 
are coordinated to the Cd(II) center in a bidentate manner. The 1H-NMR and 13C-NMR data recorded in deuterated 
solvents also supported successful synthesis in pure form as well as metal coordination through carboxylate group. 
The nature of the complex–DNA interaction was examined, and the impact of hetero ligand attachment on binding 
strength and reactivity was assessed using UV–visible spectroscopy. The obtained data confirmed the effective binding 
ability through partial intercalation and groove binding through spontaneous process for all the complexes.

Keywords: Mixed Ligands, Spectroscopic Techniques, Auxiliary Ligands, Surface Binding, Multinuclear NMR.

1.    INTRODUCTION

Metal complexes have been used in medicinal 
industry since ancient times; however, their 
pharmacological significance was firmly recognized 
after Rosenberg’s 1969 discovery of cisplatin’s 
anticancer activity [1]. Cisplatin’s distinct method 
of action, which involves covalent interaction 
with DNA, has been attributed to its exceptional 
therapeutic success. This interaction ultimately 
inhibits the growth of cancerous cell by blocking 
the mechanisms required for their replication [2].
DNA is regarded as the blueprint of life, controlling 
and regulating a wide range of cellular metabolic 
activities [3]. Many other anticancer drugs such as 
Actinomycin D and Doxorubicin exert their effect 
by binding with DNA [4-6]. Nitrogenous bases of 
DNA show distinct preferences for metal cations, 
general stability order for 3d transition series is 

given as: M–guanine > M–adenine and M–cytosine 
> M–thymine [6, 7]. Chelation results in increase 
in drug absorption across cells by reducing metal 
ion polarity through orbital overlap and resonance. 
Hence, understanding these selective interactions 
of metal and DNA bases and the right selection 
of metal and ligands is necessary for developing 
advanced metallodrugs [8, 9]. Cadmium (Cd) is a 
d¹⁰ metal belonging to group 12 of periodic table 
with zero crystal field stabilization energy. It has no 
strong geometric preference due to filled d orbitals 
and can easily be identified through spectroscopy 
[10].  This is, however, categorized as a highly toxic 
heavy metal due to its strong affinity for sulfhydryl 
groups in protein which results in oxidative stress, 
enzyme inhibition and tissue damage. Recent 
studies have revealed that the toxicity of a metal 
is not a fixed property, it is influenced by various 
factors such as the ligand environment, oxidation 



state, and coordination geometry [11, 12]. Egorova 
and Ananikov [13] highlighted the role of the metal 
in the living systems, which is intrinsically linked 
to the specific molecular form in which the metal 
exists. Thus, toxicity of Cd(II) can be reduced by 
its complexation with suitable oxygen and nitrogen 
donor ligands which stabilize the Cd(II) center and 
can direct its biomolecular interaction in a controlled 
way [14]. A variety of important functionalities are 
associated with Cadmium complexes such as anti-
microbial, anti-cancer, catalytic and anti-bacterial 
properties [15, 16]. 

In coordination chemistry, the choice of 
ligand is crucial because it affects the coordination 
behavior, stability, geometry, and biological 
activity of the desired complex [17]. Carboxylic 
acids are organic ligands of choice on account of 
their favorable chemistry especially the versatile 
coordination ability [18]. Carboxylic acids can form 
complex and stable structures by coordinating with 
metals in many ways such as ionic, monodentate, 
and bidentate. In biological and catalytic processes, 
their coordination flexibility is crucial [19]. 
Utilizing these medicinally active ligands in metal 
complexation has become a developing trend to 
create more potent and focused therapeutic agents 
because carboxylic acids are essential structural 
elements of many already available therapeutic 
agents [8, 20]. Cadmium carboxylates display 
flexible coordination geometries due to the large 
ionic radius of Cd2+, i.e., 109 pm [21]. Due to this 
flexibility, these complexes find their applications 
in bio-sensing, bio-imaging, nanomedicine and 
drug delivery [22, 23].

Naturally occurring phenylacetic acid and 
its derivatives are known for their bioactivity 
and significant contribution to improving the 
flavor and scent of food and cosmetic items [24]. 
2-methoxyphenylacetic acid contains a methoxy 
group in addition to carboxylic group attached to 
phenyl ring. The presence of these strong electron-
donating and coordinating groups significantly 
enhance its reactivity as well as metal binding 
capabilities. The commonly used NSAIDs like 
diclofenac etc., with an aromatic carboxylate 
group, exhibited significant pharmacological 
and coordinating properties. This chemical 
resemblance allows the formulation of metal 
based pharmacologically active compounds by 
the incorporation of active functional groups 

[20, 25, 26]. 2,4-Dichlorophenoxyacetic acid 
contains a phenoxy oxygen atom in addition to 
carboxylate group offering versatile coordination 
modes thus making it suitable for forming stable 
metal complexes [27]. The synthesis of complexes 
with different donors and heterocyclic ligands is 
a current trend, inspired by biomacromolecules. 
Overall efficiency can be improved by using a 
heterocyclic donor as an auxiliary ligand and a 
carboxylate group as the main ligand.

