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Review Article

Radiation Techniques in Health and Environment'
A.K. Azad Chowdhury'’, Nusrat Jahan Shawon?, and Mohammad Mahfujur Rahman?

'Bangladesh Academy of Sciences & Department of Clinical Pharmacy and Pharmacology,
University of Dhaka, Dhaka, Bangladesh
’Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
*Department of Radiation Oncology, Evercare Hospital Dhaka, Bangladesh

Abstract: Radiation science has become a cornerstone of modern medicine, offering powerful tools for both diagnosis
and treatment. Diagnostic imaging technologies such as X-ray, ultrasonography, computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET), and gamma camera systems utilize radiation to
provide high-resolution visualization of internal structures. Therapeutic applications have evolved from conventional
radiotherapy to highly sophisticated techniques including Photon Beam Radiotherapy using LINAC, Gamma Knife,
and CyberKnife systems. Advanced modalities such as Stereotactic Radiosurgery (SRS), and Stereotactic Body
Radiation Therapy (SBRT) allow for precise delivery of high-dose radiation to tumors while minimizing exposure
to surrounding healthy tissue. Emerging techniques such as FLASH radiotherapy, which delivers radiation at very
high speeds, and carbon ion therapy, which is effective against resistant tumors, are bringing major improvements to
cancer treatment. Cherenkov radiation is being explored for its role in treatment visualization and dosimetry, while
Targeted Radionuclide Therapy (TRT) uses tumor-specific radioactive agents to deliver internal radiation precisely
to cancer cells. Adaptive Radiation Therapy (ART) modifies treatment plans during therapy to account for tumor or
patient changes. These developments are shaping the future of oncology, with an emphasis on precision, safety, and
therapeutic efficiency. Beyond medicine, radiation is also applied in environmental protection. It is used for purifying
wastewater through radiolysis, sterilizing hazardous solid waste, facilitating the breakdown of plastics, and detecting
pollutants using nuclear analytical methods. These applications highlight the broader utility of radiation in supporting
both health and environmental sustainability.

Keywords: Radiation, Gamma Irradiation, FLASH Radiotherapy, Targeted Radionuclide Therapy, Environmental
Radiation Applications.

1. INTRODUCTION [3]. The energy transported by radiation is governed

by Einstein’s mass-energy equivalence equation E

Radiation has been a cornerstone of medical science
since its discovery in the late 19th century, providing
powerful tools for both diagnosis and treatment of
diseases, particularly cancer [1]. Radiation therapy,
the therapeutic application of ionizing radiation, is a
major modality in cancer management, with nearly
50% of patients receiving radiotherapy during
their illness to inhibit tumor growth and maximize
curative outcomes [2]. The underlying principle of
radiotherapy relies on the ability of high-energy
radiation to damage the genetic material (DNA) of
cancer cells, preventing their proliferation while
minimizing exposure to surrounding healthy tissue

= mc? [4], while the interaction of electromagnetic
fields with biological tissues is described by
Ampére-Maxwell’s law, VB =o (J +€og) [5].
Furthermore, the quantum nature of radiation is
captured by the Planck-Einstein relation, E = hv,
linking photon energy to frequency [6] and by
Einstein’s photoelectric equation, KE = hv — ¢,
which describes the kinetic energy of ejected
electrons as a function of photon energy and the
material’s work function [7].

Radiotherapy not only serves curative purposes
but also plays a pivotal role in palliative care,
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alleviating symptoms such as pain, obstruction, or
compression caused by tumors. Thus, the integration
of physics, imaging, and clinical expertise has made
radiation a vital component of modern medical
practice, offering both life-saving treatment
and improved quality of life for patients [1].

2. MEDICAL IMAGING TECHNIQUES
2.1. X-ray

X-rays are a form of ionizing radiation with
wavelengths of 0.01-10 nm, widely used in
medical imaging for visualizing internal structures
based on differential absorption and transmission
through tissues. Modern X-ray systems, including
computed radiography, flat-panel detectors, and
CT, provide high-resolution 2D and 3D images
essential for diagnosing fractures, bone disorders,
soft tissue abnormalities, and guiding surgical or
interventional procedures. Advances in detector
technology and imaging techniques have improved
image quality while reducing patient radiation
exposure [8, 9].

2.2. Ultrasonography

Ultrasonography has rapidly advanced, offering
high-resolution real-time imaging of anatomy,
pathology, and blood flow. It is safe, quick, and
often superior to CT or MRI in uncooperative or
lean patients, though limitations exist with obesity,
gas, and bone interfaces. High-quality sonography
requires extensive training and expertise, while
handheld devices hold promise for screening and
enhancing routine clinical diagnosis [10].

2.3. Computed Tomography (CT)

Computed tomography (CT) provides high-
resolution, cross-sectional images that accurately
distinguish tissues, enabling precise assessment
of body composition, including adipose tissue,
skeletal muscle, bones, and organs. Modern
multidetector CT (MDCT) allows rapid acquisition
of three-dimensional volume images with sub-
millimeter resolution, improving both speed and
reproducibility of measurements. CT can also
quantify bone mineral density and fat infiltration
in muscles or liver, making it a reliable tool for
clinical evaluation and research [11, 12].

2.4. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a
non-invasive technique that produces high-
resolution images using strong magnetic

fields and radiofrequency radiation, providing
excellent soft tissue contrast. It is widely used in
clinical diagnostics, radiotherapy planning, and
pharmaceutical research to study tissue structure,
tumor margins, and in vivo drug delivery [13-15].

2.5. Positron Emission Tomography (PET)

Positron Emission Tomography (PET)is a functional
imaging technique widely used in oncology for
tumor staging, treatment response assessment, and
radiotherapy planning, providing early insights into
tumor metabolism beyond anatomical imaging.
PET imaging has evolved from early research
tools to sophisticated clinical scanners with 3D
acquisition, iterative reconstruction, and time-of-
flight technology, improving sensitivity, image
quality, and quantitative tumor assessment [16, 17].

3. ADVANCED RADIOTHERAPY
MODALITIES

3.1. Gamma Khnife

Gamma Knife radiosurgery has evolved over the
past decades as a minimally invasive alternative for
treating intracranial tumors, vascular malformations,
and functional disorders, particularly medically
refractory tumors. Its advantages include precise
high-dose radiation delivery without craniotomy,
making it suitable for patients unfit for invasive
surgery [18].

3.2. CyberKnife

The CyberKnife system is a frameless, image-
guided radiosurgery platform that integrates a
compact 6-MV LINAC with a robotic arm to
deliver highly precise, non-isocentric radiation
beams. Real-time imaging and motion correction
allow accurate targeting of both intracranial and
extracranial lesions without invasive stereotactic
frames. Its treatment planning software supports
multimodality imaging fusion, inverse planning,
and dose optimization, enabling safe irradiation
of complex tumor shapes while sparing adjacent
structures. Since FDA approval in2001, CyberKnife
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has been widely adopted as an effective alternative
to conventional surgery and radiosurgery systems
such as the Gamma Knife [19-22].

3.3. LINAC

LINAC-based radiotherapy wuses high-energy
X-rays to precisely target tumors while sparing
normal tissues. Modern techniques like IMRT and
VMAT, combined with image guidance, improve
dose accuracy, though CBCT has limitations in
soft tissue visualization and motion management.
The integration of MRI with LINAC (MR-Linac)
allows real-time imaging, adaptive treatment, and
better tumor targeting, enhancing efficacy and
reducing toxicity [23, 24].

3.4. Stereotactic Radiosurgery (SRS) and
Stereotactic Body Radiation
Therapy (SBRT)

Stereotactic radiosurgery (SRS) and stereotactic
body radiation therapy (SBRT) are noninvasive,
high-dose radiotherapy techniques targeting cranial
and extracranial tumors, respectively, using image
guidance and stereotactic alignment for precise
delivery. SRS typically involves a single high-dose
session for brain lesions, while SBRT delivers a few
large doses to extracranial tumors, including lung,
liver, and prostate. Both modalities are effective in
local tumor control, with ongoing studies refining
their use and exploring combination with targeted
systemic therapies [25].

3.5. FLASH Radiotherapy (FLASH-RT)

FLASH radiotherapy (FLASH-RT) delivers ultra-
high dose-rate radiation within milliseconds, which
has shown the ability to spare normal tissues while
maintaining strong antitumor efficacy. Preclinical
studies across multiple species and early clinical
cases demonstrate reduced toxicity compared to
conventional radiotherapy, making FLASH-RT a
promising approach for overcoming radio-resistant
tumors [26, 27].

3.6. Targeted Radionuclide Therapy (TRT)

TRT delivers cytotoxic radiation to tumor cells
using radiolabeled molecules such as antibodies,
peptides, or small ligands, minimizing damage to
normal tissues. Common applications include I-131

for thyroid cancer, Y-90 ibritumomab tiuxetan and
I-131 tositumomab for non-Hodgkin’s lymphoma,
and Lu-177-DOTA-TATE or Y-90-DOTA-TOC for
neuroendocrine tumors [28, 29].

3.7. Adaptive Radiation Therapy (ART)

ART is a closed-loop radiotherapy approach that
continuously adapts treatment plans using systematic
feedback from patient-specific measurements.
Unlike conventional radiotherapy that applies
uniform margins based on population averages,
ART customizes field margins and radiation doses
to individual anatomical and positional variations,
thereby enhancing both safety and effectiveness.
This process employs advanced technologies such
as CT imaging, electronic portal imaging devices,
multileaf collimators, and computer-controlled
systems to monitor changes and re-optimize
treatment in real time. By accounting for organ
motion, geometric target shifts, and treatment
beam placement errors, ART reduces unnecessary
radiation exposure to healthy tissues. It also allows
for safer dose escalation by tailoring margins to
the actual variability of each patient rather than
generalized estimates. Ultimately, ART represents
a dynamic, patient-centered strategy that refines
radiation delivery and improves therapeutic
outcomes [30].

4. ENVIRONMENTAL APPLICATIONS OF
RADIATION

4.1. Wastewater Purification

Radiation  technology, particularly = gamma
irradiation, has shown significant potential in
purifying municipal wastewater by effectively
reducing physical and organic contaminants.
Laboratory studies indicate that gamma doses
between 100 - 500 krad can degrade up to 88% of
organic pollutants while inactivating pathogenic
microorganisms, thus lowering biochemical
oxygen demand (BOD) and chemical oxygen
demand (COD). The method also improves sludge
compactness and settling capacity, making it a
promising alternative to conventional treatments.
With optimized radiation parameters and pilot-
scale validation, this technology can provide
cost-effective and environmentally compatible
wastewater treatment [31, 32].
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4.2. Solid Waste Treatment

Radiation technologies have emerged as effective
tools for the treatment and disinfection of solid and
liquid wastes, addressing growing global concerns
over pollution and public health. Techniques such
as gamma irradiation, electron-beam, ultraviolet,
and X-rays have been applied to sterilize sewage
sludge, biomedical wastes, and industrial effluents,
while also degrading toxic contaminants in soils.

Gamma  irradiation, particularly  using
cobalt-60, has demonstrated practical efficacy in
field-scale applications, providing pathogen-free,
nutrient-rich sludge suitable for agricultural use.
These technologies offer significant advantages,
including odorless, easily handled waste and
elimination of withholding periods before crop
use, making radiation a promising approach for
sustainable waste management [33].

4.3. Pollutant Detection

Radiation techniques, particularly laser-based
absorption spectroscopy, are increasingly used
to detect and quantify gaseous pollutants in the
atmosphere. By targeting specific infrared absorption
bands of pollutants such as carbon monoxide, nitric
oxide, sulfur dioxide, and ozone, lasers provide
high sensitivity and selectivity even at very low
concentrations. The collimated, high-power laser
beams allow long-distance transmission and
multiple-pass absorption, overcoming limitations
of traditional light sources and enhancing real-time
environmental monitoring [34].

4.4. Plastic Waste Degradation

Radiation processing, using gamma rays or electron
beams, effectively modifies the structure of synthetic
and natural polymers, enhancing properties such as
thermal stability, biodegradability, and mechanical
strength. It facilitates plastic waste degradation,
accelerates breakdown of cellulose into viscose,
and improves chitin/chitosan processing without
toxic chemicals.

Electron beam and gamma irradiation
offer environmentally friendly alternatives to
conventional chemical methods, providing cost-
effective and sustainable polymer modification for
industrial and environmental applications [35].

5. CONCLUSIONS

Radiation technologies have become indispensable
across medicine and environmental management,
offering precise, efficient, and versatile solutions.
In healthcare, advances in diagnostic imaging
and targeted radiotherapy improve tumor control,
minimize normal tissue damage, and enable
personalized treatment strategies. Environmentally,
radiation applications in wastewater purification,
solid waste sterilization, and pollutant detection
provide sustainable and effective approaches to
safeguard public health. Together, these innovations
underscore the transformative potential of radiation
science in enhancing both human health and
environmental protection.
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Abstract: All over social media and internet platforms, Roman Urdu content is extremely casual, inconsistent, and
linguistically diversified, which makes it hard to interpret through conventional Natural Language Processing (NLP)
techniques. This paper proposes a strong topic-classification framework for Roman Urdu, integrating Stochastic
Gradient Descent (SGD)-optimized machine learning, dictionary-assisted stemming, and custom lexical normalization
in order to overcome those challenges. The method consists of structured preprocessing, reduction of repeated letters,
rule-based normalization, extraction of TF-IDF features, and the evaluation of a few classifiers including Logistic
Regression (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbors
(KNN), along with the proposed model of SGD. The proposed classifier outperformed all the baseline models with
an accuracy of 95%, according to the experimental results on the four-class dataset comprised of Politics, Sports,
Education, and Religion. The results depict the importance of stemming and normalization to improve feature quality
and reduce orthographic variability in low-resource languages. All things considered, this study provides a repeatable
and efficient pipeline for Roman Urdu subject classification and thus lays a concrete foundation for further Roman
Urdu NLP research.

Keywords: Roman Urdu Stemmer, TF-IDF, Stochastic Gradient Descent, Topic Classification, Machine Learning.

1. INTRODUCTION growth in online contents, especially social media
contents. In South Asia, Roman Urdu which is a

Topic classification wusing Natural Language  form of Urdu written in Latin script is frequently

Processing (NLP) is a major application, where
machines classify texts into predefined categories.
Topic classification refers to classifying a document
into predefined topics such as social media, news,
or reviews. Efficient topic classification systems for
multiple languages are becoming more important
with the rapid increase in online contents,
especially social media contents. Large Language
Models [1] or deep learning models for specialized
domains [2] are some of the recent advancements
that were taken into consideration. Efficient topic
classification systems for multiple languages are
becoming increasingly important with the rapid

practiced. Roman Urdu undergoes an informal
language with limited resources, regardless of its
increasing popularity, which leads to substantial
challenges for automated text classification [3].
By formulating a high accuracy topic classification
system particularly for Roman Urdu, integrating its
lexical variation and morphological irregularities,
this study aims to address these shortcomings.
Roman Urdu is used in a significant portion of South
Asian discussion forums because Urdu is one of the
languages that are most frequently used in the world
[4]. Roman Urdu’s lack of standard orthographic
structures and a more informal atmosphere of social
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media have contributed to the growing number of
non-standard spellings, which makes automated
text categorization far more challenging [5, 6]. For
that reason, it is vital to build such tools that can
arrange and classify this massive amount of user-
generated content for improved information access
and interpretation.

Roman Urdu has received little attention
in recent studies, which mainly focused on text
classification for high resource languages like
English. Techniques using deep learning for text
classification have been previously investigated by
Minaee et al. [7]. These techniques perform well
in settings where resources are abundant, but they
show limitations when applied to languages with
limited resources such as Roman Urdu. In this
regard, Gasparetto et al. [8] studied algorithms for
text categorization and also demonstrated how hard
it can be to apply these approaches to unstructured
and informal texts such as Roman Urdu. While
TF-IDF (Term Frequency-Inverse Document
Frequency) is an established feature extraction
method [9], it has yet to be studied extensively on
Roman Urdu due to the presence of nonstandard
spelling and irregular forms in the language
that render such methods very difficult to apply.
Similarly, Hussain et al. [10] carried out a detailed
study on Roman Urdu sentiment detection but did
not present any preprocessing mechanism, which is
considered crucial in topic classification. Similarly,
the study carried out by Arshad ef al. [11] on the
recognition of emotions in Roman Urdu text failed
to consider the specific preprocessing requirements
of the language.

Although, Pakray et al. [12] focused on
low resource language processing, issues related
to Roman Urdu were not sufficiently focused
on, where its informal expressions and spelling
irregularities make classification a highly
challenging job. As far as stemming is concerned,
although it has been well studied for languages like
English, it does not suffice to handle Roman Urdu,
and an efficient stemmer for Roman Urdu remains
missing. Adimulam et al. [13] focused on transfer
learning in languages with very minimal resources.
However, the unique morphological constraints
pertaining to Roman Urdu were not clearly explored
in this work. Avetisyan and Broneske [14] made an
effort to review low resource languages but did not
provide any customized solution for Roman Urdu,

which further gives weight to the importance of
effective preprocessing. Similarly, Ogtnremi et
al. [15], while discussing decolonizing NLP for
low resource languages, did not explore those very
unique complexities existing in Roman Urdu text.

While the studies of Sandu et al. [16] and Chen
et al. [17] focused on text extraction techniques
for social media, they did not cater specifically to
Roman Urdu but rather focused their approach on
strongly resourced languages. Ghafoor et al. [18]
studied multilingual text processing, but again,
their work did not cover methods that could cater
to the rich lexical features of Roman Urdu. Even
though TF-IDF is a widespread feature extraction
technique, it needs further tuning to deal with
informal writing patterns of Roman Urdu. Kumar
et al. [19] assessed deep learning for hyperspectral
image classification, failing to assess the challenge
of text classification for low-resourced languages
like Roman Urdu. Additionally, Faheem et al. [20]
investigated part of speech tagging for Roman Urdu
but did not expand their work to topic classification
and Hussain et al. [10] addressed the challenges
of emotion recognition in Roman Urdu; however,
their work did not discuss topic categorization,
which considers a broader perspective of Roman
Urdu textual characteristics.

Roman Urdu text categorization has drawn
more interest, especially in view of complications
linked with the detection of sentiment and
emotions. The work of Ilyas et al. [21] identified
the recognition of emotions in code mixed Roman
Urdu-English text, their research has avoided
specific challenges that arise when dealing with
pure Roman Urdu text, such as the irregular spelling
and lack of standardization of the language.

In the same direction, Chandio et al. [22]
have proposed an attention-driven Residual Unit—
Bidirectional LSTM (RU-BiLSTM) framework for
sentiment analysis targeting Roman Urdu, but they
failed to take into account carefully the difficulty of
the topic classification, opening a way to deal with
a greater variety of textual structures. Nabeel et al.
[23] used machine learning (ML) models to classify
emotions in Roman Urdu posts but the struggles
of classifying topics within this language context
were not taken into account by them. Khan et al.
[24] worked on the sentiment analysis for Roman
Urdu from a multilingual point of view, they
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predominantly focused on emotion identification,
leaving a gap in the establishment of broader
topic classification systems. More generalized
issue of topic categorization, which has not yet
explored, was also ignored by Rana et al. [25], who
contributed in the area of Roman Urdu language
by offering an unsupervised method for analysis of
sentiments on social media short text classification.

Tejaswini et al. [26] examined social media
text interpretation using NLP methods and hybrid
deep learning models for detecting depression, and
the work of Lavanya and Sasikala [27] explored
text classification in social healthcare settings using
NLP and deep learning, both of these studies mainly
relied on sentiment analysis and did not address the
specific challenges of topic classification, which
is the focus of our work. The need for improved
approaches to Roman Urdu text processing
becomes clear when considering that Akhter et
al. [28] focused on identifying abusive language
in both Urdu and Roman Urdu but did not extend
the analysis to topic categorization. Similarly,
Mehmood et al. [29] proposed a discriminant
approach for feature spamming and played their
role in the analysis of sentiment for Roman Urdu;
however, their research work did not incorporate
topic classification.

Mehmood et al. [30] used a hybrid approach
for sentiment analysis of Roman Urdu through the
Xtreme multi-channel technique. However, their
work still had some shortcomings since it missed
the aspect of topic classification. Saeed et al. [31]
worked on the area of toxic comment classification
for Urdu and Roman Urdu by developing the
PURUTT corpus, which aimed at enhancing the
detection of toxic comments. However, their work
does not tackle the key issue of topic classification.

In conclusion, despite some progress
made in sentiment analysis and toxic comment
detection for Roman Urdu-Urdu, there is still a
gap in the application of such techniques to topic
classifications. Feature extraction techniques such
as TF-IDF and n-gram techniques have gained
considerable attention, however, issues such as non-
standard spelling, colloquial language use, and small
datasets still exist. Therefore, the proposed study
strengthens the Stochastic Gradient Descent (SGD)
by developing a more accurate topic classification
technique and a Roman Urdu stemmer.

2. MATERIALS AND METHODS

Roman Urdu stemming and a vast amount of
ML experiments form the basis of this study’s
methodology. Logistic Regression (LR) [9], Support
Vector Machine (SVM) [30], SGD, K-Nearest
Neighbors (KNN), Naive Bayes (NB) and Decision
Tree (DT) [32] were among the algorithms whose
performances we assessed. The establishment of a
method for Roman Urdu text topic classification
using SGD is a major accomplishment of this study.
Figure 1 is a conceptual illustration of our proposed
methodology. Our method incorporates the use
of the TF-IDF weighting scheme, but just before
inserting the data into the model, a lexical dictionary
is utilized to guide a critical stemming process. By
contemplating the various spellings and variations
in Roman Urdu, this dictionary contributes in
standardizing the text. The main purpose of this
step is to improve the feature selection process.

It starts with data cleaning, which deletes
irrelevant symbols and punctuation marks from
the text. Next, lexical normalization is conducted
by using a rule-based approach, followed by
stemming. Together, these form the preprocessing
stage of the work, which is really important to
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handle the irregularities present in Roman Urdu
text. A TF-IDF vectorizer was then applied for
feature extraction, while a number of ML models
were subsequently used for the classification.

2.1. Dataset

The Roman Urdu dataset' used in this research
has been collected from Kaggle, a well monitored
platform acknowledged for its rich dataset
repository and data science competitions. This
dataset is a very valuable collection of text data,
particularly in the Roman Urdu language, which
covers a wide range of topics and sentiments. The
corpus is collected from online forums and social
blogs, hence offering a rich and reliable repository
of real-world linguistic interactions and individual
opinions. It provides a very useful insight into
how people express their sentiments and opinions
in Roman Urdu about diverse topics. The dataset
consists of 4065 comments, hence, the data is
labeled with categories like politics (1398), sports
(1092), education (851), and religious (724). The
politics and sports categories are most represented,
followed by the education and religious comments,
as captured in Figure 2, thereby reflecting an
imbalanced yet diverse distribution in the corpus.
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400
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2.2. Preprocessing

Preprocessing is important as it retains only the
significant words and removes the rid of rest. Filler
words like “punch lines,” “number characters”
and “stop words” were deleted. The data
preprocessing decreases computation time and size
of the data. Doing that in NLTK library (Python),
several operations are performed including
removing the unnecessary words and characters,
auto correcting and stemming.

2.2.1. Remove Stopping Words

Stop words are those common and repetitive words,
which do not appear as useful information for the
sentiment prediction. The idea of stop words was
first introduced by Luhn [33]. In this paper, we
perform a manual selection for these stop words.
We will use a curated set of Urdu stop words to
efficiently remove irrelevant words, reducing the
data processing step. Figure 3 shows the stop
words of Roman Urdu.

2.2.2. Data Auto Correction

For the unstructured Roman Urdu used in informal
comments over the web, people usually use incorrect
syntactical structures, hence the mining process is
complicated. Hence, someone might stretch out
characters of a word “bohtttttttttt khubbbbbb”
instead of the desired “boht khub” meaning “well
done” in response to this our system attempts to
resolve these ill formedness as by identifying the
correct syntactic composition of words in order to
facilitate better analysis [34].

