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Abstract: To solve the system of linear equations is one of the hottest topics in iterative methods. The system of linear
equations occurs in business, engineering, social and in sensitive research areas like medicine, therefore applying
efficient matrix solvers to such systems is crucial. In this paper, an improved iterative scheme using successive
overrelaxation has been constructed. The proposed iterative method converges well when a linear system’s matrix
is M-matrix, Symmetric positive definite with some conditions, irreducibly diagonally dominant, strictly diagonally
dominant, and H-matrix. Such type of linear system of equations does arise usually from ordinary differential equations
and partial differential equations. The improved iterative scheme has decreased spectral radius, improved stability
and reduced the number of iterations. To show the effectiveness of the improved scheme, it is compared with the
refinement of generalized successive over-relaxation and generalized successive over-relaxation method with the help

of numerical experiments using MATLAB software.
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1. INTRODUCTION

The world of mathematics is surrounded by
many mathematical problems. The efforts to find
the solution to the system of linear equations are
one of the most popular and interesting problems
in the math world. A lot of people, apart from
mathematicians, like computer scientists, chemists,
biologists, physicists, engineers, social scientists,
industry experts, economists etc, struggle to solve
the system of linear equations in their fields [1-
2]. The branch of mathematics which is devoted
to developing a different algorithm for solving a
system of linear equations is called Linear Algebra
(LA) and the branch of LA that deals with the
numerical solution of these linear systems, is called
Numerical Linear Algebra (NLA). A linear equation
system can be transformed into a matrix equation in
the following form:

Ay=b (1)
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In equation 1, matrix A is an invertible square
matrix whereas y and b are unknown and known
column vectors respectively.

In NLA we search for the indirect or numerical
solution of the linear system. The indirect methods
are applied when the co-efficient matrices of matrix
equations are large dimensional and sparse [3].

Improvements in the classical iterative
techniques have been done earlier [11], however
since the SOR outperforms all the other iterative
techniques, an improvement in the SOR scheme
will be highly effective. In this research work
an iterative scheme namely “improved iterative
scheme using successive overrelaxation (IIS)” is
developed. This scheme is just an improved version
of the generalized successive overrelaxation
(RGSOR) refinement. Stability and Spectral Radius
are used as comparative factors for checking the
efficiency of the proposed algorithm. The IIS has
decreased spectral radius, improved stability and
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the number of iterations. The convergence of IIS
has been proved. Different types of numerical
experiments are considered to demonstrate the
efficiency of the IIS method.

2. MATERIALS AND METHODS

First, we decompose the matrix A = T, — L,,, —
Un. Let A= (a;j) be a nonsingular square
matrix and Tp, = t;; with bandwidth 2m+1 is be
a banded matrix, defined as

tii ={ Y 1.1
v 0 otherwise (1.D

Where L,, and U, are strictly lower part and
strictly upper part, these matrices are defined as
under

a11 X1m+1
T - : An-mn
L [ AR :
Ann-m Ann
—Om+21
L, = L
L _an,l _an—m—l,n
—Aim+2 " —Q1n
U, =
_an—m—l,n

Definition 1: [4-5] A square matrix A = (ay;) is
known as diagonally dominant (DD) if
logil = Xfqla|  (1.2)
j#1
Definition 2: [4-5] A square matrix A = (ay;) is
known as strictly diagonally dominant (SDD) if
i | > Z;]=1|aii| (1.3)
j=1
Definition 3: [4-5] With satisfying the following
four axioms a matrix A is called an M-matrix.
1. a,-l->0f0ri=1,2,3,...,n

1. a,-]-SOforizl,Z,B,...,n

iii. A must be a nonsingular
iv. A1>0

Definition 4: [4-5] If a square matrix A satisfies
the following conditions then it is called
symmetric positive definite.

i. A=A

ii. y'Ay >0
Definition.5: [4-5] Let A a square matrix and A be

its Eigen value then the equation p(A) = max|A|
is called spectral radius A.