N-donor heterocycles are regarded as stable 
and adaptable co-ligands because the lone pair 
on their sp²-hybridized nitrogen [28, 29]. Both 
2,2′-bipyridine and 1,10-phenanthroline are 
plannar ligands having sp2 hybridized nitrogen as 
well as extended π-conjugation system enabling 
π–π stacking and other non-covalent interactions 
in resulting complexes. The ligand 2,2′-bipyridine 
contains trans-oriented nitrogen atoms, mostly 
forms slightly strained cis complexes which show 
diverse electronic and biological activity [30]. 
Whereas, 1,10-Phenanthroline contains cis-oriented 
nitrogen atoms that favor bidentate chelation 
with metal centers, thus making it significant in 
bioinorganic and therapeutic chemistry [31].

According to data found in the literature, the 
overall effectiveness of the resultant complexes is 
greatly increased by the addition of active structural 
motifs including metal centers, carboxylate 
ligands, and heterocycles containing nitrogen. 
Numerous mixed ligand complexes based on 
substituted aromatic carboxylic acids such as 
methoxyphenylacetic and dichlorophenoxyacetic 
derivatives have been reported. Consistently, both 
ligand form structurally unique and biologically 
relevant heteroleptic metal complexes when 
coordinated with N-donor co-ligands [8, 18, 20, 32].

The present research project is an attempt to 
synthesize mixed ligand complexes of cadmium by 
using substituted phenylacetic acids and N-donor 
ligands and to evaluate their ability to bind with 
DNA. The FT-IR and multi-nuclear NMR (1H, 13C) 
were employed for their characterization.

2.    MATERIALS AND METHODS

Reactant used in the synthesis such as 
2-methoxyphenylacetic acid (MeOPhA), 
2,4-dichlorophenoxyacetic acid (ClPhA), 
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sodium bicarbonate, cadmium chloride, 
nitrogen donor ligands e.g. 2,2′- bipyridine and 
1,10-phenanthroline were acquired from Sigma-
Aldrich (USA) and were used as such. The solvents 
used during the synthesis, recrystallization and 
for NMR data collections include some organic 
solvents and n-hexane, etc., were of absolute purity 
and were acquired from Merck (Germany). They 
were utilized in all the experiments without any 
further purification processes. Gallen Kamp (UK) 
electrothermal apparatus was employed to find 
out the melting point of all complexes by using 
the capillary tubes. FT-IR Spectrophotometer of 
Thermo Nicolet-6700 was used to record FT-IR 
spectra of complexes in the range of 4000-400 cm-1. 
Multi-nuclear NMR (1H and 13C) spectra of ligands 
and complexes were taken by Bruker Advanced 
Digital instrument having frequency of 300 MHz at 
room temperature in deuterated dimethyl sulfoxide 
(DMSO). Chemical shifts and coupling constants 
were noted in parts per million (ppm) and Hertz (Hz), 
respectively. The UV-Visible spectrophotometer 
(Shimadzu 1800) served to record the absorption 
spectra of the complexes for DNA binding analysis.

2.1. Synthetic Protocols

2.1.1. Procedure for ligand’s sodium salts

To prepare sodium salts (see scheme 1) the aqueous 
solution of sodium bicarbonate (3 mmol, 0.252 
g) was added dropwise to the aqueous solution of 
each ligand, i.e., 2-methoxyphenylacetic acid (3 
mmol, 0.498 g) and 2,4-dichlorophenylacetic acid 

(3 mmol, 0.615 g) under continuous stirring. The 
mixtures were stirred maximum until neutralization 
at room temperature. The solvents were then 
evaporated under reduced pressure to get the solid 
sodium salts, which were collected and stored 
in glass vials. This synthesis procedure for the 
sodium salt is in accordance with the previously 
reported method [33]. The scheme 2 represents the 
structure of ligands used in synthesis along with the 
numbering scheme for NMR interpretation.

2.1.2. Synthesis of single ligand cadmium 
          carboxylates

2.1.2.1. Synthesis of MeOPhA1 

Under constant stirring, methanolic solutions of 
sodium salt of ligand MeOPhA (3 mmol, 0.564 
g) were added into aqueous solution of cadmium 
chloride (1.5 mM, 0.275 g). The reaction mixtures 
were stirred for 5 hours at 50 °C, the resulting 
precipitates were obtained through filtration. They 
were washed with water to remove any impurity/
residual reactants and was dried in air. The 
procedure is presented in Scheme 3.  