Politics Sports Education Religious
Classes
Fig. 2. Roman Urdu Dataset.
stopwords=['ai', 'ayi', 'hy', 'hai', 'main', 'ki', 'tha', 'koi',

'ko', 'sy', 'woh', 'bhi', 'aur', 'wo', 'yeh', 'rha', 'hota', 'ho',
'ga', 'ka', 'le', 'lye', 'kr', 'kar', 'lye', 'liye', 'hotay',
'waisay', 'gya', 'gaya', 'kch', 'ab', 'thy', 'thay', 'houn', 'hain',
'han', 'to', 'is', 'hi', 'jo', 'kya', 'thi', 'se', 'pe', 'phr’,

'wala', 'waisay', 'us', 'nma', 'ny', 'hun', 'rha', 'raha’,

‘ja',

'rahay', 'abi', 'uski', 'ne', 'haan', 'acha', 'nai', 'sent',
'photo', 'you', ‘'kafi', ‘'gai', 'rhy', 'kuch', 'jata', ‘aye', 'ya',

'dono', 'hoa', 'aese’,

'de', 'wohi', 'jati', 'jb', 'krta', 'lg',

'rahi', 'hui', 'karna', 'krna', 'gi', 'hova', 'yehi', 'jana', 'jye',
‘chal', 'mil', 'tu', 'hum', 'par', 'hay', 'kis', 'sb', 'gy', 'dain’',

'krny', 'tou'l]
Fig. 3. Stop words in Roman Urdu.
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2.2.3. Normalization and Stemming

A rule-based approach named hashing with the
incorporation of lexical strategies for normalizing
the Roman Urdu text is utilized by researchers
of [35]. We have developed some guidelines to
overcome this issue. These guidelines attempt to
minimize the use of shared suffixes and infixes of
the Roman Urdu words. In Table 1, an indication of
the end of a string or suffix is shown by ‘$’ sign, the
start of any string by ‘A’ sign, and repetition of any
alphabet is ‘+’.

So, for example, words such as “khamian”
(flaws), ‘“achaaiyaan” (goodness), and “kitabain”
(books) become “khami”, “achai”, and “kitab”
respectively. One of the interesting things that can
be noticed here is that the suffix “an” is removed
when the letter “i” is observed before it. Also,
expressions such as “taqreebaat” (ceremonies),
“chakkay” (Sixes), and “haqooq” (rights) become
“taqreb”, “chakka”, and “haq” respectively.
Moreover, repeated letters are reduced to a single
representation, as noticed in the normalizations of
“ganooon” to “qanon” and “boohatt” to “bohat”.
Finally, after the application of these guidelines,
the normalized text is then standardized using a
human-annotated lexical dictionary.

The stemmer used in the data preprocessing
step is intended to reduce words to their root form.
Though there could be scenarios where the stem
does not match with the root, this is still effective
since related words tend to belong to the same stem
despite the root not being proper itself. There are
numerous stemmers for the English language or
any other language that is gifted with rich linguistic
resources. Examples of such stemmers include the
Porter stemmer [36] and the Snowball stemmer
[37]. The situation of stemming words for Roman
Urdu is far more complex as compared to other
languages.

Table 1 provides some examples of lexically
normalized words. It is clear that the words in Table
2 have the same sound or pronunciation but with
varying spellings. The stem word generation is
dependent on a mapping function that is precisely
given by f: N — S, where N denotes a finite set of
words against which we strive to link plausible stem
words that belong to set S. This function of mapping
is set to establish the correct stem word S for the

term N, boosting the efficiency of the stem word
generation. If the mapping function is unsuccessful
in identifying a stem word, then the root word is
used. So, for ensuring effective search for the stem
word, there is separate indexing of each word by
means of a hashing function. Therefore, by using
the map function, the entire document is exposed to
the stemming process to remove any possibilities of
inconsistencies or anomalies.

2.3. Model Training and Validation Phase

The data was divided into model’s training and
validation subsets as part of the dataset partitioning
process [38, 39]. In particular, 70% of the dataset
was reserved for model training, and the left over
30% was allocated for validation. Further insights
into this division are provided in Table 3, revealing
that 2845 comments were incorporated for model’s
training, and 1220 comments were employed for
validation purposes.

2.4. Pipeline

A pipeline combines various estimation procedures
into a single step, simplifying the ML process [38].
A pipeline involves the progressive implementation
of a set of transformers (data modeling), followed

Table 1. Rules for Lexical Normalization.

Sr. No. String Replacement
L. “ian” § P
2. “niat” $ “ni”
3. “ly+” ‘1
4. “ia” P
5. “ih” “eh”
6. “ay” ‘e’
7. “ie” § ‘y’
8. “eet” ‘e’
9. “es” ‘is’
10. “ar” r’

Table 2. Stemming of Roman Urdu.

Roman Words Stemming English

siasat, syasat, sayasat syast Politics
parhaye, parhaee, parhai prhai Study
kitabain, kitaabain, ketabain kitab Books
taqreebaat, tareebat, taqrebaat  taqreeb =~ Ceremony
achaiyaan, achaian, achaiyan achai Goodness
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Table 3. Training and Testing Sets Description.

Class Training Set Test Set Total
Politics 994 404 1398
Sports 748 344 1092
Education 596 255 851
Religious 507 217 724
Total 2845 1220 4065

by an estimator at the end (ML model) [39]. The
transformation stage includes the methods fit()
and transform(), while the estimator includes
fit() and predict(). Although an estimator always
implements fit(), it may not necessarily implement
predict(). Briefly, pipelines are designed with fit(),
transform(), and predict() capabilities, allowing the
entire pipeline to be fitted to the training data and
then applied consistently to the test data without
repeating each step manually. A pipeline is then
built to convert words into vectors, extract features,
and fit the model. In this work, function names such
as fit(), transform(), and predict() are written with
parentheses to indicate that they refer to callable
methods (the () denotes that these are functions that
can be executed with arguments), as commonly
defined in machine learning libraries.

2.5. Feature Extraction

The step of feature selection involves the utilization
of TF-IDF weighting scheme, a widely used method
in text classification [32, 34]. This scheme assigns
specific weights to individual vocabulary terms,
belonging to the set V. = {v, v,... v }, for each
document within the text corpus, in order to estimate
their importance [7]. These weights, denoted as W =
{w,, w,... w, }, aim to reflect the significance of each
vocabulary term. Nevertheless, the term frequency
(TF) approach’s shortcoming lies in its tendency to
give higher weights to frequently appearing terms,
which could lead to the neglect of crucial terms and
subsequent subpar feature selection. Through the
following characteristics, size of the feature can be
evaluated.

2.6. TF-IDF Vectorizer

Term Frequency Inverse Document Frequency (TF-
IDF) approach has broader utilization to transform
text into a numerical illustration for prediction after
training the ML models [8]. TF-IDF vectorizer
takes into account a word’s average prominence

in a document [32]. When dealing with the most
frequently used words, this is a great method. We
can penalize them by using it. TF-IDF vectorizer
applies a frequency-based weighting factor to
the word counts. Table 4 displays the example
of feature extraction using TF-IDF. Equation (1)
shows the formulation of TF — IDF value in a
particular document ‘d’ for a specific ‘t’ th term:

TF — IDF(t,d) = TF(t,d) x IDF(¢) (1)

The term frequency TF (t, d) is for ‘t’ th term in
document ‘d’. While Inverse Document Frequency
for ‘t’ th term throughout the corpus is represented
as IDF (t).

2.7. Classification Scheme

Our classification framework employs a diverse
set of ML algorithms to classify topics in Roman
Urdu text. These algorithms include Multinomial
Logistic Regression (MLR), SVM, Naive Bayes,
LR, Decision Tree, and our proposed approach
based on SGD to explore the classification schemes
that most suit the requirements of Roman Urdu
text. The framework we have devised for topic
classification is rooted in the utilization of the
SGD algorithm [40]. This approach is used for the
effective classification of topics in multi-class text
reviews. The best algorithm emerged here is SGD,
which showed the highest accuracy in categorizing
Roman Urdu text. SGD is also an iterative
optimization algorithm that plays a key role in the
training of ML models [41].

It plays a very contributive role in text
classification for Roman Urdu text in our research.
The algorithm updates model parameters in an

Table 4. Feature Extraction by using TF-IDF.

Sr. No. Words TF-IDF
1. talem 0.53109389
2. games 0.57735026
3. cricket 1.69314718
4, hamesha 0.29207003
5. reham 0.41802398
6. khelta 0.70710678
7. hifazat 0.26017797
8. insan 0.24783099
9. afsos 0.28194161
10. tawajo 0.33762465
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iterative manner, where it considers sometimes
a single training example or a small batch every
time. Inherent with this stochastic nature, it
introduces randomness into the process, allowing
the algorithm to avoid local minima and enabling
quick convergence, especially in the case of large
datasets.

This can be given, mathematically, by an update
rule for SGD as:

Ors1= 0: — V[ (O x5 y1) 2

Here 0, represents the model’s parameter vector
at iteration t. V f (0; x;; y,) denotes the gradient of
the loss function, f with respect to 0, evaluated on
training example (x,, y,). While n, a hyperparameter,
is the learning rate and decides the step size in
the updates of the parameters. In this scenario,
x, shows input feature vector and y, displays its
respective target label for i-th data point used in the
computation of the gradient of the loss function.

We implemented an SGD model based on
a well-organized pipeline approach. This was
composed of two significant parts: the TF-IDF
vectorizer and the SGD classifier. The TF-IDF
vectorizer played an important role in converting
the text data into a numerical representation by
assigning words with numeric values according to
their weights in TF-IDF. These weights determine
the importance of words within the text corpus. The
processed data would then serve as an input to the
SGD classifier, which utilizes the SGD optimization
technique in training a linear classifier for binary
classification problems. The “hinge” choice of loss
function played an instrumental role in informing
the optimization process, while the “I12” penalty
contributed toward regularization. The parameter
“max_iter” controlled the maximum number of
iterations that should result from the optimization
process. Through these components and by
combining them in a pipeline configuration, we
have successfully engineered a robust and flexible
SGD model that can be applied to text classification
tasks.

3. RESULTS AND DISCUSSION

The main results of our work demonstrate the
efficiency of the proposed methodology for Roman
Urdu topic classification. Our model, enhanced

through the integration of SGD and a custom Roman
Urdustemmer, outperforms well-established models
like LR, SVM, NB, DT, and kNN with regularity,
which is also supported by prior works that state
that quality preprocessing has a great effect on the
classification result in low-resource languages [7,
10]. An achieved accuracy of 95 percent reflected
the importance of efficient cleaning and TF-IDF
transformation, such a relation is also supported
through previous studies on Roman Urdu text
processing [32]. A number of factors create this
improvement. First of all, Roman Urdu-specific
stemming rules and customized normalization
reduce spelling inconsistencies and noise, thereby
mitigating known limitations in previously reported
Roman Urdu classification works [10, 42]. Second,
TF-IDF is able to provide a sparse feature space that
is efficiently handled by the linear SGD classifier,
which further supports the previously found
observations regarding the efficiency of linear
models for short and informal text [7]. Overall,
our results confirm that combining language aware
preprocessing with an optimized linear classifier
leads to more accurate topic categorization and
offers strong potential for broader Roman Urdu text
classification applications [32].

3.1. Evaluation Metrics

The efficiency of the classifier’s is then assessed
by using recall, F1-score and precision. Confusion
Matrix of our proposed model is also displayed to
illustrate the model’s functionality.

3.1.1. Accuracy

From the perspective of examining classification
models, accuracy is a fundamental metric. The
magnitude of successful predictions of a model
is an elementary description of its accuracy.
Mathematically, we can formulate it as:

No. of correct predictions

Accuracy =
Y Total no. of predictions (3)
In the context of binary classification, accuracy is

simplified in terms of negatives and positives as:

TN + TP
TP + TN + FP + FN

“)

Accuracy =
3.1.2. Precision and recall

In the context of information extraction, precision
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and recall are most commonly applied. The record
numbers that have been reclaimed are considered
precision, whereas the total record numbers
that have been recovered are termed as recall.
Meanwhile Precision and recall are inversely
related, this highlights the impact of having a
reliable classification system to offer context for
their variances.

Mathematical interpretation of both terms in
classification task is given as:
True Positive

Precision = 5
False Positive + True Positive (3)

Recall — True Positive
€€ = False Negative + True Negative (6)

3.1.3. F1-score

F-measurement, F-score or F1 are similar calculation
of'the check. The percentage of correctly recognized
positive outcomes is a common way to measure
precision p, which are divided by percentage of all
samples classified as positive, while recall r is the
percentage of correctly identified positive results,
which are divided by percentage of all examples
categorized as positive.
2 X Precison X Recall

_ = 7
F1 — Score Precison + Recall @

3.1.4. Confusion matrix

Error matrix is another name for confusion matrix,
in ML and classification. It is a table that clearly
shows where a model makes mistakes. It helps
illustrate model’s effectiveness or efficiency by
comparing its predictions with the original results.
The main goal is to analyze the classifier’s efficiency.
By depicting both predicted and actual values, the
confusion matrix offers a visual representation of
disparities. This evaluation draws on insights from
the confusion matrix, illustrated in Figure 4. Which
encompasses metrics for topic classification.
Correct predictions are positioned along the
diagonal for visualization with the proper labelling
of Politics, Sports, Education and Religious classes.

3.2. Topic Classification
In the context of the experimental study, various ML

techniques of classification were used for the task. In
order to ensure an unbiased comparison, replication

of the earlier proposed solutions was carried out
for measurement of the efficiency and validity of
the ML models. Table 5 shows the experimental
results of various solutions of classification with
regard to Roman Urdu topic classification tasks.
These experimental results clearly show that the
proposed solution of SGD with enhancement
of the stemmed solution outperformed all other
solutions with its enhanced performance capability.
In addition, various other solutions using ML also
found effective solutions. It is pertinent to note
that solutions by LR and by SVM found solutions
equivalent to that of our proposed solution for
better understanding with various metrics like
recall, precision, F1, and accuracy.

Apparently, the class-wise accuracy of analysis
models, as shown in Figure 4, clearly reveals that
religious class shows better advancement in terms
of each recall, Fl-measure, precision, and total
accuracy. At the same time, there was a slight drop in
precision and recall for politics and support classes.
Though Table 5 shows the efficiency of our models
relative to other models. When comparing, there
was a relative low accuracy of 61% by the SVM
model developed by Mehmood et al. [30] relative to
our fine-tuned models. Notably, even the proposed
models by us showed better efficiency relative to
the deep learning models Recurrent Convolutional
Neural Network (RCNN) with an accuracy of 63%.
Moreover, the KNN models [32] showed better
efficiency relative to precision with a precision of
(70%), though relative to recall, it is ineffective

Education

Politics

True

Religious

Sports

Education Politics

Religious
Predicted

Sports

Fig. 4. Confusion Matrix of proposed model (SGD) for
Topic Classification of Roman Urdu.
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Table 5. Comparative evaluation metrics for proposed and existing models.

Model Precision Recall F1-Score Accuracy
LR 0.94 0.94 0.94 0.94
SVM 0.94 0.93 0.94 0.94
Naive Bayes 0.90 0.84 0.86 0.86
Decision Tree 0.83 0.83 0.83 0.84
KNN 0.87 0.86 0.87 0.87
SVM [30] 0.59 0.58 0.58 0.61
KNN [32] 0.70 0.37 0.48 0.47
LSTM [42] 0.65 0.64 0.65 0.66
Random Forest [43] 0.63 0.61 0.62 0.59
RCNN [44] 0.64 0.62 0.63 0.63
Proposed SGD 0.95 0.94 0.94 0.95

with low recall that caused the lowest accuracy of
47%. At the same time, the Random Forest models’
approach [42] showed relative efficiency relative to
NB models, though it gained an accuracy of below
60%, which is unsatisfactory. Additionally, Naive
Bayes showed relative efficiency with achieved
accuracy of 62%, though it failed to achieve better
efficiency relative to the SGD models [43]. At the
same time, the efficiency of DT models showed
moderate result with the precision of 59%, recall
of 57%, and F1-measure of 0.58. Finally, LR and
SVM models showed relative efficiency relative to
ours with impressive accuracy of 94%. This shows
that it is effective relative to regression models as
well as classifications.

Figure 5 summarizes the detailed analysis of
various models of ML for sentiment classification.
This graph is more of a representation of the
efficiency of the model in terms of Precision,
Recall, F1 Score, and Accuracy of six models: LR,
SVM, NB, DT, k-NN, and proposed model. This

80
60
40
20

[}

LR svm Naive Bayes Decision Proposed
Tree Model

Models

Scores

Fig. 5. Comparison of models’ performances for Roman
Urdu text classification.

graph aptly expresses the measures of the models
using four bars for each of the models, representing
each of the mentioned factors. It is worthy to
note that the proposed model gets the maximum
number of counts via these factors, highlighting the
effectiveness of the proposed model for sentiment
analysis.

4. CONCLUSIONS

In this work, we discussed topic classification for
Roman Urdu text with several ML algorithms,
including MLR, SVM, NB, Random Forest, DT,
and our proposed SGD model supplemented with
a Roman Urdu Stemmer. Our approach included
extensive data preprocessing and feature extraction
so that an optimal classification pipeline was
achieved. Among all of the tried models, the SGD
model performed best, achieving the maximum
accuracy value of 95%. That means the proposed
parameter optimization method in the SGD model
showed better performance improvement in
topic classification for Roman Urdu text. Though
promising, we note some limitations of the current
study, namely, the adoption of a single train/test
split without any evaluation by other measures such
as cross-validation that more completely showcases
the generalization of the model. Furthermore, further
works are needed to address the issues of class
imbalance and the application of more advanced
methods, such as cross-validation, which could
make the results more robust. This study provides
validation significant for Roman Urdu topic
classification. This could be used in social media
monitoring, content categorization, and public
discourse studies. Future work will concentrate on
refining the SGD model, expanding the dataset, and
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integrating additional linguistic features to enhance
classification performance further.
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Abstract: Natural silk (Bombyx mori) has been found to contain sericin 1, sericin 2, sericin 3, and sericin 4 proteins.
The sequence of amino acid residues in them has also been well studied. However, there is little information on the
molecular structure of sericin 4. We conducted studies on the prediction of the sericin 4 molecule’s structure using
the AlphaFold3 and YASARA computational servers. Molecular dynamics simulations were performed in aqueous
solution to evaluate the stability and determine the most favourable conformation of the predicted sericin 4 structure.
We mainly used the ProSA-web, Ramachandran Z and Molprobity score to evaluate the predicted structure of sericin
4, and the reliability of the predicted model was determined. The predicted molecular structure serves as a preliminary,

yet robust, model of sericin 4.

Keywords: Sericin 4, Silk, Ramachandran Z-Score, Minimum Energy, Solubility, Structure.

1. INTRODUCTION

Proteins extracted from natural silk raw materials
are considered as important biomaterials that are
the focus of current research. Silk sericin protein
is important due to its water solubility, antioxidant
properties, biodegradability, and suitability for
the preparation of biomaterials for medicine [1-
3]. Sericin is often recognised as an ‘“‘adhesive”
protein, enveloping the silk fibroin of Bombyx mori
and constituting 20-30% of its total mass [4]. In
recent years, sericin has been widely employed in
nanocomposites, hydrogels, and tissue engineering
(for instance, in skin regeneration and wound
healing), yielding positive outcomes in its clinical
trials [5, 6]. To evaluate and consider the potential
uses of sericin, knowledge of its properties,
structure, and composition is required [7, 8].

Sericin is a globular protein characterised
by the presence of random coils and [-sheet
structures. Several external factors, including
temperature, humidity, and mechanical stress, can
influence the transition of sericin from a random-
coil conformation to a $-sheet arrangement. Sericin
is highly soluble in water at temperatures of 50
°C and above [9]. This structural transition is
thermodynamically linked to a reduction in entropy,

and parameters such as pH and ionic strength
further affect the kinetics of gel formation [10]. For
example, at physiological pH (pH 7), the gelation
process can proceed two to three times faster. In
contrast, at lower temperatures, the solubility
of sericin diminishes, promoting the conversion
of random coils into B-sheets and consequently
leading to gel formation [11]. Moreover, it has been
demonstrated that higher sericin concentrations
accelerate the gelation process [12]. Sericin is
a hydrophilic protein, distinguished by a high
proportion of free hydroxyl (-OH), carboxyl (C=0),
and other polar functional groups within its amino-
acid residues [13]. Its amino acid composition is
dominated by serine (Ser, 37%), glycine (Gly,
16%), and aspartic acid (Asp, 15%), which ensures
its high hydrophilicity [14].

It has been found that there are 4 different
types of sericin 1, sericin 2, sericin 3, and sericin 4
proteins in Bombyx mori silk fiber [4]. These sericin
proteins in silk fiber glue together two fibroin
fibers. The structure and composition (amino acid
sequence) of sericin 1, sericin 2, as well as sericin
3 proteins have been well studied by previous
researchers [15, 16]. Komatsu [17] determined
the amounts of sericin 1, sericin 2, sericin 3, and
sericin 4 proteins in an aqueous solution of sericin
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extracted from Bombyx mori cocoons, and showed
that the amount of sericin 4 was 3.1%. The low
content of sericin 4 indicates its specific role in
interaction with fibroin, it is primarily located
in the inner layers and contributes to mechanical
strength. This protein serves as a protective and
binding component that surrounds the fibroin
filaments. Therefore, determining the molecular
structure of sericin 4 provides not only insight into
its unique physicochemical properties but also a
deeper understanding of the surface behaviour of
silk-based biomaterials.

The structural uniqueness of sericin 4 is
reflected in its amino acid composition and
polypeptide chain arrangement. It is rich in polar
amino acids such as serine, asparagine, and
threonine, which impart a highly hydrophilic
character to the protein. As a result, sericin 4 readily
interacts with water molecules, thereby contributing
to the surface moisture of silk. This property
enhances the biocompatibility of silk materials
and is particularly important for their biomedical
applications, such as in wound dressings, drug
delivery systems, and biopolymer films [18].

Information about sericin proteins is also
included in the Uniprot and Swiss databases. The
Uniprot database accurately describes the 3D
molecular structures of sericin proteins and their
amino acid sequences [19, 20]. Many scientific
publications have been published that fully confirm
this information. However, the 3D molecular
structure of the sericin 4 protein is poorly understood.
It should also be noted that successful work has been
carried out to determine the amino acid sequence
of sericin 4 [21]. However, the molecular structure
of the sericin 4 molecule remains elusive. To some
extent, it is possible to predict the formation of the
sericin 4 protein to solve this problem. Using the
latest AlphaFold3 and RoseTTAFold models, it is
possible to predict the approximate 3D structure
of sericin 4, which may reveal its B-sheet richness
(45%) and potential disulphide bridges [22].

Protein structure prediction relies on the
amino acid sequence. The secondary and tertiary
structures are inferred from the primary structure.
It should be noted, however, that the predicted
structure may differ slightly from the protein’s
actual conformation [23]. The protein chain can
adopt numerous conformations due to rotation

around the ¢ and y torsion angles at the Co atom.
This conformational freedom contributes to
variations in the three-dimensional architecture of
proteins. Peptide bonds within the chain are polar,
containing carbonyl and -NH- groups that are
capable of forming hydrogen bonds. As a result,
these groups interact within the protein and play
a crucial role in stabilising its structure. Glycine
holds a distinctive position in protein architecture,
as its minimal side chain grants it increased local
flexibility. In contrast, cysteine residues may react
with one another to form disulfide bonds, creating
cross-links that reinforce the overall stability of the
protein. Protein structure is commonly described
in terms of secondary structural elements, such as
a-helices and B-sheets. Within these motifs, regular
hydrogen-bonding patterns arise between the -NH-
and C=0O groups of neighbouring amino acids,
and the residues typically possess similar ¢ and y
torsion angles [24].