3. GENERALIZED SOR METHOD

The generalized SOR method for solving the
system of linear equations is presented by
Manideep Saha and Jahnvi Chakrabarty [6].
Using this method eq. (1) can be written as:

y** ) = (T, — wLy) (1 — @)T;p +
WU )y® + (T, — wEy) " *wb (2)

4. REFINEMENT OF GENERALIZED
SOR METHOD

Hailu Muleta and Genanew Gofe proposed a
refinement of the GSOR method [1]. Multiplying
eq. (1) with w then substituting A with its splitting

w(Ty, — Ly, —Uy) = wyb 2.1
After simplification:
y=y+Tm—wly) ' (b-Ay)w (22
That is:

D=y (D) 4 (T — L, )~1(b -
Ay e ®

Putting the values of y&*1 from Eq. (2) in Eq.
(3) and after solving the refinement of the GSOR
Scheme will be:

y(k+1) = [(Tm - wl'm)_l((l - w)Tm +
wUm)]zy(k) + (Tm - ("Lm)_l [I + (Tm -
wl,) (1 - 0)Ty + wU,,Job 4)
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5. PROPOSED METHOD

Here we are presenting a second refinement of the
GSOR Method. by using the equation y*+1 =
y*+D + (T, — wLy) (b — Ay®*+ D)  and
Substituting value of y**1 form eq. (4) we get

y(k+1) = [(Tm - wEm)_l(l - w)Tm
+ WFyp) ]2y ®
+[1
+ (Tm - wEm)_l(l - w)Tm
+ WF | (Ty, — @E,) 7 1b
+ (T,, — wE,;;)) 'bw
- (wA(Tm - wEm)_l)[(Tm
- wE,)" 11 - )T,
+ wF,,)]2y®

+[1
+ (Tm - wEm)_l(l - w)Tm
+ @F | (T

—wE,)"'b (5
After rearranging and simplifying eq. (5) we get
D = [(T}y — wE) (1 — @)Typ +
wFy)] y® + [1 + (T — wE)~1((1 -
@)Tpy + F ) + ((Tm — wE,)" (1 -
)T, + me))Z] (T — WE) "' wb (6)
Equation (6) is the equation of IIS. Form = 0 IIS
becomes SRSOR.
6. CONVERGENCE THEORY

Theorem 1: Let A be an SDD matrix then for any
vector y(®, the RGSOR converges.

Proof: (see [1])

Theorem 2: Let A be a square matrix of
dimension n X n, where m < n and m belongs
to a set of natural numbers then the RGSOR

converges for any vector y(®,

Proof: (see [1])

Theorem 3: A is an SPD matrix and if w < 2 then
SOR  converges for any vectory(®.

Proof: (see [6])

Theorem 4: Let A be a square matrix of
dimension n X n, where m < n and m belongs
to a set of natural numbers then the IIS converges
for any vector y(®.

Proof: Suppose Y be the exact solution of
equation 1. Let us assume that A be the SDD so
SOR, GSOR and RGSOR will converge, i.e.

y(k+1) Sy
When:

y(k+1) =[(Tm —wLy) _1((1 — )Ty, +
wUm)] Zy(k) + (Tm - wLm)_l[I + (Tm -
wLy) (1 - w)T,, + oU,,)]|wb
(6.1)

Also,

YD = YD 4 (T, wly) 7 (b —
wAy(k+1))

yktD) —y =yt ¥y 4 (T, —
wLly) 1(bw — wAy*D) (6.2

Taking norm on both sides:

5% = ¥] = [y -y
+ (T — wLy) (bw
_ wAy(k+1))||

< [ly® D —v|
+||(Tn — @Lp) L(bw
_ wAy(k+1))||

[y - 1]l < [y - v]
+ 0T = wLn) o
— ay®e)|

|7 —y| < Iy -l
+ w”(Tm - wl'm)_lllll(b
- b)ll

||y(k+1) _ y” <0+ a)”(Tm - wLm)‘1||0 =0

Consequently ||y**D —y|| - 0
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Then:

ykt1) Ly

= p([(Th — wLy) 11— @)y +
0Un)] ) = (o (T — oLw) (1 -

)T, + wUm))>3 <1 (6.3)

Hence IIS is convergent.