2.1.2.2. Synthesis of ClPhA1 

The synthesis of the ClPhA1 was carried out by 
following the synthetic procedure as discussed 
for complex MeOPhA1. However, the sodium 
salt of ClPhA (3 mmol, 0.729 g) were added into 
aqueous solution of cadmium chloride (1.5 mM, 
0.275 g) instead of MeOPhA. The product was also 

Scheme 1: Synthesis of sodium salts of substituted phenylacetic acids.

Scheme 2: Numbering pattern for the ligands and nitrogen donor heterocycles.
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processed in the same way and the synthetic route 
is presented in Scheme 3.

2.1.3. Synthesis of mixed ligand cadmium 
          carboxylates

The sodium salt of ligand 2-methoxyphenylacetic 
acid (MeOPhA, 3 mmol, 0.564 g) and 
2,4-dichlorophenoxyacetic acid (ClPhA, 3 mmol, 
0.729 g) were dissolved separately in methanol. To 
this, an aqueous solution of cadmium chloride (1.5 
mmol, 0.275 g) and bipyridine (1.5 mmol, 0.234 
g) were added simultaneously for the synthesis of 
complexes MeOPhA2 and ClPhA2 respectively. 
The resulting mixtures were stirred for about 8 
hours at 50 °C. The same procedure was used for 
the synthesis of complexes MeOPhA3 and ClPhA3 
except that the addition of bipyridine was replaced 
by the phenanthroline (1.5 mmol, 0.270 g). The 
resulting solutions were filtered, extra solvents 
were removed through rotary evaporation, and 
the solid products were washed several times with 
water and dried in air. The obtained products were 
recrystallized from combination of appropriate 
solvents. Melting points were recorded for all the 
synthesized complexes. The synthetic route for 
complexes of both ligands and the corresponding 
NMR numbering scheme is presented in Scheme 4.

Cd(MeOPhA)2: (MeOPhA1)
Solubility: Chloroform, DMSO, Methanol; M.P: 
73-75 °C; % Yield: 78.1; FT-IR (cm⁻¹): 1582 
(COOasym), 1410 (COOasym), 172 (Δν), 526 (Cd-O); 
1H NMR (DMSO-d₆, ppm): 3.20 (s, 2H, –CH₂), 
3.70 (br, 3H, –OCH₃), 6.77-6.86 (m, 2H, H3, 5), 
7.06-7.66 (m, 1H, H4), 7.09-7.15 (m, 1H, H6); 13C 
NMR (DMSO-d₆, ppm): 175.4 (C=O), 39.0 (–CH₂), 
55.6 (–OCH₃), 126.7 (C1), 157.5 (C2), 110.6 (C3), 
128.6 (C4), 120.1 (C5), 131.2 (C6). 

Cd(ClPhA)2: (ClPhA1) 
Solubility: DMSO, Ethanol, Methanol; M.P: 
294–296 °C; %Yield: 78.3; FT-IR (cm⁻¹): 1598 
(COOasym), 1422 (COOasym), 176 (Δν), 460 (Cd-
O); 1H NMR (DMSO-d₆, ppm): 4.28 (s, 4H, –
OCH₂), 7.47 (s, 2H, H3), 7.24-7.27 (d, 2H, H5, J 
= 9 Hz), 6.84-6.87 (d, 2H, H6, J = 9 Hz);13C NMR 
(DMSO-d₆, ppm): 170.7 (C=O), 68.7 (–OCH₂), 
154.0 (C1), 129.2 (C2), 123.6 (C3), 127.9 (C4), 
122.2 (C5), 115.4 (C6). 

Cd(MeOPhA)2(bipy): (MeOPhA2) 
Solubility: Chloroform, DMSO, Methanol; M.P 
:68-70 °C, % Yield: 76.5; FT-IR (cm⁻¹): 1560 
(COOasym), 1386 (COOasym) ,174 (Δν), 590 (Cd-N), 
486 (Cd-O); 1H NMR (DMSO-d₆, ppm): 3.22 (s, 
2H, –CH₂), 3.70 (s, 3H, –OCH₃), 6.77-6.86 (m, 2H, 

Scheme 3: Synthesis of single ligand complex derived from substituted phenylacetic acids.