The development of secondary structural
elements enables the hydrogen-bonding potential
of peptide bonds to be effectively fulfilled. These
secondary structures may be densely packed
within the hydrophobic core of a protein, although
they may also be found on the surface where the
environment is polar. Each amino-acid side chain
occupies a finite volume and can engage in only
a limited range of interactions with neighbouring
residues; such steric and interaction constraints
must be carefully considered in molecular
modelling and sequence alignment studies [25].
The Ramachandran plot is employed to identify the
energetically allowed regions for ¢ and v torsion
angles, thereby demonstrating the thermodynamic
favourability of B-sheet formation in Sericin 4.

Protein structures can be experimentally
identified using methods such as X-ray
crystallography, cryo-electron microscopy, and
nuclear magnetic resonance (NMR) spectroscopy.
However, these approaches are both costly and
time-consuming. Over the past six decades,
experimental efforts have resolved the structures of
approximately 170000 proteins, despite the fact that
more than 200 million proteins are known across all
forms of life. By 2025, the AlphaFold database had
predicted structures for over 214 million proteins,
yet certain rare proteins, including sericin 4, have
not been fully verified experimentally. Throughout
recent decades, numerous computational strategies
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have been developed to infer three-dimensional
protein structures directly from amino-acid
sequences. In the most successful cases, homology-
based modelling grounded in molecular evolution
has achieved accuracy approaching that of
experimental methods, such as NMR spectroscopy
[26]. Precise protein-structure prediction holds
major importance in fields such as drug discovery
and biotechnology [27-29].

Protein  structure prediction represents
one of the central objectives of computational
biology and is closely related to the resolution of
the Levinthal paradox. Levinthal’s paradox is a
conceptual experiment in the context of protein-
folding studies, highlighting that protein folding
involves identifying the most energetically stable
conformation. Exhaustively searching all possible
structural conformations to locate the lowest-energy
state would be computationally impractical. Yet, in
nature, proteins fold extremely rapidly - even when
adopting highly complex topologies - indicating
that folding proceeds through a rugged energy
landscape that guides the molecule efficiently
towards a stable configuration [30]. Levinthal
also demonstrated that, in cases where the global
minimum energy state is not kinetically accessible,
proteins may adopt a metastable conformation with
slightly higher energy [31]. The most effective
approaches in structural bioinformatics tend to
be those that build upon existing biological and
structural knowledge, rather than attempting to
model protein folding entirely from first principles.

When predicting a protein structure or
evaluating the quality of a homology model, it is
highly beneficial to first examine a large number
of experimentally determined structures to gain an
understanding of what the actual protein may look
like. This comparative insight facilitates a more
accurate assessment of the model’s reliability and
structural validity. Many servers have been created
for protein structure prediction. The AlphaFold3
server occupies a special place in protein structure
prediction and is the leading server. AlphaFold3
is not limited to single-chain proteins, as it can
also predict the structures of RNA, DNK, post-
translational modifications, and protein complexes
with selected ligands and ions. The AlphaFold3
server allows for structure prediction of proteins
consisting of sequences of up to 5000 amino acid
residues [32-34].

The Ramachandran Z-score is also regarded
as a reliable indicator for the overall assessment
of protein structures. Hooft et al. introduced this
numerical measure, known as the Ramachandran
Z-score (Rama-Z), to characterise the distribution
of ¢ and y torsion angles in the Ramachandran plot.
Its primary significance lies in its ability to indicate
the structural credibility of newly determined
protein models. The Rama-Z score functions as
a global metric, offering an overall evaluation of
model quality, although it does not identify local
deviations in main-chain geometry. In addition to
the single global score, separate Rama-Z values
are also computed for B-strands, a-helices, and
loop regions. Nevertheless, the global Rama-Z
score remains the most informative measure for
general structural validation. The value of the
Rama-Z score correlates with the proportion of
residues that fall within the favourable regions
of the Ramachandran plot. Analyses of models
resolved at 1.2-5 A resolution demonstrated that
28% exhibited Rama-Z < -2, 14% had Rama-Z <
-3, 0.19% displayed Rama-Z > 2, and only 0.01%
had Rama-Z > 3. Based on these observations, a
protein structure is considered acceptable when its
Rama-Z score lies within the range -3 to 3 [34].

We attempted to demonstrate the 3D molecular
structure of sericin 4 based on the latest information
on its amino acid sequence, and studies have been
conducted. In this work, the potential conformations
of sericin 4 are analysed using AlphaFold3 and
molecular dynamics (MD) simulations, which may
reveal its novel applications as a biomaterial.

2. MATERIALS AND METHODS

Using the AlphaFold3 server, CIF and JSON files
were generated (by entering the amino acid residue
sequences of sericin 4) for five distinct models
of the predicted protein structure. However, the
generated models contain structural errors. The
model with the fewest errors was identified using
dedicated evaluation servers. ProSA-web and
Ramachandran Z-scores were employed to provide
an overall assessment of the protein structures. The
ProSA-web server determines the similarity of
protein structures to those characterised by X-ray
and NMR analyses; low similarity may indicate the
presence of structural errors [25, 26]. The sericin
4 structure was evaluated using MolProbity, one
of the most reliable validation tools available. To



292 Khushnudbek et al

achieve favourable validation metrics, defects
in the protein structure were minimised using
the YASARA minimization server [35]. This
server performs an energy minimisation using the
YASARA force field. Iterative refinement of the
sericin 4 molecular model was performed via this
server to optimise the structure. Subsequently, the
stability of the sericin 4 model in aqueous solution
was investigated through molecular dynamics
(MD) simulations. Computations were conducted
using the OPLS-AA/L force field and the SPCE
water model within the GROMACS MD package,
as implemented in the BioExcel Building Blocks
Workflows platform. The reliability of the optimised
model was reassessed using MolProbity.

3. RESULTS AND DISCUSSION

The presence of four sericin proteins in Bombyx
mori silk has been reported in the literature [4, 17].
UniProt, Swiss-Prot, and other protein databases
contain extensive information on the composition,
structure, and other properties of sericin 1, sericin
2, and sericin 3. These databases do not contain
information about sericin 4. However, studies
have been conducted to determine the structure of
sericin 4, and positive results have been reported.
Ping Zhao et al. have published research on the

a) b)

sequence of amino acid residues in the sericin 4
molecule. They analysed sericin 4 in terms of its
chain segments based on the amino acid residue
sequence [20]. This study did not, however, provide
information on the complete structure of sericin 4.

The three-dimensional structure of Sericin 4
was predicted using the AlphaFold server based on
its amino acid sequence, and comparative analyses
were performed to select the most reliable structural
model. The sericin 4 protein consists of 2296 amino
acid residues, with the largest proportions being
Lys (9.7%), Thr (9.4%), Ser (9.4%), Glu (8.9%),
and Gly (7.4%). The theoretically calculated
isoelectric point (pl) is 6.25. As shown in Figure
1, the following structural models were predicted
by the AlphaFold server based on the amino acid
residue sequence of sericin 4.

Calculations were carried out using the
ProSA-web server to evaluate which of the derived
sericin 4 molecular models was the most reliable.
ProSA-web determines an overall quality score for
the submitted structure. If this score falls outside
the range typical of native proteins, the structure
may contain errors. The local quality score diagram
highlights problematic regions within the model.
A three-dimensional molecular representation

0

e)

Fig. 1. Models of the sericin 4 molecule created using the AlphaFold3 computational server (Five different molecular
models: (a) Compact -barrel-rich globular model, (b) Extended loop-dominant unfolded-like model, (c) Intermediate
partially folded B-sheet model, (d) Globular model with central B-barrel core’, and (e) Elongated multi-domain flexible

model).
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can also be generated to aid in the identification
of such areas. ProSA-web is applicable to both
low-resolution structures and approximate models
obtained during the ecarly stages of structural
determination.

The Z-score reflects the overall quality of the
model. Its value is displayed on a graph containing
the Z-scores of all experimentally determined
protein chains, with those derived from different
experimental techniques (X-ray and NMR)
indicated in distinct colours [25, 26]. The Z-score
of a protein is defined as the energy separation
between the local fold and the mean value of an
ensemble of misfolded folds, expressed in units
of the ensemble’s standard deviation. It has been
reported that calculated Z-scores are generally
smaller than experimental values [32, 33].

The results showing the Z-scores for the sericin
4 models generated by the AlphaFold server, and
indicating chain segments with relatively higher
energy, are presented in Figure 2. The Z-scores for
models “a”, “b”, “c”, “d”, and “e” of sericin 4 were
0.53, -7.55, -1.52, -6.3, and -8.51, respectively.
Examination of these values reveals that the lowest
score (-8.51) corresponds to the “e”” model structure.

bt
~
-
=
~

In Figure 2(I-V), illustrating problematic or
erroneous regions of the structures, positive values
indicate faulty areas. The single-residue energy
diagram typically exhibits large fluctuations and is
therefore of limited use in model assessment. The
greater the number of lines representing negative
energy regions, the fewer the structural defects, and
thus the more reliable the model. Based on these
results, the “e” model of sericin 4 (Z-score -8.51)
can be regarded as the most reliable structure.

The sericin 4 models were also evaluated
using the global Ramachandran Z score (Rama-Z).
The results obtained are presented in Table 1.

The Rama-Z score serves as a global indicator
for assessing the overall quality of a protein model
and does not provide information on local backbone
alignment issues. It is important to highlight that,
in addition to the single global Rama-Z value,
individual Rama-Z scores are also determined for
coils, helices, and B-sheets. A model is generally
considered accurate and reliable when its Rama-Z
score falls within the range of -3 to 3 [34]. Based
on the structural evaluation of sericin 4, it can be
observed that the Rama-Z score for the “e” model
lies relatively close to -3.
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Fig. 2. Diagrams showing high-energy chain segments in models of the sericin 4 molecule: (I) a-Compact p-barrel-
rich globular model, (IT) b-Extended loop-dominant unfolded-like model, (IIT) c-Intermediate partially folded B-sheet
model, (IV) d-Globular model with central B-barrel core’, and (V) e-Elongated multi-domain flexible model.



294

Khushnudbek et al

Table 1. Ramachandran Z score values of sericin 4 molecular models.

Molecular model

Ramachandran Z-score Side-chain Z-score

a) Compact B-barrel-rich globular model

b) Extended loop-dominant unfolded-like model
c) Intermediate partially folded B-sheet model
d) Globular model with central 3-barrel core'

e) Elongated multi-domain flexible model

-6.08 -2.27+0.22
-4.52 -1.14+0.22
-5.31 -1.80+0.22
-5.30 -1.91+0.21
-4.51 -0.89 +£0.22

The YASARA minimisation server was used to
correct energetically unfavourable regions in the “e”
model chain of the sericin 4 molecule and to improve
its geometry. The YASARA minimisation server is
invaluable in protein structure determination, as
it provides a realistic impression of the protein’s
native conformation and demonstrates how to
assess the accuracy of the refined model [35]. Using
the YASARA minimisation server, the energy of the
“e” model of sericin 4 was reduced to its minimum
state (Figure 3).

The model was energy-minimised using the
YASARA minimisation server for 57 cycles. The
Rama-Z score was again used to evaluate the overall
structure of the energy-minimised model. The
model exhibiting the best Rama-Z score of -2.72
and a minimum energy value of -1069996.7 kJ/mol
is presented in Figures 3 and 4. However, according
to the MolProbity analysis, among all energy-
minimised structures, the model obtained after
51 optimisation cycles in the YASARA program
demonstrated the highest quality score, indicating
the lowest level of structural errors (Figure 5).

MolProbity is a widely recognised platform
for evaluating the geometrical and all-atom quality
of three-dimensional macromolecular models,
including proteins, nucleic acids, and ligands. It

-1000000
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-1200000

kJ/mol

-1300000

E

-1400000

-1500000

-2 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

Number of calculation iterations

Fig. 3. Minimum energy results of the “e” model of
sericin 4 in iterative calculations using the YASARA
minimisation server.

provides detailed validation metrics such as clash
scores, Ramachandran plot and rotamer outliers,
CPB deviations, and the overall MolProbity score
[36]. The model optimised 51 times achieved
a MolProbity score of 1.25, suggesting a high-
quality and well-refined structure. The summarised
validation results are presented in Table 2.

MolProbity analysis reveals that the protein
structure is of high quality: Clashscore 0.45
(99" percentile) and MolProbity score 1.25 (99t
percentile) - placing it within the top 1% of PDB
entries. Steric clashes and overall geometry are
excellent. Ramachandran favoured 88.49% (<98%)
- slightly low, but outliers (0.96%) remain within
acceptable limits. CaBLAM (6.1%) and CA
outliers (3.14%) are acceptable for lower-resolution
structures.

Rama-Z score

-4.5 ¢

-5

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

Number of calculation iterations
Fig. 4. Rama-Z scores of “e” model sericin 4 that were

re-minimised 57 times in the YASARA minimisation
server.

Fig. 5. Energy minimised model of sericin 4 by the
YASARA minimisation server.
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presented in Table 3.
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inconsistencies
observed in the sericin 4 model, the Rosetta Relax
refinement was applied [37]. This approach resulted
in a notable improvement in the overall structural
quality, as evidenced by the evaluation metrics

295

Molecular dynamics (MD) simulation is one
of the most powerful computational techniques
for investigating the structural and functional
properties of proteins at the atomic level. Unlike
static crystallographic structures, MD provides a
realistic description of the time-dependent dynamic

Table 2. Molprobity analysis of Sericin 4 molecular structures optimised 51 times using YASARA minimisation

server.
Clashscore, all atoms 0.45 99™ percentile’(N=1784, all resolutions)
Poor rotamers 0.90% Goal: <0.3%
Favored rotamers 96.65% Goal: >98%
Ramachandran outliers 0.96% Goal: <0.05%
Ramachandran favored 88.49% Goal: >98%
Rama distribution Z-score -2.24+0.15 Goal: abs(Z score) <2
MolProbity score” 1.25 99 percentile’ (N=27675, 0A - 99A4)
CP deviations >0.25A 0.19% Goal: 0
Bad bonds: 0.25% Goal: 0%
Bad angles: 0.39% Goal: <0.1%
Cis Prolines: 8.70% Expected: <1 per chain, or <5%
Twisted Peptides: 0.04% Goal: 0
CaBLAM outliers 6.1% Goal: <1.0%
CA Geometry outliers 3.14% Goal: <0.5%
Chiral volume outliers 0/2720
Waters with clashes 0.00% See UnDowser table for details

Table 3. MolProbity analysis of sericin 4 structures refined with Rosetta Relax.

Clashscore, all atoms: 1.96 99" percentile’(N=1784, all resolutions)
Poor rotamers 0.00% Goal: <0.3%

Favored rotamers 99.95% Goal: >98%

Ramachandran outliers 1.05% Goal: <0.05%

Ramachandran favored 94.07% Goal: >98%

Rama distribution Z-score -0.78 £0.16 Goal: abs(Z score) <2

MolProbity score” 1.36 99t percentile’ (N=27675, 0A - 99A)
CP deviations >0.25A 0.00% Goal: 0

Bad bonds: 0.07% Goal: 0%

Bad angles: 0.13% Goal: <0.1%

Cis Prolines: 8.70% Expected: <1 per chain, or <5%
Twisted Peptides: 0.00% Goal: 0

CaBLAM outliers 5.4% Goal: <1.0%

CA Geometry outliers 2.49% Goal: <0.5%

Chiral volume outliers 0/2720

Waters with clashes

0.00%

See UnDowser table for details
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behaviour of biomolecules. Through MD, the motion
of each atom within the protein is computed based
on Newtonian mechanics, allowing the exploration
of energetically favourable conformations, internal
flexibility, and vibrational motions within the
system. By evaluating the stability of a protein
structure, MD simulation helps to identify the
lowest potential energy conformation, which
often corresponds to its biologically active form.
Therefore, it significantly contributes to energy
minimisation and a more accurate representation of
the native structural state. Moreover, the simulation
enables the analysis of a protein’s flexibility, its
response to environmental conditions such as
temperature and pH, and its interaction mechanisms
with ligands or substrates.

Additionally, molecular dynamics
complements experimental methods such as
X-ray crystallography and NMR spectroscopy by
providing time-resolved atomic-level information.
The combination of MD data with experimental
results allows researchers to construct a more
complete and realistic molecular model that
explains the functional mechanism, stability, and
conformational transitions of the protein. Based
on this data, calculations were performed using the
MD method for the sericin 4 molecule.

Molecular dynamics (MD) simulations
were performed on the BioExcel Building Blocks
Workflows platform using the GROMACS MD
package with the OPLS-AA/L force field and the
SPCE water model [38]. In the simulation setup,
a single protein molecule was solvated with
10000 water molecules, 956 Na* ions, and 910 CI~
ions. The net charge of the protein was -46. The
simulation lasted for 100 nanoseconds (ns), and the
molecular structure was optimised.

The RMSD (Root mean square deviation)
graph shows how the shape of the molecule
changes over time (Figure 6). In the graph, the
RMSD increases from 0 ps to 500 ps and stabilises
around 0.4 nm. This indicates that the molecule
initially underwent a rapid conformational
adjustment (adaptation phase) and subsequently
reached a stable state. The RMSD value suggests
that the molecule has deviated to some extent
from its initial conformation; however, this does
not imply instability. Rather, it is associated with
the molecule’s transition to a new, energetically

favourable conformation. Structural stability was
achieved after approximately 200-300 ps, and the
system remained stable overall.

The radius of gyration (Rg) was also analysed,
and the corresponding results are shown in the
graph. Rg reflects the compactness or degree of
expansion of the molecule. The overall Rg value
remained nearly constant at around 4.8 nm. The
RgX, RgY, and RgZ values along the three axes
also showed very little fluctuation. This indicates
that the molecule maintained its general shape,
meaning that it neither compressed nor expanded
noticeably. Therefore, compactness and structural
stability were preserved throughout the entire
simulation. Conformational changes were minimal,
and the molecule remained in a stable configuration
(Figure 7).

The energetic states of sericin 4 were assessed
based on the “GROMACS Energies” plot, which
shows the potential and total energy (Figure 8).
Both energy values remained nearly constant over
500 ps, with only minor fluctuations. The potential
energy stabilised around -16-10° kJ/mol, and the
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Fig. 6. Root mean square deviation plot of sericin 4
molecule.
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Fig. 7. Stability analysis of sericin 4 based on radius of
gyration (Rg).
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total energy around -13.5-10° kJ/mol. The very
small fluctuations indicate that the system reached
thermal equilibrium. No significant variations or
signs of instability were observed in the results
(Figure 9).

The molecular weight, isoelectric point, and
other parameters of sericin 4 were determined
using the ExPASy (ProtParam) server. The results
are presented in Table 4. This server can help to
accurately calculate many protein parameters [39-
41].

The CamSolpH computational server was
used to theoretically study the dependence of
the solubility of the improved model of sericin 4
on the pH value of the medium in the YASARA
minimization server. CamSolpH provides a
solubility profile, where regions with a score
greater than 1 indicate highly soluble regions and
regions with a score less than -1 indicate poorly
soluble regions. The entire sequence is given an
overall solubility score. This score can be used to
rank different protein variants with high accuracy
according to their solubility [42].

GROMACS Energies
-16500000

~16000000 F
~15500000 |
'S-15000000 |
E ——Total energy
314500000

-14000000

Potential energy

-13500000

-13000000

0 100 200 300 400 500
Time, ps

Fig. 8. Potential and total energy stability of the sericin 4
protein during MD simulation.

Fig. 9. Conformational state of the Sericin 4 molecule
resulting from molecular dynamics simulation.

If we look at Figure 10, the CamSolpH score
is greater than 1 in the range of pH values in the
solvent (water) medium from 1 to 14. This value
theoretically confirms that sericin 4 has good
solubility. When comparing the relative solubility
at different pH values, it can be seen that the
solubility is lowest at pH = 10. It can be assumed
that the solubility of sericin 4 is highest in solvents
with a pH value of up to 4. However, an increase
in solubility can be observed in solvents with a pH
value higher than 10.

Table 4. Some calculated parameters of sericin 4.

Molecular model Parameters
Amino acid number 2296

Molecular weight 254369.63 Da
Isoelectric point 6.25
Eincioncoticins 5393 e
The instability index 43.88

Ll
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Fig. 10. Solubility index of sericin 4 in solvents (water)
with different pH values.
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4. CONCLUSIONS

In this study, a comprehensive computational
investigation was carried out to predict and
analyse the structural and dynamic properties of
the sericin 4 protein from Bombyx mori. Since
no experimental data are available in protein
databases, structural prediction was initially
performed using the AlphaFold server, yielding five
possible molecular conformations. Comparative
evaluation through ProSA-web analysis identified
the “e” model (elongated multi-domain flexible
model) as the most reliable structure, with the
lowest Z-score (-8.51). Further refinement using the
YASARA minimisation server reduced the overall
potential energy of the structure to its minimum
state and improved its geometry. Furthermore,
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refinement with the Rosetta Relax resulted in an
additional improvement of the sericin 4 structure.
MolProbity validation confirmed the high quality
of the optimised model (MolProbity score 1.36,
Clashscore 1.96, 99™ percentile, Rama distribution
Z-score -0.78 + 0.16, favored rotamers 99.95%),
suggesting that the refined model accurately
represents the likely native conformation of sericin
4.Molecular dynamics (MD) simulations performed
with GROMACS (OPLS-AA/L force field and the
SPCE water model) demonstrated the structural
stability of the sericin 4 molecule over a 100 ns
trajectory. The RMSD and radius of gyration (Rg)
analyses indicated that the protein achieved a stable
conformational equilibrium after approximately
200-300 ps, maintaining compactness and structural
integrity throughout the simulation. Potential
and total energy profiles remained constant,
confirming thermal and conformational stability.
Solubility profiling performed using the CamSolpH
calculation server revealed that sericin 4 exhibits
high solubility across a wide pH range (1-14), with
a slight decrease observed around pH 10.

Overall, these results provide the first detailed
computational insight into the structure, stability,
and solubility properties of the sericin 4 protein. The
findings not only contribute to filling the existing
knowledge gap regarding this protein but also
establish a reliable structural model that can serve
as a foundation for future experimental studies on
its biological functions, material properties, and
potential biotechnological applications.
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1. INTRODUCTION

We focus on the iterative resolution of linear

systems.
Ax=D>b (1)

where A € ™" and x, b € C"_ In Equation (1),
A =W + iT is a matrix which is non-Hermitian and
symmetric (A # A", A =A") with W,T € R™*™
are real and symmetric, and W and T are positive
definite and positive semidefinite matrices,
respectivelv n this text, the imaginary quantity
. 1'2 = -1 . x

iota, ,1s denoted by the symbol 1. Let there
be a splitting A = M — N of the matrix 4 € C""
i.e., M € C"*" is nonsingular and N € C™*". This
splitting gives rise to a fixed-point iterative method
of the following form.

XM= MTINXR 4+ M7h, k=012,.. ()

where x° € C" is a given starting vector.

Systems corresponding to Equation (1) appear
frequently throughout computational science and

in numerous branches of engineering, where they
form a core component of many modelling and
simulation tasks. A few notable examples include
Diffuse Optical Tomography (DOT); very helpful
for small animal imaging, breast cancer detection,
and functional brain imaging [1]. Because of the
nature of light propagation in scattering media
and the usage of complex coefficients to simulate
absorption and diffusion, the mathematical
modelling and numerical computation required
in DOT frequently result in complex symmetric
linear systems. When time-dependent PDEs are
treated with FFT-driven schemes, the resulting
discretisations commonly lead to complex
symmetric linear algebraic systems, particularly in
frequency-domain formulations or in spectral and
pseudo-spectral frameworks [2].

Advanced scientific applications in structural
dynamics, especially those involving damping,
frequency-domain analysis, or non-proportional
damping models, the governing equations lead
to complex symmetric linear systems [3]. Lattice
Quantum Chromo Dynamics (Lattice-QCD)
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[4] is a computational approach for examining
QCD. Complex symmetric linear systems emerge
naturally in various formulations of Lattice-QCD,
particularly in fermion discretization such as
staggered fermions or twisted mass fermions [5].
Numerical computations in molecular scattering is
a crucial subject in quantum chemistry, chemical
physics, and dynamics. The foundational theory
relies on quantum scattering theory, resulting
in extensive linear algebraic systems that are
frequently complex and occasionally symmetrical
under certain conditions [6].