Theorem 5: If be an M-matrix of order n X n and
m< n where m belongs to a set of natural
numbers then the IIS converges for any initial
vector y(o).

Proof:
We have an M-matrix A4; we try to produce that

IIS is convergent. using the convergent theorem
of GSOR, we have:

p (T — ®L) (1 = )Ty + Uy)) < 1
(6.4)

We realize that,

Gus = [P(Ggsor)]*Where p(Ggsor) and Gys
are spectral radii of GSOR and IIS respectively.

As p(Ggsor) < 1, 50 p(Gps) < p(Ggsor) < 1

Theorem 6: The IIS method converges for any
SPD matrix A.

Proof:
Using theorem 3, We have p((Tm —
wLy) (1 - )Ty + wl,]) <1.

Let X'be the actual solution of eq. 1. Now by using
eq. 2 we can write equation 1 as

Y=[I-(Tpn-oLly) ((1-w)T,+
wU,)| " bo(Ty — 0Lly)™t (7)
Using IIS
D = [(Tn — wLm) (1 — @)Tn +
WU )"y + |1+ (T = k)™ ((1 -

©) T + 0Up) + ((Tm — wLy) (A -

)Ty + a)Um))Z] (T, — wLy) ™t wb
(8)

Now using eq.(8) and the exact solution ¥, we
have:

Y=[(Tm— ®Ly) (1 — @)Tyy
+ wUy)] y®
+ [1
+ (T — wLypy) (1 — @)Tyy
+ wly,)
+ (T - wLn) (1
2
- )T, + wUm)) ](Tm

—wL,,) ' wb
Sy = (1 — [(T — ®L) "1 ((1 = @)Ty

+ wUm)]g)_l [1
+ (T — wLyp) (1 - @)Tyy,
+wlUy,)

+ (T — @Lm) 1 (1
- w)Tm + wUm))z] (Tm

- owU,) 'wb

Y = [1 +[(T — @Ly) (A — @)T},

+ wUy)]°
+[1-wly) (A - @)Ty

+ wUy)]° +] [1

+ (Tm - wLm)_l((l - w)Tm
+ wU,,)

+((Ton = @L) (1 — )Ty,

+ wum))z] (Tpm

—owU,) lwb
Since (1 — M)~ 1=1+M+M?+...

If p(M) < 1 and 1-M is singular.
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Y = [1 + (Tm— oLly) (1 - @)y, + @wUy,)
+ (T — 0L) (1 = )Ty
+ wUm))2
+ (T — oLy) (1
— )T, + wUm))3
+ (T — oLy) (1
— @)T,, + wUm))3

+ ] (T — @U) lwb

Y=[1-(Tn-oly) (- )Ty +
wUm)]_l(Tm —wU,,) twb (8.1)

As A-M)1=1+M+M?+ -

2Y=[1-Tn—oly) ((1- )Ty, +
wUm)]_l(Tm — wU,,) " wb is consistent to
GSOR.

Now examine the convergence of IIS for the
SPD matrix.

y(k+1) = [(Tm - wl'm) _1((1 - w)Tm
+ wU,y)] 3y®
+ [1
+ (T — @Ly) (1 — @)Typ
+wly,)
+ (T = @Lm) (1~ )Ty
+ wUm))Z] (T
—wL,,) ' wb

y(k+1) = [(Tm - wLm) _1((1 - w)Tm
+ wUpy)] Sy

+r

+ (Tm - wl‘m)_l((l - w)Tm
+ wUm)