Scheme 4: Synthesis of mixed Cd(II) carboxylates derived from 2-methoxyphenylacetic acids.
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H3, 5), 7.06-7.15 (m, 2H, H4, 6), 8.68-8.69 (d, 2H, 
Hα, J = 4.8), 7.44-7.47 (m, 2H, Hβ), 7.92-7.98 (m, 
2H, Hγ), 8.37-8.39 (d, 2H, Hδ, J =8.1Hz), 13C NMR 
(DMSO-d₆, ppm): 175.7 (C=O), 39.1 (–CH₂), 55.6 
(–OCH₃), 124.7 (C1), 149.7 (C2), 110.6 (C3), 126.8 
(C4), 120.1 (C5), 128.4 (C6), 157.5 (Cα),120.9 
(Cβ), 131.1 (Cγ), 137.8 (Cδ), 157.5 (Cε).

Cd(MeOPhA)2(1,10-phen): (MeOPhA3) 
Solubility: Chloroform, DMSO, Methanol; M.P: 
75-77 °C; % Yield: 73.7; FT-IR (cm⁻¹): 1570 
(COOasym), 1390 (COOsym), 180 (Δν), 607 (Cd-N), 
517 (Cd-O); 1H NMR (DMSO-d₆, ppm):  3.69 (br, 
5H, –CH₂, –OCH₃), 6.76-6.86 (m, 2H, H3, 5), 7.06-
7.14 (m, 2H, H4, 6), 9.08-9.10 (dd, 2H, Hα, J = 1.5 
Hz, 4.2 Hz), 7.79-7.83 (m, 2H, Hβ), 8.52-8.55 (dd, 
2H, Hγ, J = 1.5 Hz, 8.1 Hz), 8.02 (s, 2H, H); 13C 
NMR (DMSO-d₆, ppm): 175.4 (C=O), 39.0 (–CH₂), 
55.5 (–OCH₃), 126.7 (C1), 150.5 (C2), 110.6 (C3), 
127.1 (C4), 120.1 (C5), 128.5 (C6), 157.5 (Cα), 
124.0 (Cβ), 131.1 (Cγ), 137.0 (Cδ), 128.9 (Cε), 
157.5 (Cζ).

Cd(ClPhA)2(bipy): (ClPhA2) 
Solubility: DMSO, Ethanol, Methanol; M.P: 
125-127 °C;% Yield: 71.1; FT-IR (cm⁻¹): 1609 
(COOasym), 1419 (COOsym), 190 (Δν), 556 (Cd-N), 
475 (Cd-O); 1H NMR (DMSO-d₆, ppm): 4.25 (s, 
4H, –OCH₂), 7.43-7.48 (m, 4H, H3, Hβ), 7.23-7.27 
(dd, 2H, H5, J = 2.7 Hz, 9Hz), 6.83-6.86 (d, 2H, 
H6, J = 9 Hz), 8.68-8.69 (d, 2H, Hα, J = 3.9 Hz), 
7.92-7.98 (td, 2H, Hγ, J = 1.8 Hz, 7.8 Hz), 8.37-
8.40 (d, 2H, Hδ, 7.8 Hz); 13C NMR (DMSO-d₆, 
ppm): 170.3 (C=O), 68.9 (–OCH₂),  154.0 (C1), 
137.8 (C2), 124.6 (C3), 129.1 (C4), 123.4 (C5), 
115.5 (C6). 149.7 (Cα), 120.8 (Cβ), 122.1 (Cγ), 
127.9 (Cδ), 149.7 (Cε).

Cd(ClPhA)2(1,10-phen): (ClPhA3) 
Solubility: DMSO, Ethanol, Methanol; M.P = 140-
142 °C; % Yield: 72.8; FT-IR (cm⁻¹): 1588 (COOasym), 
1422 (COOsym), 166 (Δν), 584 (Cd-N), 461(Cd-O); 
1H NMR (DMSO-d₆, ppm): 4.29 (s, 2H, –OCH₂), 
7.45-7.46 (d, 2H, H3, J = 2.4 Hz), 7.21-7.25 (dd, 
2H, H5, J = 2.4 Hz, 9 Hz), 6.85 -6.88 (d, 2H, H6, J 
= 9 Hz), 9.08-9.10 (dd, 1H, Hα, J = 1.5 Hz, 2.7 Hz), 
7.80-7.84 (dd, 2H, Hβ, 4.2 Hz, 8.1 Hz), 8.55-8.58 
(dd, 1H, Hγ, J = 1.5 Hz, 8.1 Hz), 8.03 (s, 2H, Hε,) 
;13C NMR (DMSO-d₆, ppm):171.1 (C=O), 68.8 (–
OCH₂), 154.0 (C1), 137.3 (C2), 127.9 (C3), 128.9 
(C4), 123.6 (C5), 115.5 (C6), 150.7 (Cα), 122.5 (Cβ), 
129.2 (Cγ), 127.1 (Cδ), 124.1 (Cε), 145.6 (Cζphen).