Recently, Ahmed et al. [7] and Kanwal et
al. [8] suggested that if the forward operator
A is symmetric, iterative over-relaxation can
solve (1) efficiently. Axelsson and Kucherov [9]
presented an iterative method for real matrices,
Benzi and Bertaccini [10] proposed a block
preconditioning for real-valued iterative algorithms,
Bai[l1]and Baietal. [12, 13] introduced a modified
Hermitian and skew-Hermitian splitting (MHSS) as
well as preconditioned-MHSS (PMHSS) iterative
methods and Wang et al. [14] improved the PMHSS
method. Various preconditioning techniques have
been developed to enhance the convergence rate of
these iterative methods. For instance, Salkuyeh et
al. [15], Hezari et al. [16], Axelsson and Salkuyeh
[17], Xie and Li [18], Xiang and Zhang [19],
and Salkuyeh [20], Zhao et al. [21] put forward
a Single-Step-MHSS method (SMHSS) and its
variants with a flexible-shift (f-<SMHSS). Wen ef al.
[22, 23] also suggested some iterative methods and
respective preconditioning techniques. Vorst and
Melissen [24], Freund [25], while, Bunse-Gerstner
and Stover [26] presented the conjugate gradient-
type methods; Clements et al. [27] introduced
Krylov-type methods. In particular, Hezari et al.
[28] proposed the Scale-Spliting (SCSP) method
employing a scaling approach. Later Salkuyeh [29]
suggested a two-step SCSP method, while Salkuyeh
and Siahkolaei [30] introduced a two-parameter
SCSP (TSCSP). Zheng et al. [31] also introduced
a double-step scale splitting iterative method. Li ef
al. [32, 33] put forward a dual-parameter double-
step splitting iteration method, and two iterative
methods with quasi-combining real and imaginary
parts. However, the scaled parameters mentioned
above are given in advance. Motivated by the
optimization models given by Zhao ef al. [21], this
study introduced a flexible-scalar strategy based
on the SCSP iterative method, which the scaled

parameters @ are determined by minimizing the
residuals at each iteration.

Following we present the essential notations.
The set of P X P real (complex) arrays and the P
-dimensional real (complex) vector space are
represented as RP*P and RP (CP*P and CP)
respectively. The conjugate and transpose of a
matrix or a vector x is x* and xT repectively. A
matrix A € CP*P (A € RP*?) is said to be Hermitian
(symmetric) positive definite (or semidefinite),
denoted by A = 0 (or = Q); if it is Hermitian (or
symmetric) and for all x € C*, x # 0, x"Ax >0
(x*Ax = 0) holds true. The real and imaginary parts
of a complex number X are denoted by Je(x) and
Im(x), respectively. p(A) is used to represent the
spectral radius of a matrix A and £(A) represents the
spectrum set of the matrix. The condition number
of a matrix 4 is denoted by x(4). The splitting of A
,definedas A = M — N, is said to be convergent if
p(M~IN) < 1.

A broad range of preconditioning strategies
has been introduced in past to accelerate the
convergence behavior of such iterative schemes.
For instance, a double-step scale splitting iterative
method employing a scaling approach given by
Salkuyeh and Siahkolaei [30]. By multiplying
two parameters (¢ —i) and (1 — ia) both sides
of the Equation (1), two equivalent systems can be
respectively yielded, ie., (@ —i)Ax = (a—i)b
and (1 —ia)Ax = (1 —ia)b, where a is a real
positive number. Then two fixed-point equations
can be generated as follows:

((@W +T) +i(al —W))x = (e—)b.  (3)
((@W +T) +i(alT —W))x = (1 —ia)b.  (4)

Zheng et al. [31] expanded on the PMHSS
iterative method, suggested by Bai et al. [13], and
proposed the following alternative iterative scheme:

(aW + T)ka'% =i(W — aT)x* + (a — )b <012

(aW + T)xhé = i(W —aT)x*+ (1 —ia)b
whereas the Equations (3) and (4) are in fact two
preconditioned systems in Equation (2) when
P=(a—1)I and P = (1 —ia)l, that is to say,
the preconditioned matrices are both the scalar
matrices. Equations (3) and (4) are one whena = 1,
therefore, the alternation ofthe DSS iterative method
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was only carried out in twins of two preconditioned
systems. This work focuses on linear systems whose
coefficient matrices are complex symmetric yet not
Hermitian. We focus on the scaled preconditioned
splitting iterative methods generally and consider
the systems in Equation (2) when P = (a — i)l
with @, 8 are both real numbers in this study.

2. MATERIALS AND METHODS

To provide context and completeness, this section
begins with a brief overview of existing methods for
solving linear systems whose coefficient matrices
are complex symmetric but non-Hermitian, as in
Equation (1). We then introduce the Flexible-Scalar
Splitting (f~SCSP) scheme.

2.1. The Relevant Methods
2.1.1. MHSS method [12, 13]:

The MHSS iteration method: Let x(® € C* be
an initial guess. For k =0,1,2,-, until {x®}
converges, compute x*¥*1  according to the
following sequence:

1
(al + W)x""2 = (al — iT)x* + b,
1
(al + T)x**1 = (al +iW)x*"2—ib,

where « is a given positive constant.
2.1.2. The SMHSS and f~SMHSS methods [21]:

(1) The SMHSS iteration method: Let
x(® € C" be an initial guess. For k =0,1,2,
, until  {x(®} converges, compute x (k+1)
according to  the  following

(al + W)x**1 = (al — iT)x* + b.

(2) The f-SMHSS iteration method: Let x(®) € C"
be an initial guess, for € >0, k =0,1,2, - until
{x(®} converges, the single-step iteration formula
for computing the next x(k+1) is as follows.

sequence

Step 1: Compute rx = b — Ax.

Step 2: Solve the equation

(agsq] + WKL = (gl —iT)x* + b,

where the flexible shift ap,q 1s the solution
to the following optimization problem:
111&11”({1;’ + W) g ||, With Tiees = b — Axpyq.

Step 3: If lrell2 = €, stop; otherwise, setk = k + 1
and return to Step 1.

2.1.3. The scale-splitting (SCSP) method [28]:

Let @ be a real positive constant and the matrix
aW +T be nonsingular. By multiplying the
complex number (@ —i) through both sides of
Equation (1), the following equivalent system can
be obtained.

Agx = (a—1D)b ®)

Where Ag = (aW +T) +i(aT —W). By
rewriting it as the system of fixed-point equations:
(aW +T)x =i(W — al)x + (a — i)b,

the SCSP iteration method can be summarized as
follows.

The SCSP iteration method: Let x(® € C* be
an initial guess. For k =0,1,2, -+, until {x(k)]
converges, compute x®**1 according to the
following sequence:

(aW + T)x**1 = i(W — aT)x* + (@ — i)b, (6)
where « is a given positive constant.

2.2. Proposed Iterative Method: The Flexible-
Scalar Splitting (f~-SCSP)

The variant system can be obtained by multiplying
the complex number & — i,

[(aW +T) —i(W — aT)]x = (a — i)b.

To use the flexible-scalar strategy, the f-SCSP
method is formulated as follows:

(@1 W + D" = i(W — g1 Dx* + (@ — Db (7)

where,

1. _
Tpy1 = argmin oy (aW +T) 1y, (8)

withrg = b — Ax¥, k =0,1,2, ...
Remark: In fact, the exact solutions of the quadratic
programming models in Equation (8) can be given
theoretically by simple computing. To avoid the
tedious computation of (o, W + T)" , we can use the
inexact line search to find the approximations of @.
In matrix-vector form, the scheme presented in
Equation (7) can be equivalently rewritten as:

oy

X%+ G, b, k=0,12,.. (9)

Tppa Tpra
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where,

Tape, = iag W+ T)HW — a1 T), and G, = (@ — )(aW +T)7 (10)
Here, Tg,,, is the iteration matrix of the f-SCSP
method. In fact, Equation (9) is also generated by
the splitting, A, = Mg, — Ng,, with
-1 +ia

a+i
Mak ZW(QW‘FT), and Nak :W(W_ iT)
Moreover,
Tay., = Ma..,Na,., and M, can be identified

as a preconditioner to all linear systems of type
Equation (1).

Consequently, the preconditioned system can be
expressed as follows.

MglAx = Mg!b. (11)

We now investigate the optimal parameter selection
and the spectral radius characteristics of the iteration
matrix, and assess the convergence behavior of the
previously described f-SCSP method.

Theorem 2.1: Letbe anon-Hermitian but symmetric
matrix A=W +iT€CY", (4 £ A", A=AT)
with both W, T € R™™" being symmetric, W and
T being both positive definite positive. Let @ be
positive real numbers and Amin and Amax be the
extremal eigenvalues of the matrix W ~1T. Then
the following statements hold true:

(1) In the f~SCSP method, the upper bound of the
spectral radius P Ta, ) is:

—®xAmin

_ A Amax
6ak - max {ak+ﬂmin ’ ak""qmax} (12)
(ii) The sequence {x*} produced by Method 2.1
1- )Lmin 1- 'JLmax
— < < —, A €(1,+co
1+ )Lmin g 1+ )Lmax ax ( )
1- )Lmin
ay > ————, T(W-IT) c[0,1
R T A ( ) < [0,1]

In particular, the iterative scheme presented in
Equation (6) is convergent if @ for the case that T
is a positive semidefinite matrix.

Proof (i): By Equation (12) and direct calculations,
we have:

p(Ta,,) = p(i(@xW + D)7 (W — a,T))
< liaxW +T)"2(W — ax )l

< [[(exW + T)"HI2IW — i Tl
= |[(axl + WAT) 7|2l — aW T2

—{Ik/‘l
4% + 4 |

= max
AEZ(W—1T)

In the last step, the equality holds since W 1T is a

symmetric positive definite matrix, and then so is

(al + WTIT)"L.

It is known that 4 is positive. By introducing the

following function:

—ad
) =——
f& a+ A
it is obtained that f (4) is a decreasing function
2
with respect to 4 since f'(1) = — (;i)z < 0.

Thus Equation (12) provides the upper bound of
P (Tak)'

Proof (ii): For the case that Amax > 1, 8g, < 1is
equivalent to a > % by simple calculations.

min

And then p(Ty) <1, so the sequence {x*}
produced by the f-SCSP method converges to the
nnique solution to Equation (1) for any initial guess
x*

Forthe case thatZ(W ~1T) < [0, 1],then A4 < 1
at that time. Thus, 64, <1 is only equivalent to

A
{Ik > mln‘
1+ﬂmin

It is well-known that Amin = 0 if T is a positive
semidefinite matrix. And then P(Tak) = 0-’_1, the
iterative scheme in Equation (6) is convergent if
a > 1. The proof is completed.

Corollary 2.1: Assuming the conditions of
Theorem 2.1 hold, the optimal the parameters «
that minimises the upper bound dg, of the spectral
radius P(Ta,.) is given by:

]
l—ﬂmm}{max+\‘|'[1+ﬂfmn)[1+ﬂ§nax)

(13)

{I =
Amin+Amax

A similar proof is presented in [28, theorem 1],

which is omitted here.

Theorem 2.2: Let be a non-Hermitian, symmetric
matrix A=W +iT € C"", with W,T € Rnxn
being both symmetric, also, W being positive-
definite and_ T positive definite or semidefinite.
Then P(Tz,) < 1 if for all x € C*, it holds that

XWx—-x"Tx
X*Wx+x*Tx

Proof: Let an eigenvalue of the matrix Ty,
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be A with the corresnonding eigenvector
x, le., M Nayx = 2% which means,
AlaW + T)x = i(W — aT)x. Then we have from
the assumptions that:

|x*Wx —ax Tx
" ax Wx + x*Tx

. TWx—x"T. . .
We obtain @ > w by direct calculations
X*Wx+x*Tx |
under 4] < 1. The theorem is proved.
Remark: Theorem 2.2 implies that all eigenvalues
of the matrix Ty, lie along the imaginary axis.
The last of this section, a property of the matrix

Mg ! A can be given.

4]

Theorem 2.3: Let A = W + iT € C"*" be a non-
Hermitian but symmetric matrix (4= A°, 4=AT
) with W, T € R™" be real, symmetric, and W
being positive-definite and T positive definite or
semidefinite. Assuming that [t is any eigenvalue
of the matrix Mg,'A defined by Theorem (2.2), the
Re(u) = 1.

Proof: Let A be an eigenvalue of the matrix M(;;A
and x be the corresponding eigenvector of the
eigenvalue 4 with ||x||; = 1. It is known that:

(ap — i) (W +iT)x = A(apW + T)x.

So, we have:

1 apx Wx + x"Tx + i(apx"Tx — x"Wx)
apx Wx + x*Tx '

From assumptions, x*Wx =c > 0, x*Tx =d = 0.
Then we yield Ne(u) = 1.

3. RESULTS AND DISCUSSION

This section presents a series of numerical
experiments designed to evaluate the practicality,
reliability, and computational efficiency of the
proposed f-SCSP method in comparison with
existing approaches. The evaluation is based on
three key performance metrics: the number of
iterations to convergence (IT), the total processing
time taken by our computer in seconds for
convergence (CPU), and the final residual norm
(RES). These measures provide a comprehensive
assessment of both the convergence characteristics
and computational cost of each method.

The performance of f-SCSP is assessed
in comparison with four well-known iterative
techniques. The MHSS method [12, 13], SMHSS
method [21], the f~SMHSS method [21], and the

SCSP method [28], which were introduced and
discussed in Section 2. In all numerical experiments,
the initial guess is taken as the zero vector, and the
iterations are terminated once the relative residual
norm meets the predefined stopping criterion, set
here as an £,-norm of the residual < 107°, The
iteration process is considered unsuccessful if
convergence is not achieved within a maximum
of 8000 iterations. This limit guarantees an
equitable assessment among all techniques and
aids in avoiding excessive computation time when
convergence is not reached as expected. All these
experiments are done with different vector space
sizes m given A : C™ — C™; the results provide
empirical validation of the theoretical analysis
and demonstrate the performance of the proposed
method.

Example 3.1 [28]: The linear system of equations
in (1) represents the form (W + iT)x = b, with

W=100QV.+V.®I) +9(eel, +ele) ®1I

and T=IQV+VQ®! where V =tridiag(-1,2 -1) € R™™
V.=V —eel, +ele € ]Rmxm’ e, = (1,0,...,00T e R™
and e, =(0,0,..,1)T € R™. The vector b on the
right-hand side can be choosen as b = (1 +i)A1,
where 1 is the vector with all entries equal to 1.

Example 3.2 [28]: The complex linear systems (1)
is of the form:

[(—w?M + K) + i(wCy + Cx)lx = b

where @ denote the driving circular frequency,
with M and K representing the inertia and
stiffness matrices, and Cy and Cy are denoting
the viscous and hysteretic damping matrices.
The viscous damping is modelled as Cy = uK
where p is given as the damping coefficient,
M=I C,=10I K=1®By + B, QI, with

By, = h—lzh'idiag(—I,Z, —1) € R™m*m, and mesh
size h =ﬁ. Accordingly, K takes the form

of an n Xn block-tridiagonal matrix with block
dimension n=m?. We further specify w=m
, u=0.02, and construct the right-hand vector
b = (1 + i)A1, where 1 denotes the vector with all
components equal to 1. To standardise the system,
we pre-multiply both sides by h%thereby obtaining
a normalised formulation.

Example 3.3: Consider the two-dimensional
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convection-diffusion equation:

—(uxx + uyy) + I}(ur + uy) =g(x, y)’

the region of interest is considered over the unit
square domain [0, 1] x [0, 1] assuming constant
coefficient 17 and imposing Dirichlet boundary
conditions. Employing the five-point central
difference discretisation leads to the linear system
(1), characterised by the following coefficient
matrix:
W=T,QI+IQT,andT=1QV+VRI,
where the matrices T; and V are given by:

T; =tridiag(-1 - R.,2,-1 + R,),V = tridiag(2, -1, -1)
with R, = th/2, being the mesh Reynolds number,
and h = 1/(m + 1) being the equidistant step-size.
Moreover, the right-hand side vector b is taken to
be b = Ax, with x* = (1,1,1,...,1)T € R" being
the true solution.

In the conducted experiments, matrices
with dimensions approaching 270,000 (i.e.,
n=m? =512 x 512 = 262,144) were examined.
The numerical results are summarized in Tables
1-3. Evidently, the SCSP and f-SCSP methods
perform commendably; the f-SCSP method
achieves convergence in the fewest iterations,
whereas the SCSP method demonstrates superior
computational efficiency in most tests. The
challenge of balancing iteration count and
execution time to develop an enhanced method
constitutes a key direction for forthcoming research.

When compared against its counterparts,
SCSP, f-~-SMHSS, SMHSS and MHSS, the proposed
f-SCSP method exhibits a compelling balance
between iteration count and computational cost.
Table 1 shows results from Example 3.1, and that
SCSP is achieving convergence in 10-103 iterations
across increasing problem sizes, closely matching
the iteration efficiency of flexible f-SCSP but
requiring only approximately halfthe CPUtime (e.g.,
0.0153s vs. 0.0592s for m = n = 16), highlighting
its lower overhead in parameter selection. Although
f-SCSP attains marginally fewer iterations in some
cases, its per-iteration optimization of &k sustain
a significant time penalty. In contrast, classical
SMHSS and MHSS methods demand up to an order
of magnitude more iterations and substantially
longer runtimes, often exceeding SCSP by factors
of 5-10, reflecting the superior conditioning induced
by the scaled preconditioning. Overall, f~SCSP

converges in fewer iterations with better efficiency
in all system sizes compared to MHSS, SMHSS,
and f~SMHSS. The comparison between f-SCSP
and SCSP is however subtle; f-SCSP converges
with fewer iterations and a slightly better relative
residual in larger system sizes, but the CPU time
shows that SPSC is the most efficient throughout.
Similarly, Table 2 shows results from Example 3.2,
and again f~SPSC and SPSC are very close, with
f-SPSC convergeing in fewer iterations and with
better relative residual, and SPSC being faster in
terms of CPU computational time. All the other
methods follow f-SCSP and SCSP. In Table 3,
we see results from Example 3, which show that
f-SCSP performs superior to all of the existing
methods, including SCSP, in terms of all, number of
iterations required to converge, the relative residual,
and the required CPU time for computation, while
SMHSS variants exceed hundreds to thousands of
iterations. This consistent performance highlights
SCSP’s robustness and its practical advantage for
large-scale complex symmetric systems.

A catch is the use of the initial guess. All
our experiments use x, = 0, but many practical
solvers benefit from warm starts. Finally, while the
convergence proofs (Theorems 2.1-2.3) guarantee
p(T) < 1 under stated assumptions, the potential
for combining f~SCSP with Krylov acceleration
can be addressed, representing an opportunity for
further speed-ups in challenging regimes.

Our numerical results presented in the tables
are given in line plots. Figure 1 shows the CPU
time of taken by the respective methods plotted
vs the vector space size M in Example 3.1. The
f-SCSP is much faster than most other methods,
and it performs very close to the existing SCSP.
Similarly, Figure 2 show that in 3.2, as the system
size increases, the SCSP performs better than the
proposed method. However, it can be seen in Figure
3 for Example 3.3 that both methods perform
equally well for all system sizes. Figure 4 show
the convergence behavior of the proposed method
in Example 3.1 with different system sizes. The
residual error is plotted vs the number of iterations,
and f-SCSP outperforms the existing methods
in all tests, as demonstrated. Similarly, Figure 5
shows how f-SCSP outperforms all of the existing
methods in convergence in Example 3.2. In Figure
6, the difference in convergence between f-SCSP
and SCSP looks tight, especially in figure 6(b),
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Table 1. Tests from Example 3.1. The first column lists the system sizes in €™. The second column shows iteration
count, CPU time, and residual error. Columns 3-7 present the results from SCSP, {-SCSP, {~SMHSS, and MHSS
respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 10 10 16 18 54

16 CPU Time (s) 0.015 0.059 0.048 0.026 0.160
Res. Err. 5.218e-7 9.694e-7 8.918e-7 6.845¢e-7 8.238e-7
Iter. Count 16 16 26 24 131

32 CPU Time (s) 0.150 0.243 0.306 0.202 1.840
Res. Err. 9.321e-7 4.443e-7 9.043e-7 7.460e-7 9.525e-7
Iter. Count 22 20 32 36 171

48 CPU Time (s) 0.419 0.608 1.113 0.683 5.053
Res. Err. 5.287e-07 8.892e-07 7.711e-07 9.641e-07 9.716e-07
Iter. Count 28 26 49 55 191

64 CPU Time (s) 0.809 1.063 2.681 1.680 5.954
Res. Err. 6.803¢-07 8.043¢-07 9.987¢-07 8.918e-07 9.875e-07
Iter. Count 63 46 119 108 306

128 CPU Time (s) 5.971 6.999 13.862 9.638 52.724
Res. Err. 8.541e-07 9.464¢-07 9.601e-07 8.168¢-07 9.893¢-07
Iter. Count 63 60 325 332 997

256 CPU Time (s) 28.805 42.680 199.335 302.205 804.894
Res. Err. 8.258e-07 8.122¢-07 9.949¢-07 9.929¢-07 9.981e-07
Tter. Count 103 84 1093 7080 3345

512 CPU Time (s) 252.411 510.790 3640.200 17965.00 22926.00
Res. Err. 9.731e-07 9.537¢-07 9.962¢-07 9.995¢-07 9.993¢-07

Table 2. Tests from Example 3.2. The first column lists the system sizes in C™. The third column shows iteration count,
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 37 40 268 268 34

16 CPU Time (s) 0.053 0.104 0.772 0.372 0.094
Res. Err. 8.345e-07 8.514e-07 9.782e-07 9.667e-07 9.539e-07
Iter. Count 42 38 245 244 49

32 CPU Time (s) 0.243 0.364 1.729 1.107 0.557
Res. Err. 8.969¢-07 9.367¢-07 9.600e-07 9.878e-07 8.624¢-07
Tter. Count 44 39 231 231 82

48 CPU Time (s) 0.584 0.808 2.900 1.795 1.310
Res. Err. 8.230e-07 9.204e-07 9.940e-07 9.771e-07 8.920e-07
Iter. Count 45 40 222 222 128

64 CPU Time (s) 1.147 1.101 6.738 3.955 6.312
Res. Err. 7.628e-07 7.895e-07 9.781e-07 9.625e-07 9.766e-07
Iter. Count 46 41 200 199 440

128 CPU Time (s) 4.321 5.710 49.653 30.106 138.168
Res. Err. 7.429¢-07 7.176e-07 9.574e-07 9.870e-07 9.928e-07
Iter. Count 46 41 177 177 835

256 CPU Time (s) 18.428 26.657 225.347 143.796 1118.5
Res. Err. 8.145e-07 7.801e-07 9.778e-07 9.643e-07 9.998e-07
Iter. Count 46 41 153 152 3160

512 CPU Time (s) 140.608 186.084 581.892 355.640 17228.00
Res. Err. 8.371e-07 7.998e-07 9.613e-07 9.838e-07 9.987e-07
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Table 3. Tests from Example 3.3. The first column lists the system sizes in €™. The third column shows iteration count,
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 6 3 131 131 150
16 CPU Time (s) 0.009 0.010 0.468 0.201 0.443
Res. Err. 5.645¢-07 2.396e-07 9.467¢-07 9.374e-07 9.449¢-07
Iter. Count 6 3 226 226 238
32 CPU Time (s) 0.040 0.036 1.938 1.241 1.934
Res. Err. 5.645¢e-07 2.396e-07 9.974e-07 9.955e-07 9.782e-07
Iter. Count 6 3 345 323 347
48 CPU Time (s) 0.080 0.080 5.208 3.519 5.710
Res. Err. 5.645¢-07 2.396e-07 9.934¢-07 9.809¢e-07 9.956e-07
Iter. Count 6 3 437 428 624
64 CPU Time (s) 0.158 0.155 11.377 7.933 15.952
Res. Err. 5.645¢e-07 2.396e-07 9.876e-07 9.973e-07 9.848e-07
Iter. Count 6 3 815 751 912
128 CPU Time (s) 0.887 0.852 121.434 83.248 177.660
Res. Err. 5.645¢-07 2.396e-07 9.942¢-07 9.898e-07 9.914e-07
Iter. Count 6 3 1426 1350 1905
256 CPU Time (s) 3.062 2.553 1091.90 814.111 1906.40
Res. Err. 5.645¢e-07 2.396e-07 9.955e-07 9.950e-07 9.973e-07
Iter. Count 6 3 4712 4421 5233
512 CPU Time (s) 15.015 13.637 11507.4 17269.0 42689.00
Res. Err. 5.645¢-07 2.396e-07 9.9966¢-07 9.994¢-07 9.9989¢-07
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3

Fig. 1. Comparing f-SCSP with the existing methods in
terms of CPU time from Example 3.1. {-SCSP performs
better than its most counterparts.

but f~-SCSP outperforms SCSP both in number of
iterations and final residual error, taking half the
number of iterations.

Moreover, Figure 7 shows the eigenvalues spread
of the preconditioned matrix vs the actual system
matrix in Examples 3.1 for a system size of 48 x 48
. The real part of an eigenvalue is directly related to
how a system behaves over time. If the real part is
positive, the system grows exponentially, meaning
it becomes unstable over time. If the real part is
negative, the system decays exponentially, meaning

terms of CPU time from Example 3.2. {~SCSP performs
better than its counterparts, and is close to SCSP, if not
matches its performance. f~-SCSP takes a little longer to
converge for larger system sizes.

it settles down to zero. In all preconditioned cases,
we see that the eigenvalues have a real part of
one and that the system has no fast growing or
decaying. Instead, it might oscillate or stay at a
constant amplitude. This doesn’t guarantee that the
matrix is strictly stable, but it demonstrates that the
matrix is not unstable either. The same behaviour
of strong clustering of the spectrum resulting due to
preconditioning canalso be observedin Figures 8 and
9 for Example 3.2 and 3.3, respectively, where the
preconditioned matrix Mg, ,:A evidently has a faster
convergence compared to the original matrix A.
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Fig. 3. Comparing f-SCSP with the existing methods in
terms of CPU time from Example 3.3. f-SCSP performs
better than its counterparts, and performs equally well as
SCSP, matching its performance.
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Fig. 4. The convergence behavior of f-SCSP vs its
counterparts. (a) show tests from Example 3.1 with
vector space €32 and (b) shows €236, Clearly, the
convergence in f~-SCSP dominates others with a margin.
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Fig. 5. The convergence behavior of f-SCSP vs its
counterparts. (a) test results from Example 3.2 with
vector space €32 and (b) shows results with vector space
C?56_ £.SCSP dominates others in convergence with a
margin. (a) show the dominance of f-SCSP clearly;
whereas (b) shows convergence line of f-SCSP close to
SCSP; however, f-SCSP convergence in fewer iterations
and with lower residual error.
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Fig. 6. The convergence behavior of f-SCSP vs its
counterparts. (a) test results from Example 3.3 with
vector space €3 and (b) shows results with vector space
C?56_ f-SCSP dominates others in convergence with a
margin. (a) show the dominance of f-SCSP clearly;
however, (b) shows almost overlapping lines for f-SCSP
and SCSP; but f-SCSP convergence in half the number
of iterations required by SCSP and with lower residual
error.
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Fig. 7. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix Mgy A (b), from the
system matrix in Example 3.1. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.
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Fig. 8. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix M;,}A (b), from the
system matrix in Example 3.2. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.
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Fig. 9. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix M, ;:A (b), from the
system matrix in Example 3.3. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.

4. CONCLUSIONS

In this paper, we have presented a flexible-scalar
splitting iterative methods based on the SCSP
method for effectively solving a broad category
of complex symmetric linear systems. Special
attention is given to the structure and properties
of the equivalent systems (a —i)Ax = (a —i)b
particularly in cases where the parameters « is
chosen to preserve the symmetry and improve the
conditioning of the original system. Theoretical
analyses have been conducted to demonstrate
that the proposed method is convergent under
reasonable and practically relevant assumptions.
Moreover, explicit expressions linking the optimal
parameters « to the spectral radius of the associated
iteration matrix have been established, offering a
rigorous theoretical basis for parameter tuning and
enhanced convergence rates.

To evaluate the practical efficacy of the proposed
approaches, extensive numerical experiments were
performed comparing the f~-SCSP method against
four established algorithms from the literature [28].
The findings consistently highlight the proposed
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method’ reliability, robustness, and computational
efficiency. Notably, the f-SCSP method exhibit
equal or superior convergence rates and iteration
counts, thereby confirming their suitability for
tackling complex symmetric linear systems.
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Abstract: This paper introduces a modified twentieth-order method for solving nonlinear equations that commonly
arise in physicochemical models. The proposed method is designed to efficiently handle the complex problems that
normally occur in the van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium conditions.
The traditional method has a lower order of convergence and uses higher-order derivatives. However, proposed
method has twentieth-order convergence with only one first derivative used in each iteration. A detailed convergence
order has been carried out to demonstrate the theoretical order of accuracy. Various numerical experiments have also
been carried out to validate the performance of the proposed method. The results show the significantly improve the
accuracy and taking a smaller number of iterations, number of function evaluations, and CPU time when applied to
nonlinear equations arises in van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium
conditions and basin of attraction further validate the stability of proposed method.

Keywords: Nonlinear Physicochemical Models, Iterative Method, Convergence Analysis, Weight Function, Hermite
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1. INTRODUCTION have proposed higher-order methods for solving

nonlinear algebraic and transcendental equations

One of the key challenges in numerical analysis is
solving nonlinear equations that arise in engineering
problems, specifically in arises in van der Waals
equation for real gases, Planck’s radiation law,
and chemical equilibrium conditions. Iterative
methods, like newton’s method, are commonly
employed for this purpose. In this context, this
article focuses on iterative techniques aimed at
finding a simple root a, such that ¥(a) =0 and
Y'(a) # 0, for a nonlinear equation (x) =0 [1].
High precision is most significant for numerical
computation, highlighting the importance of
higher-order numerical methods [2]. Many scholars

[3-5]. Similarly, a number of researchers have also
introduced a higher-order convergence optimal
method [6-8]. Bracketing/closed method [9-13]
have also have their importance because they have
always been convergent, but their convergence is
very slow. So now the researchers are more intend
to introduce higher order method using weight
function techniques [14-16].

2. DERIVATION

We use the Newton technique [1] as the first step in
the suggested approach.

Received: October 2025; Revised: November 2025; Accepted: December 2025
* Corresponding Author: Sanaullah Jamali <sanaullah.jamali@usindh.edu.pk>
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(o) €))
Y Gey)

n — ¥n —

In the second step of the proposed method, we
utilize a variant of the double Newton method [17]
and modify it by substituting 1 (3,,) with ¥’ (¢,,) in
this step.

$(n) ﬂ (w(vn)) @)

$n=vn - [1 + (wcxn) )

From Equations (1) and (2) we get:

Plen)
W' ()

3)
o Pn) V2] [ #n) (
Step2. &n = v [1 + (w’(x?:)) ] (w'(v’;) }

To enhance the accuracy and convergence,
introduce the weight function L see in Thukral [18]
in the step 2 of Equation (3).

Step 1.v, = 3, —

Where L = K —2a + 2ab(a — 1)? + 2a®b 1
_ Y (vy) P’ ()
AndK=(1—-a*—-10a*)"%, a= , b=
( ) TR RTIon
We get
I e
Step 1.v,, = 3, " (:)

w(vn)) ] (M) “4)

Step2.§, =v, — L [1 + V) T

And add one more step of newton by using ¥(<,.)
and lIJJ(En), '-IJ,(EH) ~ hrB (En)

= 3, — POm)
Step 1.v, = 3, W Gen)
(vn) C )
Step 2.§, = v, — L [1 + (&f’;’;)) ] af(:’;) ®)
Step 3.0, = &, — Iﬁp(?))

In three-step formula mentioned in Equation (5)
we estimate ¥'(§,) using existing data, thereby
reducing the number of function evaluations needed
per iteration. At the nodes »,v, and £, we have four
values ¥ (30, %' (%), ¥ (v) and ¥ (). In the third step
of the iterative scheme in Equation (5), we use the
approximation ¥'(§) ~ H3(§) to approximate ¥
using Hermite’s interpolating polynomial of degree
3. This algorithm takes the following form.

Hs() =ag +ay(n —3) +a;(n —%)* + az(n — »)?
(6)

And its derivative is:
H3(1) = a; + 2a,(n — %) + 3as(n — x)? )

The unknown coefficients will be determined using
available data from the conditions:

Hy(o) = (), Hz(v) =y(v), H3(§)=v()
& HiG0)=9'0Go)

Putting n = xinto Equations (6) and (7) we get
ap =9(») anda; =¢'(x). The coefficients a,
and as are obtained from the system of two linear
equations formed by using the remaining two
conditions 7 =v&n = ¢ in Equation (6) and we
obtain:

_ B=0ylva]  voalEad 1
QT e | G P )(s - x)
& = YlEaxd v W' (x)
PTG G- | -0

By putting the values of a;, a;, az & 1 = & in Equation
(7) we get:
H3(&) =2, &1 = b, vD + v, €] +

(@l - 9'60) @)

We replace ¥'(&,) in third step of Equation (5) by
Equation (8) H;Hermite we get:

_ _ Y(tn)
Step Lva = 3n = 4
3 PYive) Yva)
Step2.&§, =v, — L [1 + Y’ (;(,,)) ] (tp’(vn)) ©)
Step 3.0, = &, — Lo

hS(&n)

Now add one more step of newton by using ¢ (o,,)
and ¥’ (o,).
And finally, we got:

$ixn)
W' (n)

Step 2.&,, = v, —L[l +

Step 1.v,, = »,, —

(o)1)

(10)
_ s _ ¥
Step 3.0n = Sn ~ i
Ylon)
Step 4.3,,41 = 0y — zpf(oa,,)

Equation (10) is the twentieth-order method with
four function evaluations and three first derivatives.

3. CONVERGENCE ANALYSIS

Theorem: D represents an open interval containing
#o as afirst estimate of @ € D. Let ¢ € D be a simple
root of a function ¥ : D € R —» R that is suitably
differentiable. Under these conditions, Equation
(10) yields Twentieth-order of convergence and
requires only four function evaluations along with
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three first derivative calculations in each complete
iteration, with no need for second or higher-order
derivatives.

Proof.
The Taylor series expansion for the function ¥ (5¢,)
can be expressed as:

m!

w(%n) = Z v (J) (%n - G)m = U’J(U) +
m=0

P (o)

2!

l,b’(cr)(xn—cr) + (}‘fn_o—)2 +

¥""(9)
3!

Gtn — )3+ (11)
For simplicity, we assume that

Re =(3) ik{{;’})k > 2,

and assume that &, = #, — a. Thus, we have:
For step one:

, £, + Rye2 + R3el +)
M = a
IP( n) lrb ( )(R4£#+ "“I‘ Rz]_é'%l (12)
1+ 2Ry, + 3R;s2 +)
p — gy 13
Vo) =y (a)(4R4gg... +21R,, €20 (13)

From Equations (12) and (13):

_ Wisen)
W Gen)

Step 1. v, = 3, = R,e2+ (2R3 — 2R3 +

(4R3 —7R3R; + 3Ry )ep + -+ 0(e2! (14)

B )\ (v
Step2.&, =v, — L (1 " (w*w) >(¢*(vn)) -

RZ(3R2 — (7R3 + 1)R, + Ry)ef —

2[R ( R3 — (36R3+ 5)R3 + 9R,R: + ) 7
2 n +
(R3(20R; +3) — R5)R, — 2R3R,

~+0(2Y)  (15)

(&)
Step 3. On = fn _]::Isif) =

R3R,(3R3 — (7R3 + )R, + Ry +

2R,(3R3 — (7R3 + 1)R, + 2R,)Rs —
2R (4Rg —2(23R3+ 3)R3 + 10R,RZ +) g+
4 R;(27R; + 4)R, — 3R3R,

R}

.+ 0(2Y) (16)

_ Ylon) —
Y'{on)

Step 4. Mpy1 =0p
RIRZ(3c3 — (7R3 + )R, + R)*e2°+ 0(e2Y)  (17)

Lastly, the efficiency index of the proposed approach
mentioned in Equation (10) is 1.534127405, the
rate of convergence is twenty, and each iteration
requires three first derivative evaluations and four
function evaluations.

4. NUMERICAL EXPERIMENT AND DISCUSSION

Problem 1. A chemical equilibrium problem (see [19-21])

w* — 7.79075x3 4+ 14.7445x%2 + 2511x% — 1.674 = 0

Table 1. Numerical results for problem 1 for first four iterations and their absolute function values at ¢ = 0.6.

Root & absolute

Method . 1%t iteration 2" jteration 3 jteration 4 jteration

function value
M » 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...

[ ()] 3.9356E — 13  2.9239E — 267  7.6755E — 5350 1.8529E — 107001
BT 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...

[ (x0)] 5.0042E — 11 1.2188E—221  6.5800E — 4434 2.9086E — 88679
Arogn % 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...

[ (x0)] 2.2287E—10 5.0928E— 208  7.6768E — 4161 2.8154E — 83217
T 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...

[ (x0)] 1.6868E — 10  1.4682F — 210 9.1397E — 4212 6.9775E — 83236
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Table 2. Numerical results for the problem 1, error fixed at § = 1 x 10,

Method IG N FE CPU Time
PM 0.6 4 28 2.78 x 10°
Al20" 0.6 5 35 8.39 x 10°
A2 20" 0.6 5 35 9.56 x 10°
A3 20" 0.6 5 35 1.02 x 10!
—a— 'S8
Problem 1 —o— Al 20th Problem 1
1 —&— A2 20th 1
1610 —T A3 20t 10 . ‘ . Ao
. 1E-20 5 . : .:.i':zvm
Z Ex _ .
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Fig. 1. Graphical Representation of | (3)] of Table 1.
by assuming the scale 1 x 103 =1 x 10",

The performance of the PM method in solving
problem 1 is evaluated against A1 20™, A2 20", and
A3 20" up to the fourth iteration. Results presented
in Table 1 indicate that PM achieves higher accuracy
and faster convergence, as depicted in Figure
1, which illustrates PM’s quicker convergence
relative to the other methods. Table 2 provides

T T T T
sol | Sol 2 sl 3 sol 4
Solution of PM and their counterpart

Fig. 2. CPU time (in sec) versus solution of problem 1
by the proposed scheme and its counterparts.

detailed metrics, showing that PM requires only
4 iterations and 28 function evaluations, whereas
the other methods necessitate 5 iterations and 35
evaluations. Additionally, PM consumes less CPU
time to achieve a tolerance of 1 x 10, with Figure
2 reinforcing its superior CPU time performance
compared to alternative methods.

Problem 2. Volume from van der Waals equation (see [8])

() = 40%3 — 95.2653511622 + 35.28x — 5.6998368

Table 3. Numerical results for problem 2 for first four iterations and their absolute function values at #, = 2.5.

Root & absolute

Method . 1%t iteration 2" jteration 3 jteration 4t jteration

functional value
M P 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...

[ (G| 2.7230E—7 7.3008E — 207 1.3896E—4996  7.1118E — 119950
AL 200 X 1.9707 ... 1.9707 ... 1.9707 .. 1.9707 ...

Y Gol 83409E—5 14913E—118 1.6624E —2393  14603E — 47892
A 20 P 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...

[P (Gl 42265E—5 89428E— 125 2.8928E — 2518  4.5534E — 50388
A3 20" P 1.9707 ... 1.9707 ... 1.9707 .. 1.9707 ...

[ (Go)| 51315E—5 5.3469E — 123 1.2172E— 2482  1.7007E — 49675
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Table 4. Numerical results for problem 2, error fixed at § =1 x 107,

Method IG N FE CPU Time
PM 25 4 28 7.08 x 10°
A120" 25 5 35 7.32 X 10°
A2 20" 25 5 35 7.94 x 10°
A3 20" 2.5 5 35 7.78 x 10°
Problem 2 —=—P38 Problem 2
. —e— Al 20th 8.0 4 A
——ram W] b
120 78] v PsE
£ w0 !
2 jpao ]
_5 1650 ; 7.6
Z 60 505 ]
E i éjs
2 im0 27.4-
2 e ©s A
% 16100 7.2
1E-110
1E-120 7 v
1E-130 7.0

T T T T
Ist Ind Ind dih
Iteration

Fig. 3. Graphical Representation of |1 (s)| of Table 3.
by assuming the scale 1 x 103 =1 x 10",

Table 3 shows that PM is more accurate and
converges quickly than its counterpart approaches
in problem 2. And Table 4 shows the iterations,
function evaluations, and CPU time (in seconds),
where Al, A2, and A3 need 5 iterations and 35
function evaluations, whereas PM requires 4 and

T T T T
sol | Sol 2 sl 3 sol 4
Solution of PM and their counterpart

Fig. 4. CPU time versus the solution of problem 2 with
the proposed scheme and its counterparts.

28. PM achieves a tolerance of 6 = 1 x 10 more
effectively than comparable approaches because
of its decreased CPU time (in seconds). However,
Figures 3 and 4 are graphical representations of
Tables 3 and 4, also demonstrating that the proposed
method is more accurate.

Problem 3. Planck’s radiation law (see [20, 22-25, 27])

- x
e 1+5—0.

Table 5. Numerical results for problem 3 for first four iterations and their absolute function values at #q = —0.5.

Root &

Method absolyte 1% iteration 2" jteration 3 jteration 4™ jteration
functional
value

PM b4 —5.9344E — 14 —1.6768E — 269 —1.7657E — 5380 —4.9576E — 107600
[y ()| 47475E — 14 47475E — 269 47475E — 5380 47475E — 107600

Al 20" ¥ —5.4708E — 10 —2.0950E — 187 —9.6359E — 3736 _1.7203E — 74702
6] 4.3767E — 10 1.6760E — 187 7.7087E — 3736 1.3835E — 74702

A2 200 x —7.6741E — 11 —2.5011E — 205 —2.5011E — 4095 —8.0702E — 81890
[ Ge)| 6.1393E — 11 2.0009E — 205 3.6606E — 4095 6.4562E — 81890

Az ¥ —1.5682E—10  —8.2960E — 199  —2.4446E—3964  _59562E — 79275
[¥ GOl 1.2545E — 10 6.6368E — 199 1.9556E — 3964 1.9556E — 79275
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Table 6. Numerical results for problem 3, error fixed at 5 =1 x 107,

Method IG N FE CPU Time
PM —0.5 4 28 5.18 x 102
Al 20" —-0.5 5 35 5.25 x 10?
A2 20" —05 5 35 5.20 x 102
A3 20" 05 5 35 5.24 X 102
—a— 'S8
Problem 3 —e— Al 20th Problem 3
1 —&— A2 20th 26
1610 —w— A3 20th 525 .
1E-20
o 524 .
N _
L: 1E-40 §-¢23
£ 1Es0 i
E 1160 g
S 1B :M
-§ 114-80) t 520 .
é 1E-90 519 4
1E-100 .
1E-110 S8 v
1E-120 517

T T T T
Ist Ind Ird 4th

Iteration

Fig. 5. Graphical Representation of [1 ()| of Table 5.
by assuming the scale 1 x 103 =1 x 10",

Compared to its counterpart approaches in
problem 3, PM is more accurate and converges
faster, as Table 5 demonstrates. Additionally, Table
6 displays the CPU time (in seconds), number of
iterations, function evaluations. Al, A2, and A3
require five iterations and thirty-five function
evaluations, while PM needs four and twenty-eight.
PM’s reduced CPU time (in seconds) allows it to
achieve a tolerance of 6 = 1 x 10~ more efficiently
than similar methods. Figures 3 and 4, on the other
hand, are graphical depictions of Tables 5 and
6, further proving the validity of the suggested
approach.

The visuals show that PM is more accurate,
efficient, and consistent than alternative approaches.

5. BASIN OF ATTRACTION

The stability of the solutions (roots) for the
nonlinear function ¥(3) = 0.The concept of basins
of attraction can be used to facilitate an iterative
method [26]. MATLAB R2014a was used to
generate a depiction of all basins within the range
R =[-5x 5] x [-5 X 5], with a total of 360,000
points at a 600 x 600 density. There were two
criteria established: An error threshold of 1 X 1071°

T T T T
Sol 1 Sol 2 sal 3 Sol 4

Solution of PM and their counterpart

Fig. 6. CPU time (in sec) versus solution of problem 3
with the proposed scheme and its counterparts.

or a maximum iteration count of 10. Each point in
the R-range served as the starting condition for the
iterative algorithms that are initiated.

The iterative algorithm assigned a unique
color number k (other than black) to the initial
point if the sequence converged to a root x;, of the
polynomial P, (x) of degree k within 10 iterations
and a predetermined tolerance. On the other hand,
if the iterative process started at a point x € C
and surpassed the maximum iteration limit of 10
without converging to any root x; or converged to a
different value p such that [p — x| <1 X 1071 the
starting point was classified as diverging. In these
instances, the starting point was marked with the
color black. The number of iterations for each point
in another basin is represented, accompanied by a
color scale for reference.

The visual representations presented in Figure
7 show that PM has significantly higher stability
than alternative methods.
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Basin of
attraction
of P l(x)

Basin of
attraction
of P, (X)

Basin of
attraction
of P (X)

Basin of
attraction
of Py (X)

2 3
%ﬁl S ﬁm‘f&% Basin of

attraction
of P 5(X)

Basin of
attraction
of p E(X)

[ 5 s 0 5

Fig. 7. The left Figures shows roots, while the right Figures. shows the number of iterations at each initial point of
B, (x) of problems 4 obtained by the proposed Twentieth-order method.
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Problem 4. Below problems were taken from the literature [26].

Jamali et al

S. No. Functions (P(x)) Roots (x; : k=1,2,3,..)
_ s _ g 05,85, 192, use,
L Pix)=x>+1 X =—1, 987 — 899 ’ 1597 — 7581
2. Pz(x):XS‘I‘l xk:]__lizﬁl
1 —-2++6
_ .2 T
3. Py(x) =x +2x—§ Xe=—F—
1 1+1i —1+1i
Y S - =
4. P4(x)—x +64 xk 4 ’ 4
5 P(x) x5 Lo, 1 1 141 —141i 1,
. =(x) =x 2Lx 64x 128L X = R ,2L
1 1 1
_ .2 = - _- _Z
6. P,(x) =x r X 273

6. CONCLUSIONS

The proposed fourth step, the twenty-order method
based on the weight function, is introduced for
the solution of nonlinear equations arising in
Physicochemical Models. In conclusion, we have
derived the convergence order (theoretical) of the
proposed method, various application problems
from the Physicochemical Models have been tested
and compared with counterparts Al, A2, and A3.
In all cases proposed method outperforms existing
methods in terms of accuracy, number of iterations,
number of function evaluations, and CPU time.
Furthermore, the Basin of attraction in the complex
plane confirms the stability of the proposed method.
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Abstract: This research aims to facilitate the early and precise identification of Alzheimer’s disease (AD), which
remains one of the most prevalent neurodegenerative diseases impacting people’s health and quality of life around
the world. Employing machine learning algorithms, this study aims to develop reliable and effective models that
support clinical workflows and streamline processes, thereby reducing the burden on patients and their families and
ultimately enhancing patient-centric diagnostic frameworks. An approach to data cleaning, involving data imputation,
encoding categorical variables, normalization of certain features, and stratified training and testing data splitting with
hyperparameter tuning, was employed. This approach utilized both grid search and stratified k-fold cross-validation.
Traditional models, ensemble techniques, and hybrid models were tested, including Lasso + LightGBM, XGBoost
+ SVM, and blended models such as LightGBM, CatBoost, Logistic Regression, and XGBoost. Lasso + LightGBM
outperformed others in hybrid models. Lasso + LightGBM achieved an accuracy of 0.961240, precision of 0.943231,
recall of 0.947368, and Flscore of 0.945295, Cohen’s Kappa of 0.915284, Hamming Loss of 0.038760, and Jaccard
Index with the value 0f 0.896266. This research contributes to UNSDG 3, “Good Health and Well-being”, by enhancing
data-driven health education and resources, and an efficient diagnostic and management system for Alzheimer’s. It
also promotes healthy aging globally among the population.