2.1.4. DNA interaction study through UV visible 
          spectroscopy

In order to evaluate the ability of the synthesized 
complexes to interact with the DNA the binding 
experiments were performed. Here at first the solution 
of SS-DNA was prepared by dissolving 20 mg of 
the respective sodium salt in water and by stirring 
it for 24 hours. Concentration of DNA solution 
calculated by using Beer-Lambert was found to be 
153 µM. The absorbance of the resulting solution 
was noted at 259 nm to 260 nm and was adjusted at 
appropriate intensity, i.e., in between 0.9 to 1.3 a.u. 
The ratio of the absorbance at 260/280 was found 
to fall around 1.7, assuring the solution purity from 
any other interrupting proteins.  Solutions of all the 
complexes were made in analytical grade ethanol. 
Concentration of test complexes was kept fixed 
and SS-DNA concentration was varied. Equivalent 
amount of SS-DNA was added into reference cell 
and sample cell to nullify the absorption of DNA. 
The complex-DNA solution was incubated for 5-7 
minutes and then absorbance was recorded at room 
temperature [32-34].

3. RESULTS AND DISCUSSION

3.1. FT-IR Spectral Interpretation

Infrared spectral analysis served as a crucial 
technique for confirming complex formation since 
observable shifts or disappearance of absorption 
bands indicate interactions between the ligand and 
metal ion. FT-IR data of all synthesized complexes 
is given in Table S1. Assignment of bands was 
made by comparison with spectra of free ligands 
and already reported similar data.

The FT-IR spectra of both free ligands 
MeOPhA and ClPhA consist of wide O–H 
stretching band between 3400 and 2700 cm⁻¹ region. 
After complexation, this band totally vanishes, 
demonstrating that the ligand is deprotonated [20, 
35]. Similarly, both free ligands showed strong 
bands in the 1680-1740 cm-1 region for C=O stretch 
and around 1240–1260 cm⁻¹ region corresponding 
to C–O stretching vibrations [33]. In the complexes, 
these strong vibrational bands were replaced by a 
new pair of bands, i.e., v(COO)ₐₛᵧₘ in the range of 
1550-1610 and ν(COO)ₛᵧₘ in the range of 1370-
1430 cm⁻¹ region. This is because electronic 
density of carbonyl oxygen is pulled towards metal 
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upon coordination thus the symmetry of C=O bond 
decreases and the strong C=O band replaced by two 
resonance stabilized COO- bands [33, 36, 37]. 

The mode of coordination of carboxylate 
ligand was decided by Δv (νasymm – νsymm) according 
to the Deacon-Phillips description which they made 
after studying a big number of complexes [38]. The 
Δν values for all complexes were less than 200 cm-1 
which suggest that carboxylate ligand is coordinated 
through bidentate mode. In the fingerprint region, 
two new prominent bands appear in the 425–620 
cm⁻¹ region due to Cd–N and Cd–O bonds which 
confirm the coordination of acid ligand and N-donor 
moiety to metal center. The similar finding has also 
been discussed by Singh et al [39] about the M-O 
and M-N bonds. All the heteroleptic Cd complexes 
showed strong vibrational bands in the region of 
750-860 cm-1 corresponding to C–H out-of-plane 
vibrations from the N-donor heterocyclic ligands 
[33, 40]. MeOPhA2 and ClPhA2 showed an intense 
band near 650 cm-1 due to ring bending vibrations 
of bipyridine which confirmed the formation of 
both pyridine containing complexes [41]. 

3.2. 1H NMR Spectroscopy

A 300 MHz spectrometer was used to record the 
¹H NMR spectra of the ligands and their associated 
metal complexes in deuterated dimethyl sulfoxide 
(DMSO). ¹H NMR data of all complexes is given 
in Table S2 and S3. 

NMR spectra of the free ligands showed O–H 
signals at 11-12 ppm that vanished in the spectra of 
complexes confirming deprotonation of acid ligands 
[20, 42]. All the other protons of ligands appeared 
in their characteristic regions, i.e., methoxy and 
aliphatic methyl proton, methylene proton and the 
aromatic protons. These protons showed negligible 
shift upon complexation indicating their non-
involvement in metal coordination [33]. In the case 
of heteroleptic complexes, additional signals were 
observed for N-donor ligands. Four distinctive 
aromatic proton signals in the range of 7.1-9.1 
ppm are seen in MeOPhA2 and ClPhA2 complexes 
containing 2,2′-bipyridine. The chemical shift values 
were assigned to the protons following the order: 
Hα > Hδ > Hγ > Hβ. Similarly, four additional protons 
signal in the range of 7.1-8.8 ppm were spectra of 
complexes MeOPhA3 and ClPhA3 containing 
1,10-phenanthroline confirms its attachment. The 

chemical shift of proton was assigned the following 
order: Hα > Hγ > Hδ > Hβ. These signals shift to 
higher ppm values as compared to free ligand 
upon coordination indicating a decrease in electron 
density on the nitrogen atoms and consequent 
deshielding thus confirming the formation of 
heteroleptic cadmium carboxylates containing 
N-donor heterocyclic ligands. As the distance of 
proton from coordinating nitrogen increases, the 
effect of deshielding also decreases so only small 
shift in frequency on coordination [33, 43, 44]. 