Keywords: Predictive Modeling, Biomedical Data Analysis, Feature Engineering, Gradient Boosting, Clinical
Decision Support, Cross-Validation, Diagnostic Accuracy.

1. INTRODUCTION for enhancing the diagnosis of Alzheimer’s disease

by analyzing large and complex medical data.

Alzheimer’s is a behavior and progressive dementia
disorder that impacts behavior, and thinking to a
major extent and memory. It is the most common
form of dementia, which induces tremendous
loss of cognitive ability as people grow older [1].
Diagnosing Alzheimer disease is challenging as
it can resemble the aging process or other brain-
related diseases. In modern times, diagnosis is
made through cognitive tests, brain scans, as well
as clinical examinations, which are subjective and
time-consuming [2, 3]. It does not have a single
conclusive test, which is why detecting it early is
a challenge, as it is crucial to the treatment and
management of the condition. Following advances
in machine learning (ML), a potent tool has emerged

Patterns in the patient data have been drawn using
traditional statistical methods and simple ML
algorithms like the Naive Bayes and K-Nearest
Neighbor (KNN), and Support Vector Machine
(SVM). These methods produce fast results;
however, as with high-dimensional data, such as
brain scans and genetic data, the methods are not
particularly effective, which restricts their accuracy
[4]. Ensembles and deep learning are sophisticated
machine learning methods that help to mitigate
these challenges. Cloud random Forests and
gradient boosting are ensemble models that involve
using a combination of models to improve the
accuracy of predictions [5-7]. Deep learning-based
models, such as Convolutional Neural Networks
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(CNNs), are indeed powerful tools that enable the
processing of medical images and the detection of
subtle changes in medical imaging (e.g., MRI, PET)
associated with Alzheimer’s disease. It is possible to
improve patient outcomes by enhancing diagnosis
accuracy and reducing the diagnosis period, thereby
decreasing the risks of human error and leading to
a better situation for clients. By providing better,
more accurate, and timely diagnostics, researchers
will be able to improve both treatment strategies
and disease prevention [8, 9].

Current techniques of Alzheimer’s disease
(AD) diagnosis predominantly focus on genetic
factors that involve machine learning and deep
learning models, particularly by analyzing gene
expression data for early detection of the disease.
Studies have shown that deep learning (DL) models,
including DGS-TabNet, outperform traditional ML
algorithms by selecting more precise and efficient
meaningful genes, obtaining superior classification
performance (up to 93.8% accuracy and 98.53%
Area under Curve (AUC) in binary classification
tasks). Moreover, some key genes may also have
biological significance by revealing their roles in
other diseases, which could partly confirm that
the use of network-based analyses in conjunction
with traditional methods is valuable for identifying
genetic markers related to AD [10]. Alzheimer’s
disease prediction has been significantly enhanced
by recent machine learning algorithms, particularly
those utilizing ensemble models (e.g., LightGBM
and Random Forest), which can achieve accuracies
exceeding 96.35% on several databases [11]. The
use of Shapley Additive Explanation (SHAP) and
Local Interpretable Model-agnostic Explanation
(LIME) enhances artificial intelligence (Al)
explainability, and as a result, the model’s
transparency leads to higher clinician trust in it.
Compared to existing methods that are restricted by
the number of datasets, data type, or interpretability,
this method has improved efficiency and usability in
AD diagnosis [12]. Mahamud et al. [13] developed
a framework that uses data on handwriting to
detect Alzheimer’s disease, which involves a two-
phase forward-backward selection of features via
XGBoost. This strategy limits the workflow to a
minimal set of tasks to increase interpretability to
achieve 91.37% accuracy. The robust performance
by wusing the leave-one-out cross-validation
indicates that the sample size was adequate and
transforms towards more friendly AD diagnosis.

The present study also provides autography as a
more reliable and straightforward strategy for early
detection of AD.

The proposed research problem in the present
study is the Computer-Aided Diagnosis (CAD)
of Alzheimer’s disease, which is addressed by
designing and testing hybrid supervised machine
learning models that combine adaptive feature
selection, blended probability fusion, and gradient
boosting. Responsesto existingresearch have proven
encouraging with the use of individual classifiers
and the simple ensemble technique; however, they
often fail to address high-dimensional, imbalanced,
and heterogeneous clinical data, which ultimately
results in poor generalizability and reduced clinical
interpretability. To address these weaknesses,
this work generalizes gradient boosting in a
meta-modeling system, which has enhanced the
robustness, discrimination, and interpretability of
both linear and nonlinear learners.

The dataset used in the present study is the
result of less controlled environments, specifically
community-based and non-specialist clinical
environments, where the data may be noisier,
less standardized, and even completely missing,
compared to strictly controlled research studies.
This feature drove the adoption of hybrid designs
that can tolerate uncertainty and variability while
preserving the performance of diagnosis. In this
connection, the objectives of this study will be the
following:

* To build and test a set of hybrid machine
learning models to classify Alzheimer’s disease,
which incorporate feature selection (i.e., Lasso)
with effective gradient-boosting algorithms (i.e.,
LightGBM, XGBoost, CatBoost).

* To -evaluate the capabilities of such
hybridization in terms of predictive reliability and
robustness, in comparison with standalone methods
and conventional ensemble methods reported in
recent literature.

» Toensure that the final models can be interpreted
clinically, where interpretability is measured by the
sparsity of the chosen features and the transparency
of the linear elements in the hybrid structures.

The present study focuses on integrating and
benchmark existing strategies to address the issue
in the Alzheimer’s CAD system. These issues
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include data heterogeneity, small sample size and
transparency of the model. Rather than proposing
the new model, the approach in the present study
aims to increase the effectiveness of current models,
by developing the ML models that are clinically
viable and applicable in practice.

2. METHODOLOGY
2.1. Dataset and Preprocessing

The Alzheimer’s disease dataset, which was
submitted to Kaggle by Rabie El Kharoua in
2024 and is released under the Attribution 4.0
International (CC BY 4.0) license (DOI: 10.34740/
KAGGLE/DSV/8668279), is utilized in this
research. 35 wvariables, including demographic,
lifestyle, medical history, cognitive evaluation,
symptoms, and diagnostic information pertaining
to Alzheimer’s disease, are included in the dataset,
which includes 2,149 patient records (IDs 4751-
6900). Because it is a binary variable that indicates
whether Alzheimer’s disease is present (1) or not
(0), the diagnosis column is the target variable.

2.1.1. Handling missing values

Missing values in the dataset can compromise
the reliability of model predictions. Therefore, all
missing data are imputed using the mode (i.e., the
most frequent value) for each column [14]. This
approach is mathematically expressed as:

G = mod(qi1 Gi2: i3y e vee e = Qim) M

Where Gi denotes the imputed value for feature i,
while n represents samples. This method ensures

FunctionalAssessment
ADL

MMSE
MemoryComplaints
PatientIlD

BehavioralProblems

Features

DietQuality

SleepQuality

CholesterolTriglycerides

BMI

the categorical and numerical integrity of the
dataset, preserving both the sample size and
variance structure.

2.1.2. Categorical encoding

To transform categorical variables into a numerical
format, Label Encoding is applied to all features
except the target column [15]. Each category is
mapped to a unique integer, enabling the models to
process categorical features mathematically:

Encoded(x) = i,wherex € Categories,i EN  (2)
2.1.3. Normalization

For all continuous features, normalization using the
Standard Scalar is performed, transforming the data
to have a zero mean and unit variance [16].

z="" &)

a
where o is the standard deviation, p is the mean, and
x is the initial value for each feature. To guarantee
that feature-scaling-sensitive models (like SVM
and KNN) operate at their best, this step is essential.

2.1.4. Feature importance

The features of the Alzheimer’s disease dataset
have been ranked based on the scores of feature
importance from the model using Random Forests,
as illustrated in Figure 1. Random Forest has been
used because the dataset is not very large, and it
is capable of handling a large number of features
without any problem. Functional Assessment
and ADL (Activities of Daily Living) were the

0.000 0.025 0.050

0.075 0.100 0.125 0.150 0.175

Feature Importance

Fig. 1. Top 10 feature importance for Alzheimer’s classification.
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most significant factors. Therefore, they are the
most important in predicting whether a case is
Alzheimer’s disease or non-Alzheimer’s disease.

The other characteristics, such as the MMSE
(Mini-Mental State Examination) and Memory
Complaints, also play a significant role, showing
that they are important in the clinical assessment
of cognitive abilities. Conversely, the importance
of features such as Cholesterol/Triglycerides,
Sleep Quality, and Diet Quality is lower, which is
a sign of weakness in these variable predictors in
the dataset. This distribution is logical, given that
functional and cognitive assessments are primary
constituents for diagnosing Alzheimer’s disease,
thereby confirming the dataset’s primary clinical
relevance.

2.2. Data Splitting

A stratified train-test split is utilized to maintain
class distribution in both sets. 70% of the data is
allocated for training (Xtrain,ytrainX {train},
y_{train}Xtrain,ytrain), and 30% for testing
(Xtest,ytestX {test},y {test}Xtest,ytest), ensuring
that performance metrics generalize to unseen data.

(Xtraim Yn'ain)r (Xtestr Ytest) = Sh'aﬁfiEdSP]it(X'Yn testscore = 3-0) (4)

2.3. Model Training and Hyperparameter
Tuning

A variety of supervised learning models are
compared, with a particular focus on hybrid models
developed by combining model outputs or feature
selection pipelines. We performed hyperparameter
optimization using GridSearchCV with stratified
k-fold cross-validation (k = 5) to optimize precision
and recall. We aimed to optimize the Fl-score as
the basic criterion for the model selection. In this
process, stratified fold cross-validation was used to
preserve the properties of class, decreasing the risk
of overfitting. Moreover, this strategy ensured that
hyperparameter estimation remains robust.

2.4. Used Models

We trained models using grid search with traditional
classifiers, including Random Forest, Support
Vector Machine (SVM), K-Nearest Neighbors
(KNN), Logistic Regression, and boosting and
bagging techniques (XGBoost, LightGBM,

CatBoost, AdaBoost, and Bagging Classifier).
These may be used as standalone benchmarks or
in conjunction with hybrid approaches. The model
parameters are listed in Table 1.

2.4.1. K-nearest neighbors (KNN)

KNN is a non-parametric, instance-based algorithm
where classification is based on the majority vote
among the k closest training samples in the feature
space [17]. The value of k is selected via grid
search. The distance metric, typically Euclidean, is
calculated as:

d(xix;) = \/Zf: (i — xj)? (%)

The size of the data affects this approach;
hence, the previously mentioned normalization
step is required. The curse of dimensionality
can cause KNN’s performance to deteriorate in
high-dimensional environments, yet it is still a
useful baseline for tabular datasets with modest
complexity [18].

2.4.2. AdaBoost

Adaptive Boosting, also known as AdaBoost,
is a technique that builds a powerful classifier
by repeatedly training weak learners, typically
decision stumps. However, each new learner is
modeled after its predecessors, focusing on their
mistakes [19]. The last model is the weighted sum
of such learners:

H(x) = sign (Z?: 1ache (x)) (6)

Where a, is the weight assigned to weak classifier
h(x). AdaBoost is especially robust to overfitting in
many practical cases, but can be sensitive to noisy
data and outliers.

2.4.3. Bagging (bootstrap aggregating)

Bagging trains multiple base estimators on different
bootstrap samples of the dataset and averages
their predictions to reduce variance. For binary
classification:

¥y = majority vote(hy (x), hy(x), ..., hy(x)) (7)

This strategy makes the models more stable
especially, when wusing high variance base
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Model

Hyperparameter Name

Hyperparameter Values

RandomForestClassifier

SVM (Support Vector
Machine)

KNN (K-Nearest Neighbors)

n_estimators, max_depth, min_samples_split,
min_samples_leaf, bootstrap

C, kernel, gamma, degree, coef0, tol

n_neighbors, weights, algorithm, leaf size, p

LogisticRegression C, penalty, solver, max_iter, tol

XGBoost n_estimators, learning rate, max_depth,
subsample, colsample bytree, gamma

LightGBM n_estimators, learning rate, max_depth,
num_leaves, min_child samples, subsample

CatBoost iterations, learning_rate, depth, 12_leaf reg,
subsample, colsample bylevel

AdaBoost n_estimators, learning_rate, algorithm

Bagging n_estimators, max_samples, max_features,
bootstrap, n_jobs

StackingClassifier estimators, final _estimator, cv

RF + Logistic Regression
(Stacked)

XGBoost + SVM (Stacked)

Lasso + LightGBM (Hybrid)

RF-FeatureSelection + LR

(Hybrid)

Blended Probabilities (LGBM

+ CatBoost + XGB) + LR

rf n_estimators, rf max depth, rf min_
samples_split, rf min samples leaf, Ir C,
Ir penalty, Ir _solver

xgb n estimators, xgb__learning_rate,
xgb max depth, svm C, svm__ kernel,
svm__ gamma

lasso__alpha, Igbm n_estimators, Ilgbm
learning_rate, lgbm__max_depth, lgbm_
num_leaves, Igbm_min_child samples

rf n_estimators, rf max_ depth, rf min_
samples_split, rf min samples leaf, Ir C,
Ir penalty, Ir solver

Igbm n estimators, Igbm_learning rate,

catboost _iterations, catboost learning rate,
xgb n estimators, Ir  C

100, 10, 2, 1, True
1, rbf, scale, 3, 0.0, 1e-3

5, uniform, auto, 30, 2
1,12, Ibfgs, 100, le-3
100, 0.1, 6, 0.8, 0.8, 0.1

100, 0.1, 6, 31, 20, 0.8
100, 0.1, 6,3, 0.8, 0.8

100, 1.0, SAMME.R
100, 1.0, 1.0, True, -1

RandomForestClassifier,
XGBClassifier,
LogisticRegression, 5

100, 10, 2, 1, 1, 12, Ibfgs

100, 0.1, 6, 1, rbf, scale

0.1, 100, 0.1, 6, 31, 20

100, 10, 2, 1, 1, 12, Ibfgs

100, 0.1, 100, 0.1, 100, 1

This rigorous methodology underpins both the fairness and scientific validity of model comparison, ensuring that
reported results are robust, replicable, and meaningful for biomedical decision-making.

learners like decision trees. Hyperparameters (e.g.
estimators) are optimized with the help of cross-
validation [20].

2.4.4. Logistic regression

Standard Logistic Regression is used as a core
linear baseline [21]. It estimates the probability of
the binary outcome using the logistic function:

1
Py = 11x) = 1+ exp(— (B + BTX)) )

When the coefficients of f are estimated using the

maximum likelihood method. C is a parameter that
is regularized to control the model’s complexity.
Despite being linear, Logistic Regression is likely
to compete with biomedical data and provide
understandable coefficients.

It is not new to use some of the models
employed in the present study; however, when
applied to a comparatively strict and data-driven
technique for Alzheimer’s disease, which has high
dimensionality and noise, they are instructive in
science. Not merely accumulating, but this choice
supposes the potential of an orderly examination
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of model action and hybrid synergy, by which
empirically information on what architectures will
be evident in most clinically diverse situations.
This is the gap, which is negatively addressed in
the literature.

2.5. Hybrid Model Architectures

The study constructs and evaluates five advanced
hybrid models, each leveraging the strengths of its
constituent algorithms to address the nonlinearity,
feature interaction, and potential collinearity within
the dataset.

2.5.1. Hybrid 1: Random forest probabilities as
features for logistic regression (RF + LR)

First, a Random Forest classifier is trained on the
original feature set, outputting class probabilities
for each sample:

1

Pre(y = 1]x) = Y70 he(x) )

Ntrees

Where h (x) is the prediction probability from tree
t. The predicted probability Pgr is then appended as
a new feature to both the training and test datasets:

X' = [X, Pgg] (10)

The hybrid RF+LR model follows a two-stage

stacking formulation. Consider frr(X) is the
random forest probability estimator then:

far =7 X1 he () (11)

We produce out of fold (OOF) predictions by using:

n —k
Prri = frp " (x1) (12)
The meta feature matrix becomes:
XRF = [X, Prr] (13)

Now the logistic regression function for the decision
is given by:

firXFF)=0(Bo +BTX +vPrr)  (14)
¥ represent the weight assigned to RF-derived
probability, so the final hybrid prediction is
computed using:

¥ = H{frr(X*F) > 0.5} (15)

A Logistic Regression model is subsequently
trained on X', learning a linear boundary in
the enriched feature space. This hybridization
combinesthenonlinear feature extraction capability
of Random Forests with the interpretability and
regularization strength of Logistic Regression.
The hybrid model can potentially address
nonlinearity and feature interactions missed by
Logistic Regression alone. However, there is a
risk of overfitting if the new probability feature
is highly correlated with the target, particularly in
small or unbalanced datasets. In this study, cross-
validation and the use of the test set mitigate such
risks [22].

2.5.2. Hybrid 2: XGBoost probabilities as features
for SVM (XGBoost + SVM)

An XGBoost model, known for its gradient-boosted
tree structure and robustness to feature collinearity,
is first trained. The predicted probabilities for each
sample, Px¢p, are calculated:
Pxee(y = 1]x) = o(fxea(X))  (16)
Where o denotes the sigmoid function. These
probabilities are appended as an additional feature
to the input matrix, after which a Support Vector
Machine (SVM) classifier is trained and OFF
probabilities PxGs are concatenated with the input
features:
X" = [X, PXGB] (17)
The SVM with a radial bases function
(RBF) kernel learns separating hyperplane in the
augmented space:
form(X'") = sign(wTX) + ypxes + b (18)
The term YPxcBs quantifies the contribution
of initial stage boosted the probabilities to SVM
margin. This hybrid combines XGBoost’s nonlinear
learning capacity with the margin-maximizing
properties of SVMs. This approach can significantly
enhance performance if XGBoost probabilities
encapsulate a high-level structure that is not
easily captured by SVM alone. However, SVMs
are sensitive to irrelevant features, so the benefit

depends on the informativeness of the probability
feature [23].
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2.5.3. Hybrid 3: Lasso feature selection followed
by LightGBM (Lasso + LightGBM)

A Logistic Regression model with L1 regularization
(Lasso) is employed to perform feature s A Logistic
Regression model with L, regularization (Lasso) is
employed to perform feature selection:

ming = (—logL(B) +AXj_, B (19)

Where L(f) is the likelihood, B ;7 are the coefficients,
and A is the regularization parameter. Only features
with nonzero coefficients are retained:

S ={:p=0} (20)
The reduced feature matrix is:

XL(I.SSO — X[,S] (21)
LightGBM is trained on the reduced space:

Y = fream(XH%5°) (22)

This hybrid is a sequential architecture an
optimizing based selector followed by the gradient
boosting. LightGBM, a fast and efficient gradient
boosting implementation, is trained on the selected
features. This hybrid is especially effective in high-
dimensional data, as it removes redundant and
noisy variables before applying a strong tree-based
learner. The risk is that overly aggressive feature
selection can discard weak but informative features,
potentially lowering overall model capacity [24].

2.5.4. Hybrid 4: Top N random forest feature
importance with logistic regression
(RF-Feature Selection + LR)

Random Forests naturally provide feature
importance measures based on mean decrease
in impurity (MDI) or mean decrease in accuracy
(MDA). Random forest computed the importance
values by:

I = 2?:12565'”3{(5) (23)

The top N features with the highest importance
scores are selected:

Sy = argsort(Importancegp)[:N] (24)

Logistic regression is trained on:
XRF = X[, 5] (25)
The model is then given by:

fir(XBF) = o (Bo + BTXFF) (26)

This hybrid is featuring selection driven linear model
contrasting with fully nonlinear boosters. Logistic
Regression is then trained on this reduced feature
set. Selecting the most predictive variables reduces
dimensionality and may improve generalization,
especially for linearly separable relationships.
However, feature importance scores can be unstable
in the presence of multicollinearity or redundant
predictors, and choosing N is somewhat heuristic
[25].

2.5.5. Hybrid 5: Blended probabilities of multiple
boosting models with logistic regression
(Blended Probabilities + LR)

LightGBM, CatBoost, and XGBoost models are
independently trained on the original dataset. For
each sample, the predicted probabilities from each
model are extracted:

Preeu(y = 1]X) 27)
Pear(y = 1[X) (28)
Pxee(y = 11X) (29)

These probabilities are concatenated with the
original features to create a new, augmented feature
space:

X"" = [X, Prggm Pcar Pxcs] 30)

Let the blended meta feature vector be:

PrBumi
z; = | Peari (31)
Pxgp,i
The final model is:

fir(X") = a(B"X + ayPrgpy + azPear + azPyge +b) (32)

This is the probabilistic blending architecture that
combines diverse gradient boosting models.
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A Logistic Regression model is trained
on X", learning how to combine the output of
diverse boosting models optimally. This method
synthesizes predictions from heterogeneous
boosting frameworks, enabling the final model to
exploit differences in model behavior [26]. While
potentially powerful, this approach increases the
risk of overfitting if the boosting models themselves
are highly correlated or overfit the training data.

The benefits of these hybrid models extend
beyond the advantages of conventional classifiers
(such as Random Forest and Logistic Regression)
to more complex algorithms, including feature
selection with Lasso, boosting on XGBoost,
LightGBM, and CatBoost, as well as ensemble
learning methods like Stacking and Blended
Probabilities. The hybrid models that use the
probabilities generated by one model as input for
the other model are helpful for the consideration
of complexities like intricate feature interactions
and nonlinearity that providing a novel approach
to increase the model performance. A stronger
decision is achieved using combined models,
such as RF + LR, XGBoost + SVM, and Lasso +
LightGBM, which present a novel perspective for
processing high-dimensional imbalanced data.

2.6. Evaluation Metrics

The performance and robustness of these
classification models are evaluated using specific
metrics. These provide complementary information,
accurately reflecting the overall correctness of the
model, while precision measures how many of the
predicted positives are truly positive. Recall shows
how many actual positives are identified correctly
and the Fl-score balances the tradeoff between
false positive and false negative. Cohen’s Kappa,
Hamming loss, and Jaccard Index capture the
nuances of agreement and multi-label performance.
The use of these measures enables a more advanced
and less biased assessment of predictive models in
various situations under different data distributions
[27].

TP + TN

- 33
ACCUTaY =rp « FP + TN + FN (33)

.. TP
precision = _———— (34)

TP

recall = (35)

TP + FN

Precision X Recall

F1 —score =2 X precision + recall 30
By—P,
Cohen's Kappa = —lo_P: 37)
. 1 -
Hamming Loss = EE?;I 1y = ¥1) (38)
__|anB|
Jaccard Index = AUB| (39)

This rigorous methodology underpins both the
fairness and scientific validity of model comparison,
ensuring that reported results are robust, replicable,
and meaningful for biomedical decision-making.

3. RESULTS AND DISCUSSION

The cross-evaluation of model benchmarks reveals
reasonable differences in various measures,
indicating the impact of different machine learning
and hybrid methods for classifying Alzheimer’s
disease. Table 2 presents the evaluation metrics
values for all models. The best accuracy is reported
for , CatBoost, and Lasso + LightGBM, both
scoring 0.961240, closely followed by XGBoost
0.961041, LightGBM and stacking at 0.958140
and Blended Probabilities (LGBM + CatBoost
+ XGB) + LR at 0.956589. This identifies the
better performance of gradient boosting-based and
ensemble hybrid methods for classifying the disease
status. On the other hand, the KNN (0.737984)
and RF-FeatureSelection + LR (0.846512) models
exhibit relatively lower accuracy, which stems from
high dimensionality and the sensitivity to feature
selection, respectively. The accuracy achieved in
this research is slightly higher than previous values
of 0.9635 reported by Mahamud et a/. [13] and
0.9380 recorded by Jin ef al. [10].