3.3. 13C NMR Spectroscopy

13C NMR helps in identification and quantification 
of different types of carbon atoms; methyl (CH3), 
methylene (CH2), methine (CH), aromatic carbons 
and carbons of N-donor ligands. It is a useful 
mean to directly observe a molecule’s carbon 
structure. It provides important details regarding 
the hybridization states of individual carbon atoms, 
particularly those that are directly linked to a metal 
center [45]. 13C NMR data of all complexes is given 
in Table S4 and S5. 

13C NMR spectra of free ligands MeOPhA and 
ClPhA show resonance signal of C=O group at 172.3 
ppm and 167 ppm respectively. Within spectra of 
complexes, this resonance signal was shifted toward 
a downfield (higher ppm) region which indicates 
the deprotonation of ligands and their coordination 
to the metal center. This deshielding effect occurs 
due to the electropositive nature of Cd(II), which 
withdraws electron density from the carboxylate 
group so it resonates downfield [33, 46]. Aliphatic 
methylene carbon in MeOPhA and ClPhA appearing 
at frequency 55 ppm-67 ppm in free form showed 
noticeable downfield shift in spectra of complexes. 
Aromatic carbons of MeOPhA and ClPhA ligand 
appeared in their respective regions in the spectra 
of metal complexes thus providing strong evidence 
of desired complexes formation. Appearance of 
five additional peaks in the spectra of complexes 
MeOPhA2 and ClPhA2 confirms the coordination 
of bipyridine to metal center and chemical 
shifts values were assigned in the following 
order Cε ≥ Cα> Cδ > Cγ > Cβ. The coordination of 
1,10-phenanthroline is confirmed by six peaks in 
spectra of complexes MeOPhA3 and ClPhA3 and 
assignment of chemical shift values was done in 
following order Cα ≥ Cζ > Cδ > Cγ > Cε > Cβ [20, 47].
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3.4. DNA Interaction Studies

A drug’s biological action is greatly influenced by 
how it interacts with DNA, which has an impact 
on vital cellular functions like transcription and 
translation. Understanding these interactions is an 
important field of study in medicinal chemistry. 
Here, UV-visible spectroscopy was used to observe 
the interaction of SS-DNA with synthesized 
complexes in an ethanolic solution, using an 
aqueous solution of DNA. The mode of interaction 
is revealed by variations in absorbance and 
wavelength [18]. The binding constant Kb (M⁻¹) 
is used to measure the binding strength, whereas 
the Gibbs free energy (∆G) is used to measure the 
spontaneity of interaction. Both parameters were 
calculated using Benesi- hildebrand equation [48].

                                     (1)                                               

A is the absorbance of complex in the presence of 
DNA and Ao is the absorbance of complex without 
DNA addition. For each complex, A and Ao are 
noted and Ao/A-Ao ratio is plotted on y-axis and 
inverse of DNA concentration is taken on x-axis. 

 and  represent the molar absorptivity of 
synthesized complexes without DNA and after 
DNA addition [42].

Binding constant Kb is calculated by taking 
intercept to slope ratio. Gibbs free energy is 
calculated for each complex by using Equation 2:

                             ∆G = -RTlnKb                                                            (2)

In homoleptic complexes MeOPhA1 and 
ClPhA1, hypochromism is observed with a minor 
blue shift after incremental additions of DNA and 
strong absorption bands at 271 nm and 284 nm 
respectively. Hypochromic effect is observed due 
to binding of partially filled π* orbital of complex 
with π orbital of DNA hence the probability of 
excitation is getting less so decrease in absorbance 
[49]. Shoulder peak is also seen in both complexes 
due to n-π transitions. Both homoleptic complexes 
bind to DNA by groove binding mode [50].

All heteroleptic complexes MeOPhA2, 
MeOPhA3, ClPhA2, ClPhA3 showed strong 
absorption bands that appear at 278nm, 264 
nm, 264 nm, and 282 nm, respectively. After 
incremental additions of DNA, hypochromism 

is observed along with a blue shift of 3 to 4 nm 
in ʎmax. These complexes bind to DNA by groove 
binding. The interacting molecule creates a parallel 
stacking arrangement by occupying a location 
where it sits on the DNA chromophore’s floor. 
This configuration produces a parallel interaction 
(at a 90° angle where transitions are restricted for 
forbidden states and permitted for upper states), 
which raises the energy needed for the transition 
and, consequently, the blue shift. Additionally, 
there is a slight hypochromic impact from this face-
to-face position [8] The binding constant values 
measured for the homo and heteroleptic cadmium 
carboxylates with ligand o-methoxyphenylacetic 
acid were found to be in the order:
MeOPhA3 > MeOPhA2 > MeOPhA1

The binding constant values measured for the 
homo and heteroleptic cadmium carboxylates with 
ligand 2,4-dichlorophenoxyacetic acid were found 
to be in the order:
ClPhA3 > ClPhA2 > ClPhA1

Kb values for heteroleptic complexes are 
high because they contain intercalating agent 
1,10-phenenthroline and 2,2′-bipyridine which 
strongly intercalate with DNA and provide more 
area of interaction thus increasing reactivity [34]. 
Homoleptic complexes have no such intercalating 
agents thus the value of binding constants is low. 
Negative Gibbs free energy shows the spontaneous 
nature of interaction with DNA [51]. The UV-
Visible spectra and graphs showing DNA binding 
studies of all the synthesized complexes are given 
in Figure 1. The binding constant, λmax and ∆G 
values for all synthesized complexes are given in 
Table 1.

4.    CONCLUSIONS

The synthesis of mixed ligand Cd(II) complexes by 
using the already bio-active moieties like substituted 
phenylacetic acid and nitrogen heterocycles was 
carried out over here. The synthesis was carried out 
by keeping in view their application as a drug which 
could target DNA, which is considered to be the main 
house of disease cause, propagation, its treatment and 
disgnosis. The ligand 2-methoxyphenyl acetic acid 
and 2,4-dichlorophenoxy acetic acid used as primary 
and 2,2-bipyridine as well 1,10-phenanthroline 
posses structural and electronic characteristic which 
effectively tuned the geometric environment around 
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Complex ʎmax (nm) Binding Constant Kb (M
-1) Gibbs Free Energy ∆G (kJ/mol) Mode of interaction

MeOPhA1 271 1.41 × 105 M-1 -29.37 kJ/mol Groove binding
MeOPhA2 278 3.13 × 106 M-1 -37.05 kJ/mol Groove binding
MeOPhA3 264 6.33 × 106 M-1 -38.80 kJ/mol Groove binding
ClPhA1 284 1.32 × 105 M-1 -34.91 kJ/mol Groove binding
ClPhA2 264 1.56 ×106 M-1 -35.33 kJ/mol Groove binding
ClPhA3 282 1.96 × 106 M-1 -35.89 kJ/mol Groove binding

Fig. 1. Absorption spectra of complexes showing the effect of addition of DNA.

Table 1. Binding constant Kb and Gibbs Free energy ∆G values for all synthesized complexes.
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Cd(II) center. The FT-IR data reveal the bidentate 
coordination mode adopted by the primary ligands. 
The 1H and 13C spectra reveal the presence of clear 
resonance signal attributed to proton and carbon of 
the complex under study. The DNA binding study 
through absorption spectroscopy indicate the success 
of the synthesized complexes. The plannar moieties 
and other characteristics of the plannar moieties 
founds to play a significant role in binding with DNA. 
The data indicate that such kind of structural design 
could provide significant help in the search for novel, 
effective therapeutic agents against diseases relevant 
to DNA.
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Code Compound -OH C=O/C-O

Δν Cd-O Cd-N C-H
MeOPhA 2-methoxy phenylacetic acid 3400-2600

1682/1297

COOasymm COOsymm

MeOPhA1 Cd(MeOPhA)2 - 1582 1410 172 526

MeOPhA2 Cd(MeOPhA)2(bipy) - 1560 1386 174 490 590 734

MeOPhA3 Cd(MeOPhA)2(phen) - 1570 1390 180 507 607 856

ClPhA 2,4-dichlorophenyl acetic acid 3300-2400 1733/1290 - - - -

ClPhA1 Cd(ClPhA)2 - 1611 1422 189 460

ClPhA2 Cd(ClPhA)2(bipy) - 1613 1419 194 475 556 752

ClPhA3 Cd(ClPhA)2(phen) - 1611 1422 189 461 584 872

Table S1. The FT-IR data (cm-1) of ligands and Cd(II) carboxylates.