Table 2 shows that the highest precision is
recorded for CatBoost (0.951111) and XGBoost
+ SVM (0.950893), which are higher than the
previous values of 0.95 stated by Mahamud et al.
[13] and 0.9396 (with proposed model), reported
by Jin et al. [10]. Both are effective in minimizing
false positive rates and thereby curtailing diagnosis
overestimation, which is crucial for less invasive
procedures in clinical practice. Traditional
classifiers, such as SVM (0.774336) and KNN
(0.680982), perform markedly worse and are
often unable to manage the class imbalance and
complexity of features, despite normalization.
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Table 2. Performance metrics (Accuracy, Precision, Recall, F1-Score) for various machine learning models evaluated

in Alzheimer’s disease classification.

Model Accuracy  Precision Recall F1-Score
RandomForest 0.941085 0.943925  0.885965  0.914027
SVM 0.838760 0.774336  0.767544  0.770925
KNN 0.737984  0.680982  0.486842  0.567775
LogisticRegression 0.838760  0.787037  0.745614  0.765766
XGBoost 0.961041 0.941831 0.943468  0.941155
LightGBM 0.958140  0.938865 0.942982  0.940919
CatBoost 0.961240 0.951111  0.938596  0.944812
AdaBoost 0.927132 0.891775  0.903509  0.897603
Bagging 0.947287 0.925439  0.925439  0.925439
Stacking 0.958140 0.942731  0.938596  0.940659
RF + LR 0.945736  0.940639  0.903509  0.921700
XGBoost + SVM 0.959690  0.950893  0.934211  0.942478
Lasso + LightGBM 0.961240  0.943231 0.947368  0.945295
RF-FeatureSelection + LR 0.846512 0.781659  0.785088  0.783370
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.956589 0.942478  0.934211  0.938326
The XGBoostand Lasso+LightGBMachieved  insufficient reliability to validate incomplete

the highest values of recall, that are 0.943468 and
0.947368, respectively, that is higher than the value
of 0.9380, reported by Jin et al. [10]. This aspect
is crucial in clinical practice, where this kind of
performance is needed to minimize the number
of missed cases. Models such as the KNN model
(score = 0.486842) have vast potential for further
improvement, indicating that a simple model is
underfitted in the presence of complex data.

As shown in Table 2, XGBoost (0.941155),
CatBoost (0.944812), and Lasso + LightGBM
(0.945295) achieved the highest Fl-score,
indicating that they can balance the precision-recall
tradeoft better than other models, which is crucially
important for medical diagnosis. The error spread is
small; therefore, we can expect good accuracy from
these algorithms.

Table 3 presents the Cohen’s Kappa values
of hybrid and ensemble approaches, including
XGBoost (0.915284), CatBoost (0.914946), and
Lasso + LightGBM (0.915284), which demonstrate
considerable reliability in model -classification
consistency and performance, as well as reasonable
performance. With Kappa point classification,
the SVM (0.646527) and KNN (0.387154) are
considered too soft, indicating that both have

agreement. The hamming loss value is decreased
with perfect classification and is particularly low
when models XGBoost (0.038760), Catboost
(0.038760) and Lass + LightGBM (0.038760)
outperform the other models. As expected, KNN,
due to its loss, suffers significant losses, which
remain at 0.262016, primarily due to poor recall
and precision, resulting in numerous mismatches.
The three algorithms, XGBoost, CatBoost, and
Lasso + LightGBM, scored the best with scores of
0.896266, 0.895397, and 0.896266, respectively,
indicating that they have better predictive ability
than other models and align more closely with the
predicted true label. Many traditional and hybrid
strategies like KNN (0.39642) and RF-feature
Selection + LR (0.64388) performed below the
chance level as expected due to their lower overall
classification performance.

These results support the reasoning behind
the methodology’s focus on ensembles of hybrid
models, as the integration of feature selection with
probabilistic augmentation and gradient boosting
is expected to improve performance significantly.
The dataset underwent extensive preprocessing,
including the meticulous imputation of missing
values, label encoding, normalization, and
stratified train-test splitting, which preserved class
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Table 3. Cohen’s Kappa, Hamming Loss, and Jaccard Index scores for different machine learning models in

Alzheimer’s disease classification.

Model Cohen Kappa Hamming Loss  Jaccard Index
RandomForest 0.869284 0.058915 0.841667
SVM 0.646527 0.161240 0.627240
KNN 0.387154 0.262016 0.396429
LogisticRegression 0.642971 0.161240 0.620438
XGBoost 0.915284 0.038760 0.896266
LightGBM 0.908506 0.041860 0.888430
CatBoost 0.914946 0.038760 0.895397
AdaBoost 0.841049 0.072868 0.814229
Bagging 0.884671 0.052713 0.861224
Stacking 0.908324 0.041860 0.887967
RF + LR 0.880208 0.054264 0.854772
XGBoost + SVM 0.911455 0.040310 0.891213
Lasso + LightGBM 0.915284 0.038760 0.896266
RF-FeatureSelection + LR 0.664523 0.153488 0.643885
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.904834 0.043411 0.883817

proportions to ensure the data’s integrity while
enhancing model generalizability. Grid search with
stratified cross-validation for class-preserved folds
enabled extensive multi-criteria hyperparameter
optimization, minimizing the risk of overfitting and
further augmenting model performance through
fine-tuned hyperparameter adjustment.

The complicated nonlinear correlations
observed in clinical and demographic data cannot
be fully represented by simpler models such as
KNN and Logistic Regression, in addition to the
more traditional boundary-defining approximations
and closest neighbor assumptions. The successful
use of feature engineering and hyperparameter
tuning has led to the development of clinical
decision support tools for testing, highlighting the
potential of complicated ensemble models for early
Alzheimer’s disease identification.

Figure 2 illustrates the pairwise distributions
and interrelations between the significant predictors
(Functional Assessment, ADL, MMSE, Memory
Complaints, Behavioral Problems, and Sleep
Quality) by diagnosis class. It is also easy to note
clear differences between the Alzheimer and non-
Alzheimer groups of the Functional Assessment,
ADL, and MMSE, which indicates their great
discriminative power. Contrastingly, Memory

Complaints and Behavioral Problems have a
higher overlap, meaning a lower predictive ability
independently. Such visual trends are reflected in
the rankings of feature importance gained with
the help of Random Forest and Lasso selection,
with functional and cognitive measures prevailing.
Feature selection methods like mRMR and mutual
information have also explained their efficiency in
enhancing the prediction of Alzheimer’s disease
with an accuracy of 0.9908 [28].

More importantly, the figure also presents
qualitative data on why the hybrid and ensemble
models (e.g., Lasso + LightGBM) performed well:
these models can learn nonlinear and partially
collinear relationships between features, especially
between cognitive and behavioral variables. Such
curved or overlapping boundaries are not easily
modeled using standard linear classifiers (e.g.,
Logistic Regression), which is why such classifiers
achieve relatively low recall and F1 scores. That
is why a pair-plot is not only justifying feature
selection, but also the models’ success, as it sets up
the data structure visually and demonstrates where
simple models may fail.

3.1. Model Behavior and Error Analysis

Lasso + LightGBM. L1 selection yielded a sparse
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Fig. 2. Pairwise feature relationships by Alzheimer’s diagnosis.

and lower-correlation subsample that reduces noise
and redundancy; LightGBM then learned nonlinear
interactions in this low-dimensional space, which
are consistent with the more evident separations
in the cases of Functional Assessment, ADL, and
MMSE in Figure 2. Blended probabilities + LR.
The base boosters had a high prediction correlation
due to theoretical gains, which constrained the
meta-learner’s ability to be diverse. In a small
sample size, the inclusion of correlated probability
enhanced variance and decreased net benefit;
moreover, variation in probability calibration was
likely a restraining factor for the LR combiner.
The combination of RF with Adaboost achieved
0.9255 accuracy which explained the benefits of
ensemble learning in boosting model performance.
The combination of DT, Adaboost and LR achieved
highest accuracy of 0.9546 which shows the
effectiveness of blending different models [29].

The study relies on a single dataset from
Kaggle that may limit the generalizability of
the model to clinical datasets. The models in the
present study were evaluated only on provided
dataset and external validation on an independent
dataset was not performed. It is difficult to confirm
the robustness and real-world applicability of the
proposed models. Hybrid models such as Lasso +
LightGBM and blended probabilities show strong
performance; these may remain complex and less

interpretable. This can limit their practical use in
clinical settings where model transparency and
interpretability are very important for clinical trust
and decision-making.

RF-FeatureSelection + LR. RF importances
based on impurity can be unstable under collinearity
and biased against specific types of features; in a
top-N heuristic, weak yet informative variables
can be discarded. A linear LR fitted on this subset
underfits the nonlinear structure, shown in Figure
2, which explains the gap between the accuracy
and recall. Practical note: Future variants will (i)
apply permutation/Boruta or stability selection to
features, (ii) impose out-of-fold predictions and
temperature/Platt calibration in blending, and (iii)
take into account Elastic-Net LR or monotone-
constrained boosting to make the thus far observed
structure more like reality.

To evaluate the robustness, consistency
and adaptability of the models, we used many
established = mechanisms.  Robustness  and
generalization were assessed by using the stratified
5-folds cross validation, where models were trained
and validate on multiple class preserving split ad
by using was the out-of-fold (OOF) predictions to
avoid the information leakage in hybrid stacking.
Consistency was verified by using a various set of
metrics like accuracy, precision, recall, Flscore,
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kappa, hamming loss, Jaccard index that showed
stable rankings within the Table 2 and Table 3.
Adaptability was evaluated testing the models on
heterogeneous mix of demographic. Cognitive,
behavioral and clinical features. Lastly, all results
were confirmed on a held 30% unseen test set to
ensure the valid generalization.

3.2. Comparative Discussion

Direct and cross-paper comparisons of point
estimations (e.g., accuracy or F1) are necessarily
constrained since results are highly dependent on
the particular dataset (size, difficulty, feature set,
and class balance) and preprocessing options, as
well as the evaluation protocol. We therefore do not
claim that we are better than previous studies solely
because our point estimates (e.g., accuracy 0.961)
are numerically larger than those obtained with
other datasets and setups (e.g., 0.938). Rather, we
place our findings on a par with ranges reported in
recent literature on classifying ADs using gradient-
boosted and hybrid ensemble classifiers, with
overall similar levels of accuracy and F1 where
tasks and data are similar [10, 12, 13].

Future research must incorporate evaluation
on common publicly available benchmarks (e.g.,
using the same train/test splits with ADNI, OASIS,
or the same Kaggle dataset). It also incorporates
the standardization of preprocessing pipelines to
reduce variability and measurement of uncertainty
(e.g. per-split results and 95% Cls through
bootstrapping) and paired-sample tests (e.g.,
McNemar test to establish accuracy, DeLong test
to establish AUC). Calibration and decision-curve
analyses to supplement the results are indicated
within these limits, we find that hybrid strategies
(e.g., Lasso + LightGBM) can produce state-of-the-
art dataset competitive performance and practical
interpretability in line with the trends of previous
work [10, 12, 13].

4. CONCLUSIONS

The paper compared conventional, ensemble, and
hybrid supervised classifiers in the classification
of Alzheimer’s disease using tabular clinical data.
CatBoost and Lasso + LightGBM (accuracy =
0.96124) were the closest as the strongest point
estimate, and XGBoost was considered the third
closest (accuracy = 0.96104). All with a strong F1

(0.94 - 0.95). Since we did not report any measures
of variance or formal tests of significance, we do not
claim to have been statistically better than the other
models; instead, the models can be viewed as those
that perform best and are statistically equivalent,
given the evidence at hand. On a methodological
level, the results are congruent with the hypothesis
that, with L1-Based selection, features may be
denoised and decorrelated, allowing a gradient-
boosting learner (LightGBM) to represent
nonlinear feature interactions more effectively.
Nevertheless, we have seen that the Lasso +
LightGBM hybrid cannot be readily interpreted:
Lasso produces sparse selections, but the black box
model of the final boosted model remains a black
box. Future studies will (i) quantify the uncertainty
(per-fold results, bootstrap Cls, paired tests such
as McNemar/DelLong) to find out whether small
metric deltas are statistically significant; (ii) provide
explanatory analyses (e.g. SHAP global summaries,
local explanations, partial dependence/ICE, and
calibration curves) to describe how the output
of functional and cognitive measures drives the
predictions; (iii) assess blending/stacking on out-
of-fold meta-features and probability calibration to
increase the diversity among base learners. These
criteria suggest that gradient-boosted and hybrid
studies are dataset-competitive in AD classification
on structured clinical data, and that an additional
investigation into uncertainty and explainability
is necessary to make comparative or clinical
assertions.
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Abstract: The methoxy substituted phenylacetic acid (MeOPhA) and chloro substituted phenoxyacetic acid (CIPhA)
were used to synthesize eight new Cd(II) based complexes. The nitrogen donor 2,2’- bipyridine (MeOPhA2, CIPhA2) and
1,10-phenanthroline (MeOPhA3, CIPhA3) were used as auxiliary ligands for the synthesis of mixed ligand complexes.
These complexes were characterized by FT-IR and multinuclear NMR ("H and *C-NMR) spectroscopic techniques.
The FT-IR spectra of the complexes showed characteristic COO™ asymmetric and COO" symmetric vibrational bands
indicating metal coordination through oxygen. Moreover, their difference, i.e., Av reveal that the selected ligands
are coordinated to the Cd(II) center in a bidentate manner. The '"H-NMR and *C-NMR data recorded in deuterated
solvents also supported successful synthesis in pure form as well as metal coordination through carboxylate group.
The nature of the complex—DNA interaction was examined, and the impact of hetero ligand attachment on binding
strength and reactivity was assessed using UV—visible spectroscopy. The obtained data confirmed the effective binding

ability through partial intercalation and groove binding through spontaneous process for all the complexes.

Keywords: Mixed Ligands, Spectroscopic Techniques, Auxiliary Ligands, Surface Binding, Multinuclear NMR.

1. INTRODUCTION

Metal complexes have been used in medicinal
industry since ancient times; however, their
pharmacological significance was firmly recognized
after Rosenberg’s 1969 discovery of cisplatin’s
anticancer activity [1]. Cisplatin’s distinct method
of action, which involves covalent interaction
with DNA, has been attributed to its exceptional
therapeutic success. This interaction ultimately
inhibits the growth of cancerous cell by blocking
the mechanisms required for their replication [2].

DNA is regarded as the blueprint of life, controlling
and regulating a wide range of cellular metabolic
activities [3]. Many other anticancer drugs such as
Actinomycin D and Doxorubicin exert their effect
by binding with DNA [4-6]. Nitrogenous bases of
DNA show distinct preferences for metal cations,
general stability order for 3d transition series is

given as: M—guanine > M-adenine and M—cytosine
> M—thymine [6, 7]. Chelation results in increase
in drug absorption across cells by reducing metal
ion polarity through orbital overlap and resonance.
Hence, understanding these selective interactions
of metal and DNA bases and the right selection
of metal and ligands is necessary for developing
advanced metallodrugs [8, 9]. Cadmium (Cd) is a
d'® metal belonging to group 12 of periodic table
with zero crystal field stabilization energy. It has no
strong geometric preference due to filled d orbitals
and can easily be identified through spectroscopy
[10]. This is, however, categorized as a highly toxic
heavy metal due to its strong affinity for sulthydryl
groups in protein which results in oxidative stress,
enzyme inhibition and tissue damage. Recent
studies have revealed that the toxicity of a metal
is not a fixed property, it is influenced by various
factors such as the ligand environment, oxidation
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state, and coordination geometry [11, 12]. Egorova
and Ananikov [13] highlighted the role of the metal
in the living systems, which is intrinsically linked
to the specific molecular form in which the metal
exists. Thus, toxicity of Cd(II) can be reduced by
its complexation with suitable oxygen and nitrogen
donor ligands which stabilize the Cd(II) center and
candirectits biomolecular interaction in a controlled
way [14]. A variety of important functionalities are
associated with Cadmium complexes such as anti-
microbial, anti-cancer, catalytic and anti-bacterial
properties [15, 16].

In coordination chemistry, the choice of
ligand is crucial because it affects the coordination
behavior, stability, geometry, and Dbiological
activity of the desired complex [17]. Carboxylic
acids are organic ligands of choice on account of
their favorable chemistry especially the versatile
coordination ability [18]. Carboxylic acids can form
complex and stable structures by coordinating with
metals in many ways such as ionic, monodentate,
and bidentate. In biological and catalytic processes,
their coordination flexibility is crucial [19].
Utilizing these medicinally active ligands in metal
complexation has become a developing trend to
create more potent and focused therapeutic agents
because carboxylic acids are essential structural
elements of many already available therapeutic
agents [8, 20]. Cadmium carboxylates display
flexible coordination geometries due to the large
ionic radius of Cd*, i.e., 109 pm [21]. Due to this
flexibility, these complexes find their applications
in bio-sensing, bio-imaging, nanomedicine and
drug delivery [22, 23].

Naturally occurring phenylacetic acid and
its derivatives are known for their bioactivity
and significant contribution to improving the
flavor and scent of food and cosmetic items [24].
2-methoxyphenylacetic acid contains a methoxy
group in addition to carboxylic group attached to
phenyl ring. The presence of these strong electron-
donating and coordinating groups significantly
enhance its reactivity as well as metal binding
capabilities. The commonly used NSAIDs like
diclofenac etc., with an aromatic carboxylate
group, exhibited significant pharmacological
and coordinating properties. This chemical
resemblance allows the formulation of metal
based pharmacologically active compounds by
the incorporation of active functional groups

[20, 25, 26]. 2.4-Dichlorophenoxyacetic acid
contains a phenoxy oxygen atom in addition to
carboxylate group offering versatile coordination
modes thus making it suitable for forming stable
metal complexes [27]. The synthesis of complexes
with different donors and heterocyclic ligands is
a current trend, inspired by biomacromolecules.
Overall efficiency can be improved by using a
heterocyclic donor as an auxiliary ligand and a
carboxylate group as the main ligand.

N-donor heterocycles are regarded as stable
and adaptable co-ligands because the lone pair
on their sp?-hybridized nitrogen [28, 29]. Both
2,2'-bipyridine and 1,10-phenanthroline are
plannar ligands having sp? hybridized nitrogen as
well as extended m-conjugation system enabling
-7 stacking and other non-covalent interactions
in resulting complexes. The ligand 2,2'-bipyridine
contains trans-oriented nitrogen atoms, mostly
forms slightly strained cis complexes which show
diverse electronic and biological activity [30].
Whereas, 1,10-Phenanthroline contains cis-oriented
nitrogen atoms that favor bidentate chelation
with metal centers, thus making it significant in
bioinorganic and therapeutic chemistry [31].

According to data found in the literature, the
overall effectiveness of the resultant complexes is
greatly increased by the addition of active structural
motifs including metal centers, carboxylate
ligands, and heterocycles containing nitrogen.
Numerous mixed ligand complexes based on
substituted aromatic carboxylic acids such as
methoxyphenylacetic and dichlorophenoxyacetic
derivatives have been reported. Consistently, both
ligand form structurally unique and biologically
relevant heteroleptic metal complexes when
coordinated with N-donor co-ligands [8, 18, 20, 32].

The present research project is an attempt to
synthesize mixed ligand complexes of cadmium by
using substituted phenylacetic acids and N-donor
ligands and to evaluate their ability to bind with
DNA. The FT-IR and multi-nuclear NMR (‘H, *C)
were employed for their characterization.

2. MATERIALS AND METHODS

Reactant used in the synthesis such as
2-methoxyphenylacetic acid (MeOPhA),
2,4-dichlorophenoxyacetic acid (CIPhA),
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sodium bicarbonate, cadmium chloride,
nitrogen donor ligands e.g. 2,2'- bipyridine and
1,10-phenanthroline were acquired from Sigma-
Aldrich (USA) and were used as such. The solvents
used during the synthesis, recrystallization and
for NMR data collections include some organic
solvents and n-hexane, etc., were of absolute purity
and were acquired from Merck (Germany). They
were utilized in all the experiments without any
further purification processes. Gallen Kamp (UK)
electrothermal apparatus was employed to find
out the melting point of all complexes by using
the capillary tubes. FT-IR Spectrophotometer of
Thermo Nicolet-6700 was used to record FT-IR
spectra of complexes in the range of 4000-400 cm’'.
Multi-nuclear NMR ('H and *C) spectra of ligands
and complexes were taken by Bruker Advanced
Digital instrument having frequency of 300 MHz at
room temperature in deuterated dimethyl sulfoxide
(DMSO). Chemical shifts and coupling constants
were noted in parts per million (ppm) and Hertz (Hz),
respectively. The UV-Visible spectrophotometer
(Shimadzu 1800) served to record the absorption
spectra of the complexes for DNA binding analysis.

2.1. Synthetic Protocols
2.1.1. Procedure for ligand’s sodium salts

To prepare sodium salts (see scheme 1) the aqueous
solution of sodium bicarbonate (3 mmol, 0.252
g) was added dropwise to the aqueous solution of
each ligand, i.e., 2-methoxyphenylacetic acid (3
mmol, 0.498 g) and 2,4-dichlorophenylacetic acid
0
“OH
H,CO

Stirring

(3 mmol, 0.615 g) under continuous stirring. The
mixtures were stirred maximum until neutralization
at room temperature. The solvents were then
evaporated under reduced pressure to get the solid
sodium salts, which were collected and stored
in glass vials. This synthesis procedure for the
sodium salt is in accordance with the previously
reported method [33]. The scheme 2 represents the
structure of ligands used in synthesis along with the
numbering scheme for NMR interpretation.

2.1.2. Synthesis of single ligand cadmium
carboxylates

2.1.2.1. Synthesis of MeOPhAl

Under constant stirring, methanolic solutions of
sodium salt of ligand MeOPhA (3 mmol, 0.564
g) were added into aqueous solution of cadmium
chloride (1.5 mM, 0.275 g). The reaction mixtures
were stirred for 5 hours at 50 °C, the resulting
precipitates were obtained through filtration. They
were washed with water to remove any impurity/
residual reactants and was dried in air. The
procedure is presented in Scheme 3.

2.1.2.2. Synthesis of CIPhAl

The synthesis of the CIPhA1 was carried out by
following the synthetic procedure as discussed
for complex MeOPhAl. However, the sodium
salt of CIPhA (3 mmol, 0.729 g) were added into
aqueous solution of cadmium chloride (1.5 mM,
0.275 g) instead of MeOPhA. The product was also

+ NaHCO; (aq)

+ co, + HO0

room femperture

o)

Stirrving

cl ﬁ
o_t.
/@’ ~""OH 4+ NaHCO; (aq)
cl

Cl U
o, C.____
- "7 0ONa 4+ CO; + H,0
room 'Emp ermne c[

Scheme 1: Synthesis of sodium salts of substituted phenylacetic acids.
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Scheme 2: Numbering pattern for the ligands and nitrogen donor heterocycles.



340 Bibi et al

processed in the same way and the synthetic route
is presented in Scheme 3.

2.1.3. Synthesis of mixed ligand cadmium
carboxylates

The sodium salt of ligand 2-methoxyphenylacetic
acid (MeOPhA, 3 mmol, 0.564 g) and
2,4-dichlorophenoxyacetic acid (CIPhA, 3 mmol,
0.729 g) were dissolved separately in methanol. To
this, an aqueous solution of cadmium chloride (1.5
mmol, 0.275 g) and bipyridine (1.5 mmol, 0.234
g) were added simultaneously for the synthesis of
complexes MeOPhA2 and CIPhA2 respectively.
The resulting mixtures were stirred for about 8
hours at 50 °C. The same procedure was used for
the synthesis of complexes MeOPhA3 and CIPhA3
except that the addition of bipyridine was replaced
by the phenanthroline (1.5 mmol, 0.270 g). The
resulting solutions were filtered, extra solvents
were removed through rotary evaporation, and
the solid products were washed several times with
water and dried in air. The obtained products were
recrystallized from combination of appropriate
solvents. Melting points were recorded for all the
synthesized complexes. The synthetic route for
complexes of both ligands and the corresponding
NMR numbering scheme is presented in Scheme 4.