Proton MeOPhA MeOPhA1 MeOPhA2 MeOPhA3

-OH 11.0 - - -

-CH2 3.49 3.20 s 3.22 s 3.69 br

-OCH3 3.73 3.70 br 3.70 s 3.69 br

H3 6.65 6.77-6.86 m 6.77-6.86 m 6.76-6.86 m

H4 6.96 7.06-7.66 m 7.06-7.15 m 7.06-7.14 m

H5 6.70 6.77-6.86 m 6.77-6.86 m 6.76-6.86 m

H6 6.95 7.09-7.15 m 7.06-7.15 m 7.06-7.14 m

Bipy (free) Bipy (bound) Phen (free) Phen (bound)
Hα - - 8.59 8.68-8.69 d J=4.8 8.81 9.08-9.10 dd  

J = 1.5 Hz, 4.2 Hz 
Hβ - - 7.12 7.44-7.47 m 7.26 7.79-7.83 m 

Hγ - - 7.66 7.92-7.98 m 8.00 8.52-8.55 dd

 J = 1.5 Hz, 8.1 Hz
Hδ - - 8.50 8.37-8.39 

J =8.1Hz

- -

Hε - 7.55 8.02 s

Table S2. 1H-NMR data in ppm of o-methoxyphenylacetic acid and synthesized complexes.

Proton ClPhA ClPhA1 ClPhA2 ClPhA3
-OH 11.0 - - -

-OCH2 4.88 4.28 s 4.25 s 4.29 s
H3 7.17 7.47 s 7.43-7.48 m 7.45-7.46 d

J = 2.4 Hz
H5 7.04 7.24-7.27 d

J=9Hz

7.23-7.27 dd

J = 2.7 Hz, 9Hz

7.21-7.25 dd

J = 2.4 Hz, 9 Hz
H6 6.65 6.84-6.87 d

J=9Hz

6.83-6.86 d

J = 9 Hz

6.85 -6.88

J = 9 Hz
Bipy (free) Bipy (bound) Phen (free) Phen (bound)

Hα - - 8.81 8.68-8.69 d

J=3.9 Hz

8.59 9.08-9.10 dd

J = 1.5 Hz, 2.7 Hz
Hβ - - 7.26 7.43-7.48 m 7.12 7.80-7.84 dd

J= 4.2 Hz, 8.1 Hz
Hγ - - 8.00 7.92-7.98 td

J = 1.8 Hz, 7.8 Hz

7.66 8.55-8.58 dd

J = 1.5 Hz, 8.1 Hz)
Hδ - - 7.55 8.37-8.40 d

J = 7.8 Hz

- -

Hε 8.50 8.03 s

Table S3. 1H-NMR data in ppm of 2,4-chlorophenoxyacetic acid and synthesized complexes.
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Table S4. 13C-NMR data in ppm of o-methoxyphenylacetic acid (MeOPhA) and synthesized complexes.

Carbon MeOPhA MeOPhA1 MeOPhA2 MeOPhA3
C=O 172.3 175.4 175.7 175.4
-CH2 38.3 39.0 39.1 39.0
-OCH3 55.1 55.6 55.6 55.5
C1 124.1 126.7 124.7 126.7
C2 159.1 157.5 149.7 150.5
C3 114.7 110.6 110.6 110.6
C4 128.6 128.6 126.8 127.1
C5 121.5 120.1 120.1 120.1
C6 130.8 131.2 128.4 128.5

Bipy (free) Bipy (bound) Phen (free) Phen (bound)
Cα - - 149.3 157.5 150.0 157.5
Cβ - - 121.0 120.9 121.5 124
Cγ - - 137.2 131.1 136.4 131.1
Cδ - - 123 137.8 129.1 137
Cε - - 155.4 157.5 127.5 128.9
Cζ - - 144.5 157.5

Table S5. 13C-NMR data in ppm of 2,4-chlorophenoxyacetic acid (ClPhA) and synthesized complexes.

Carbon ClPhA ClPhA1 ClPhA2 ClPhA3
C=O 167.0 170.7 170.3 171.1
-OCH2 67.1 68.7 68.9 68.8
C1 152.8 154.0 154.0 154.0
C2 124.0 129.2 137.8 137.3
C3 131.4 123.6 124.6 127.9
C4 128.0 127.9 129.1 128.9
C5 128.0 122.2 123.4 123.6
C6 117.1 115.4 115.5 115.5

Bipy (free) Bipy (bound) Phen (free) Phen (bound)
Cα - - 149.3 149.7 150.0 150.7
Cβ - - 121.0 120.8 121.5 122.5
Cγ - - 137.2 122.1 136.4 129.2
Cδ - - 123.0 127.9 129.1 128.9
Cε - - 155.4 149.7 127.5 124.1
Cζ - - 144.5 145.6
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