)
¢
"ONa stirring, 50°C
2 by =
HyCOo + i, ———————— =
cl 0
. 0t oxa stirring, 50°C
- + CdCl, —— g
cl

Cd(MeOPhA),: (MeOPhA1)

Solubility: Chloroform, DMSO, Methanol; M.P:
73-75°C; % Yield: 78.1; FT-IR (cm™): 1582
(COOasym), 1410 (COOaSym), 172 (Av), 526 (Cd-0);
'H NMR (DMSO-ds, ppm): 3.20 (s, 2H, —CH>),
3.70 (br, 3H, —OCHs), 6.77-6.86 (m, 2H, H3, 5),
7.06-7.66 (m, 1H, H4), 7.09-7.15 (m, 1H, H6); *C
NMR (DMSO-ds, ppm): 175.4 (C=0), 39.0 (—CH.),
55.6 (-OCHa), 126.7 (C1), 157.5 (C2), 110.6 (C3),
128.6 (C4), 120.1 (C5), 131.2 (Co).

Cd(CIPhA),: (CIPhA1)

Solubility: DMSO, Ethanol, Methanol; M.P:
294-296 °C; %Yield: 78.3; FT-IR (cm™): 1598
(COOasym), 1422 (COOasym), 176 (Av), 460 (Cd-
0); 'H NMR (DMSO-ds, ppm): 4.28 (s, 4H, —
OCH.), 7.47 (s, 2H, H3), 7.24-7.27 (d, 2H, H5, J
=9 Hz), 6.84-6.87 (d, 2H, H6, J = 9 Hz);*C NMR
(DMSO-ds, ppm): 170.7 (C=0), 68.7 (-OCH>),
154.0 (C1), 129.2 (C2), 123.6 (C3), 127.9 (C4),
122.2 (C5), 115.4 (C6).

Cd(MeOPhA),(bipy): (MeOPhA2)

Solubility: Chloroform, DMSO, Methanol; M.P
:68-70 °C, % Yield: 76.5; FT-IR (cm™): 1560
(COOaSym), 1386 (COOﬂSym) ,174 (Av), 590 (Cd-N),
486 (Cd-O); 'H NMR (DMSO-ds, ppm): 3.22 (s,
2H, —-CH>), 3.70 (s, 3H, —OCH3), 6.77-6.86 (m, 2H,

O\C—j OCH;

2,
HiCO O-cd-g +  2NaCl
C. s
o)
MePhAl
o O o 1
cl o, ¢ ~cd_ T~ + 2NaCl
oy O c1
= CIPhAL

Scheme 3: Synthesis of single ligand complex derived from substituted phenylacetic acids.
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8] cl
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[ BipY. 4 a e Cﬂ,_ot“’o
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Scheme 4: Synthesis of mixed Cd(II) carboxylates derived from 2-methoxyphenylacetic acids.
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H3, 5), 7.06-7.15 (m, 2H, H4, 6), 8.68-8.69 (d, 2H,
Ho, J = 4.8), 7.44-7.47 (m, 2H, Hp), 7.92-7.98 (m,
2H, Hy), 8.37-8.39 (d, 2H, H5, J=8.1Hz), *C NMR
(DMSO-de, ppm): 175.7 (C=0), 39.1 (-CH), 55.6
(-OCHs), 124.7 (C1), 149.7 (C2), 110.6 (C3), 126.8
(C4), 120.1 (C5), 128.4 (C6), 157.5 (Ca),120.9
(CB), 131.1 (Cy), 137.8 (C3), 157.5 (Ce).

Cd(MeOPhA),(1,10-phen): (MeOPhA3)
Solubility: Chloroform, DMSO, Methanol; M.P:
75-77 °C; % Yield: 73.7; FT-IR (cm™): 1570
(COO,,,.), 1390 (COO,, ), 180 (Av), 607 (Cd-N),
517 (Cd-0O); 'H NMR (DMSO-ds, ppm): 3.69 (br,
5H, —CHz, -OCHs), 6.76-6.86 (m, 2H, H3, 5), 7.06-
7.14 (m, 2H, H4, 6), 9.08-9.10 (dd, 2H, Ha. J= 1.5
Hz, 4.2 Hz), 7.79-7.83 (m, 2H, HB), 8.52-8.55 (dd,
2H, Hy J = 1.5 Hz, 8.1 Hz), 8.02 (s, 2H, H); "*C
NMR (DMSO-ds, ppm): 175.4 (C=0), 39.0 (-CH>),
55.5 (-OCHs), 126.7 (C1), 150.5 (C2), 110.6 (C3),
127.1 (C4), 120.1 (C5), 128.5 (C6), 157.5 (Ca),
124.0 (CP), 131.1 (Cy), 137.0 (Cd), 128.9 (Ce),
157.5 (CO).

Cd(CIPhA),(bipy): (CIPhA2)

Solubility: DMSO, Ethanol, Methanol; M.P:
125-127 °C;% Yield: 71.1; FT-IR (cm™): 1609
(COO,,,), 1419 (COO, ), 190 (Av), 556 (Cd-N),
475 (Cd-0); '"H NMR (DMSO-ds, ppm): 4.25 (s,
4H, —-OCH>), 7.43-7.48 (m, 4H, H3, Hp), 7.23-7.27
(dd, 2H, HS5, J = 2.7 Hz, 9Hz), 6.83-6.86 (d, 2H,
H6, J =9 Hz), 8.68-8.69 (d, 2H, Ho J = 3.9 Hz),
7.92-7.98 (td, 2H, Hy, J = 1.8 Hz, 7.8 Hz), 8.37-
8.40 (d, 2H, H9, 7.8 Hz); C NMR (DMSO-ds,
ppm): 170.3 (C=0), 68.9 (-OCH2), 154.0 (C1),
137.8 (C2), 124.6 (C3), 129.1 (C4), 123.4 (C5),
115.5 (C6). 149.7 (Ca), 120.8 (CP), 122.1 (Cy),
127.9 (C3), 149.7 (Cg).

Cd(CIPhA),(1,10-phen): (CIPhA3)

Solubility: DMSO, Ethanol, Methanol; M.P =
142°C;%Yield: 72.8; FT-IR (cm™): 1588 (COO,_ ),
1422 (COO,, ), 166 (Av), 584 (Cd-N), 461(Cd- O)
'"H NMR (DMSO ds, ppm): 4.29 (s, 2H, —OCHz),
7.45-7.46 (d, 2H, H3, ] = 2.4 Hz), 7.21-7.25 (dd,
2H, HS, J = 2.4 Hz, 9 Hz), 6.85 -6.88 (d, 2H, H6, J
=9 Hz), 9.08-9.10 (dd, 1H, Ha. J = 1.5 Hz, 2.7 Hz),
7.80-7.84 (dd, 2H, HB 4.2 Hz, 8.1 Hz), 8.55-8.58
(dd, 1H, Hy J = 1.5 Hz, 8.1 Hz), 8.03 (s, 2H, He,)
;3C NMR (DMSO-ds, ppm):171.1 (C=0), 68.8 (~
OCH>), 154.0 (C1), 137.3 (C2), 127.9 (C3), 128.9
(C4),123.6(C5),115.5(C6),150.7(Ca), 122.5 (CB),
129.2 (Cy), 127.1 (C3), 124.1 (Ce), 145.6 (CC ;).

140-

2.1.4. DNA interaction study through UV visible
spectroscopy

In order to evaluate the ability of the synthesized
complexes to interact with the DNA the binding
experiments wereperformed. Here atfirstthe solution
of SS-DNA was prepared by dissolving 20 mg of
the respective sodium salt in water and by stirring
it for 24 hours. Concentration of DNA solution
calculated by using Beer-Lambert was found to be
153 uM. The absorbance of the resulting solution
was noted at 259 nm to 260 nm and was adjusted at
appropriate intensity, i.e., in between 0.9 to 1.3 a.u.
The ratio of the absorbance at 260/280 was found
to fall around 1.7, assuring the solution purity from
any other interrupting proteins. Solutions of all the
complexes were made in analytical grade ethanol.
Concentration of test complexes was kept fixed
and SS-DNA concentration was varied. Equivalent
amount of SS-DNA was added into reference cell
and sample cell to nullify the absorption of DNA.
The complex-DNA solution was incubated for 5-7
minutes and then absorbance was recorded at room
temperature [32-34].

3. RESULTS AND DISCUSSION
3.1. FT-IR Spectral Interpretation

Infrared spectral analysis served as a crucial
technique for confirming complex formation since
observable shifts or disappearance of absorption
bands indicate interactions between the ligand and
metal ion. FT-IR data of all synthesized complexes
is given in Table S1. Assignment of bands was
made by comparison with spectra of free ligands
and already reported similar data.

The FT-IR spectra of both free ligands
MeOPhA and CIPhA consist of wide O-H
stretching band between 3400 and 2700 cm ™' region.
After complexation, this band totally vanishes,
demonstrating that the ligand is deprotonated [20,
35]. Similarly, both free ligands showed strong
bands in the 1680-1740 cm™ region for C=O stretch
and around 1240-1260 cm™ region corresponding
to C—O stretching vibrations [33]. In the complexes,
these strong vibrational bands were replaced by a
new pair of bands, i.e., V(COO).sym in the range of
1550-1610 and v(COO)gm in the range of 1370-
1430 cm™ region. This is because electronic
density of carbonyl oxygen is pulled towards metal
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upon coordination thus the symmetry of C=0 bond
decreases and the strong C=0 band replaced by two
resonance stabilized COO- bands [33, 36, 37].

The mode of coordination of carboxylate
ligand was decided by Av (de —_— vsymm) according
to the Deacon-Phillips descrlptlon which they made
after studying a big number of complexes [38]. The
Av values for all complexes were less than 200 cm™!
which suggest that carboxylate ligand is coordinated
through bidentate mode. In the fingerprint region,
two new prominent bands appear in the 425-620
cm! region due to Cd—N and Cd—O bonds which
confirm the coordination of acid ligand and N-donor
moiety to metal center. The similar finding has also
been discussed by Singh et al [39] about the M-O
and M-N bonds. All the heteroleptic Cd complexes
showed strong vibrational bands in the region of
750-860 cm™ corresponding to C—H out-of-plane
vibrations from the N-donor heterocyclic ligands
[33, 40]. MeOPhA2 and CIPhA2 showed an intense
band near 650 cm™ due to ring bending vibrations
of bipyridine which confirmed the formation of
both pyridine containing complexes [41].

3.2. '"H NMR Spectroscopy

A 300 MHz spectrometer was used to record the
'"H NMR spectra of the ligands and their associated
metal complexes in deuterated dimethyl sulfoxide
(DMSO). 'H NMR data of all complexes is given
in Table S2 and S3.

NMR spectra of the free ligands showed O—H
signals at 11-12 ppm that vanished in the spectra of
complexes confirming deprotonation of acid ligands
[20, 42]. All the other protons of ligands appeared
in their characteristic regions, i.e., methoxy and
aliphatic methyl proton, methylene proton and the
aromatic protons. These protons showed negligible
shift upon complexation indicating their non-
involvement in metal coordination [33]. In the case
of heteroleptic complexes, additional signals were
observed for N-donor ligands. Four distinctive
aromatic proton signals in the range of 7.1-9.1
ppm are seen in MeOPhA2 and CIPhA2 complexes
containing 2,2'-bipyridine. The chemical shift values
were assigned to the protons following the order:
H,>H>H>H, Similarly, four additional protons
signal in the range of 7.1-8.8 ppm were spectra of
complexes MeOPhA3 and CIPhA3 containing
1,10-phenanthroline confirms its attachment. The

chemical shift of proton was assigned the following
order: H > H >H, > H, These signals shift to
higher ppm values as compared to free ligand
upon coordination indicating a decrease in electron
density on the nitrogen atoms and consequent
deshielding thus confirming the formation of
heteroleptic cadmium carboxylates containing
N-donor heterocyclic ligands. As the distance of
proton from coordinating nitrogen increases, the
effect of deshielding also decreases so only small
shift in frequency on coordination [33, 43, 44].

3.3. 3C NMR Spectroscopy

BC NMR helps in identification and quantification
of different types of carbon atoms; methyl (CH,),
methylene (CH,), methine (CH), aromatic carbons
and carbons of N-donor ligands. It is a useful
mean to directly observe a molecule’s carbon
structure. It provides important details regarding
the hybridization states of individual carbon atoms,
particularly those that are directly linked to a metal
center [45]. BC NMR data of all complexes is given
in Table S4 and S5.

BC NMR spectra of free ligands MeOPhA and
CIPhA show resonance signal of C=0 group at 172.3
ppm and 167 ppm respectively. Within spectra of
complexes, this resonance signal was shifted toward
a downfield (higher ppm) region which indicates
the deprotonation of ligands and their coordination
to the metal center. This deshielding effect occurs
due to the electropositive nature of Cd(II), which
withdraws electron density from the carboxylate
group so it resonates downfield [33, 46]. Aliphatic
methylene carbon in MeOPhA and CIPhA appearing
at frequency 55 ppm-67 ppm in free form showed
noticeable downfield shift in spectra of complexes.
Aromatic carbons of MeOPhA and CIPhA ligand
appeared in their respective regions in the spectra
of metal complexes thus providing strong evidence
of desired complexes formation. Appearance of
five additional peaks in the spectra of complexes
MeOPhA2 and CIPhA2 confirms the coordination
of bipyridine to metal center and chemical
shifts values were assigned in the following
order C._C> C, > C > C,. The coordination of
1,10- phenanthrohne is confirmed by six peaks in
spectra of complexes MeOPhA3 and CIPhA3 and
assignment of chemical shift values was done in
following order C > C§> C,> CY >C. > CB [20, 47].
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3.4. DNA Interaction Studies

A drug’s biological action is greatly influenced by
how it interacts with DNA, which has an impact
on vital cellular functions like transcription and
translation. Understanding these interactions is an
important field of study in medicinal chemistry.
Here, UV-visible spectroscopy was used to observe
the interaction of SS-DNA with synthesized
complexes in an ethanolic solution, using an
aqueous solution of DNA. The mode of interaction
is revealed by variations in absorbance and
wavelength [18]. The binding constant K, (M™)
is used to measure the binding strength, whereas
the Gibbs free energy (AG) is used to measure the
spontaneity of interaction. Both parameters were
calculated using Benesi- hildebrand equation [48].

A £ £ 1
= & + & X (N
A-A- En_c—E¢  Ey_c—Ec ~ K[DNA]

A is the absorbance of complex in the presence of
DNA and A is the absorbance of complex without
DNA addition. For each complex, A and A are
noted and A /A-A  ratio is plotted on y-axis and
inverse of DNA concentration is taken on x-axis.
€n-¢ and &g represent the molar absorptivity of
synthesized complexes without DNA and after
DNA addition [42].

Binding constant K, is calculated by taking
intercept to slope ratio. Gibbs free energy is
calculated for each complex by using Equation 2:

AG=-RTInK, )

In homoleptic complexes MeOPhA1l and
CIPhA1, hypochromism is observed with a minor
blue shift after incremental additions of DNA and
strong absorption bands at 271 nm and 284 nm
respectively. Hypochromic effect is observed due
to binding of partially filled n* orbital of complex
with m orbital of DNA hence the probability of
excitation is getting less so decrease in absorbance
[49]. Shoulder peak is also seen in both complexes
due to n-m transitions. Both homoleptic complexes
bind to DNA by groove binding mode [50].

All  heteroleptic complexes MeOPhA2,
MeOPhA3, CIPhA2, CIPhA3 showed strong
absorption bands that appear at 278nm, 264
nm, 264 nm, and 282 nm, respectively. After
incremental additions of DNA, hypochromism

is observed along with a blue shift of 3 to 4 nm
in £ _ . These complexes bind to DNA by groove
binding. The interacting molecule creates a parallel
stacking arrangement by occupying a location
where it sits on the DNA chromophore’s floor.
This configuration produces a parallel interaction
(at a 90° angle where transitions are restricted for
forbidden states and permitted for upper states),
which raises the energy needed for the transition
and, consequently, the blue shift. Additionally,
there is a slight hypochromic impact from this face-
to-face position [8] The binding constant values
measured for the homo and heteroleptic cadmium
carboxylates with ligand o-methoxyphenylacetic
acid were found to be in the order:

MeOPhA3 > MeOPhA2 > MeOPhA

The binding constant values measured for the
homo and heteroleptic cadmium carboxylates with
ligand 2,4-dichlorophenoxyacetic acid were found
to be in the order:

CIPhA3 > CIPhA2 > CIPhA1

K, values for heteroleptic complexes are
high because they contain intercalating agent
1,10-phenenthroline and 2,2'-bipyridine which
strongly intercalate with DNA and provide more
area of interaction thus increasing reactivity [34].
Homoleptic complexes have no such intercalating
agents thus the value of binding constants is low.
Negative Gibbs free energy shows the spontaneous
nature of interaction with DNA [51]. The UV-
Visible spectra and graphs showing DNA binding
studies of all the synthesized complexes are given
in Figure 1. The binding constant, A and AG
values for all synthesized complexes are given in
Table 1.

4. CONCLUSIONS

The synthesis of mixed ligand Cd(I) complexes by
using the already bio-active moieties like substituted
phenylacetic acid and nitrogen heterocycles was
carried out over here. The synthesis was carried out
by keeping in view their application as a drug which
could target DNA, which is considered to be the main
house of disease cause, propagation, its treatment and
disgnosis. The ligand 2-methoxyphenyl acetic acid
and 2,4-dichlorophenoxy acetic acid used as primary
and 2,2-bipyridine as well 1,10-phenanthroline
posses structural and electronic characteristic which
effectively tuned the geometric environment around
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Fig. 1. Absorption spectra of complexes showing the effect of addition of DNA.

Table 1. Binding constant K, and Gibbs Free energy AG values for all synthesized complexes.

Gibbs Free Energy AG (kJ/mol) Mode of interaction

Complex £ .. (nm) Binding Constant K, (M)

MeOPhA1 271 1.41 x 10°M! -29.37 kJ/mol Groove binding
MeOPhA2 278 3.13 x 10°M! -37.05 kJ/mol Groove binding
MeOPhA3 264 6.33 x 10°M"! -38.80 kJ/mol Groove binding
CIPhAL1 284 1.32 x 10°M! -34.91 kJ/mol Groove binding
CIPhA2 264 1.56 x10°M™! -35.33 kJ/mol Groove binding
CIPhA3 282 1.96 x 10°M! -35.89 kJ/mol Groove binding
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Cd(II) center. The FT-IR data reveal the bidentate
coordination mode adopted by the primary ligands.
The 'H and "*C spectra reveal the presence of clear
resonance signal attributed to proton and carbon of
the complex under study. The DNA binding study
through absorption spectroscopy indicate the success
of the synthesized complexes. The plannar moieties
and other characteristics of the plannar moieties
founds to play a significant role in binding with DNA.
The data indicate that such kind of structural design
could provide significant help in the search for novel,
effective therapeutic agents against diseases relevant
to DNA.
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Table S1. The FT-IR data (cm™) of ligands and Cd(II) carboxylates.

Code Compound -OH C=0/C-0

1682/1297 Av Cd-O Cd-N C-H
MeOPhA 2-methoxy phenylacetic acid  3400-2600

COO0 (0(010)
asymm symm

MeOPhA1 Cd(MeOPhA), - 1582 1410 172 526
MeOPhA2 Cd(MeOPhA),(bipy) - 1560 1386 174 490 590 734
MeOPhA3 Cd(MeOPhA) (phen) - 1570 1390 180 507 607 856
CIPhA 2,4-dichlorophenyl acetic acid ~ 3300-2400 1733/1290 - - - -
CIPhAl Cd(CIPhA), - 1611 1422 189 460
CIPhA2 Cd(CIPhA),(bipy) - 1613 1419 194 475 556 752
CIPhA3 Cd(CIPhA),(phen) - 1611 1422 189 46l 584 872

* Corresponding Author: Saqib Ali <saqibali@qau.edu.pk>
+ Both authors contributed equally to the work
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Table S2. 'H-NMR data in ppm of o-methoxyphenylacetic acid and synthesized complexes.

Proton MeOPhA MeOPhAl MeOPhA2 MeOPhA3
-OH 11.0 - - -
-CH, 3.49 3.20s 3.22s 3.69 br
-OCH, 3.73 3.70 br 3.70 s 3.69 br
H3 6.65 6.77-6.86 m 6.77-6.86 m 6.76-6.86 m
H4 6.96 7.06-7.66 m 7.06-7.15 m 7.06-7.14 m
H5 6.70 6.77-6.86 m 6.77-6.86 m 6.76-6.86 m
H6 6.95 7.09-7.15 m 7.06-7.15 m 7.06-7.14 m
Bipy (free) Bipy (bound) Phen (free) Phen (bound)
Ha - - 8.59 8.68-8.69 d J=4.8 8.81 9.08-9.10 dd
J=15Hz,42Hz
Hp - - 7.12 7.44-7.47 m 7.26 7.79-7.83 m
Hy - - 7.66 7.92-7.98 m 8.00 8.52-8.55dd
J=1.5Hz, 8.1 Hz
Hd - - 8.50 8.37-8.39 - -
J=8.1Hz
He - 7.55 8.02s
Table S3. 'H-NMR data in ppm of 2,4-chlorophenoxyacetic acid and synthesized complexes.
Proton CIPhA CIPhA1 CIPhA2 CIPhA3
-OH 11.0 - - -
-OCH, 4.88 4.28s 425s 4.29s
H3 7.17 747 s 7.43-7.48 m 7.45-7.46d
J=24Hz
HS5 7.04 7.24-7.27d 7.23-7.27 dd 7.21-7.25 dd
J=9Hz J=2.7Hz, 9Hz J=2.4Hz, 9 Hz
H6 6.65 6.84-6.87d 6.83-6.86 d 6.85-6.88
J=9Hz J=9Hz J=9Hz
Bipy (free) Bipy (bound) Phen (free) Phen (bound)
Ha - - 8.81 8.68-8.69 d 8.59 9.08-9.10 dd
J=3.9Hz J=1.5Hz 2.7Hz
HpB - - 7.26 7.43-7.48 m 7.12 7.80-7.84 dd
J=42Hz, 8.1 Hz
Hy - - 8.00 7.92-7.98 td 7.66 8.55-8.58 dd
J=18Hz, 7.8 Hz J=1.5Hz, 8.1 Hz)
Hd - - 7.55 8.37-8.40d - -
J=78Hz
He 8.50 8.03 s
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Carbon MeOPhA MeOPhA1 MeOPhA2 MeOPhA3

C=0 172.3 175.4 175.7 175.4

-CH, 38.3 39.0 39.1 39.0

-OCH, 55.1 55.6 55.6 55.5

Cl 124.1 126.7 124.7 126.7

C2 159.1 157.5 149.7 150.5

c3 114.7 110.6 110.6 110.6

C4 128.6 128.6 126.8 127.1

C5 121.5 120.1 120.1 120.1

Co6 130.8 131.2 128.4 128.5

Bipy (free) Bipy (bound)  Phen (free) Phen (bound)

Ca - - 149.3 157.5 150.0 157.5

Cp - - 121.0 120.9 121.5 124

Cy - - 137.2 131.1 136.4 131.1

Co - - 123 137.8 129.1 137

Ce - - 155.4 157.5 127.5 128.9

CC - - 144.5 157.5
Table S5. *C-NMR data in ppm of 2,4-chlorophenoxyacetic acid (CIPhA) and synthesized complexes.

Carbon CIPhA CIPhA1 CIPhA2 CIPhA3

C=0 167.0 170.7 170.3 171.1

-OCH, 67.1 68.7 68.9 68.8

Cl 152.8 154.0 154.0 154.0

C2 124.0 129.2 137.8 137.3

C3 131.4 123.6 124.6 127.9

C4 128.0 127.9 129.1 128.9

C5 128.0 122.2 123.4 123.6

Co6 117.1 115.4 115.5 115.5

Bipy (free) Bipy (bound) Phen (free) Phen (bound)

Ca - - 149.3 149.7 150.0 150.7

Cp - - 121.0 120.8 121.5 122.5

Cy - - 137.2 122.1 136.4 129.2

Co - - 123.0 127.9 129.1 128.9

Ce - - 155.4 149.7 127.5 124.1

Ct - - 144.5 145.6
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