+ (T = 0Ly) (1 = )Ty,
+ ooUm))2

+ (T = 0Ly) (1 - )Ty,

+ wUm))3

+ (T = @Ly) (1 = )Ty
+ ooUm))4
+ (T = @Ln) (1 = )Ty

+ wUm))s] (Trm

— wL,;)"! wb

y(k+1) = [(Tm - wLm) _1((1 - w)Tm

+ wUy)] y*-

+ [1

+(Tm—oLl) Y ((1- )Ty,
+ wUm)

+ (T — 0L) (1 = )Ty
+ wUm))Z

+ (T — 0L) (1 = )Ty
+ wUm))3

+ (T — 0L) (1 = )Ty
+ ooUm))4

+ (T — 0L) (1 = )T
+ wUm))5

+ (T — 0L) (1 = )Ty
+ wUm))6

+ (T = 0L) (1 = )Ty
+ wUm))7

+ (T = 0L) (1 = )Ty
+ wUm))s] (Tm

- wL,)" wb

y(k+1) = [(Tm —wLy) _1((1 —@)Tp

+ (l)Um)] 3k+3y(0)

+r

+ (T — ®Ly) (1 — @)Ty,
+wly,)

+ (T — 0L) (1 = @)T4y,
+ wUm))Z

+ (T — 0L) (1 — )T}y

39
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+ wUm))3
4o ((Tm — a)Lm)_l((l
3k+2

— )Ty + 0U,,)) ] (Tpm

— wLy) ™' wb (8.2)
If A is SPD then:
p((Tm — L) (1 = @)y + 0U,)) < 1

ll(l_)rg[(Tm - wLm)_l((l - w)Tm
+wU,)] P =0

= lim y*+D = ll(im[(Tm - wL,) (1

k— oo
—w)T,,
[(Tm

n wUm)]3k+3 Zk_o

- wLm)_l((l - w)Tm
+ wUm)]k (T, — wL,) ' wb

[ee)

=0+[I—-(T,, — wLy) (1 - w)T,,
+ wLy)] b (T, — wLy)™?!
-Y

= p[((Tm - wLm)_l((l - w)Tm + wUm))S] =

(p(Tm —wLly)™ (1= )Ty + wUm))3 <1
(8.3)

Theorem 7: If the SOR method converges then
the IIS will converge more rapidly than GSOR
and RGSOR.

Proof: The GSOR, RGSOR and IIS can be
written respectively as,

y = sy + 1 (8.4)
y* = §2y® 1] (8.5)
yD = §3x0) L K (8.6)

Where
wUy,)

S$=(Ty — wly,) (1 — @)T,, +

I=w(T, - oL,) b

J= [I + (Tm - wl’m)_l((l - w)Tm +
wU)|(Tr, — wLm)_lb,

K=[I+Tn—oly) ((1-w)Ty+eUy,)
+ (T — wl‘m)_l((l - )Ty,
+ wUm))Z](Tm - wlm)_lwb

Let the exact solution of eq (1) is X
>Y=SY+I1 Y=S’Y+]JandY =S3Y + K
let k = 0,1, 2, ... are nonnegative integer.
Let’s consider the GSOR method
yUet) = gy 4
=yl —y =5y —y + 1
=yl _y =5y® —y + 1+ SY — SY
>yl —y =s(y®-y)+SY +1-Y
>y-Y=Sy®-v)+Y-Y
= y+ —y = s(y®-)

= [y* D —y| = [|so®-1)|
< lIsll||o®-1)|
< |Is?[|p*V-n)|| < -
< |[s*[llo™-n|

= [ly® —v| < [s*ll o™M-n] <
Isl¥|ly™ — || (2)

Similarly, consider the refinement of GSOR and
IIS.

= [ly® -y < |s**[[ -0 <
IsI*< |y ®-n| (b)

and

= [lydt v < sl -l <
ISPy ®-1)]l ()

Using the inequalities, a, b and c, since |[S|| < 1
we conclude that the IIS converges faster than
GSOR and RGSOR if SOR converges.

7. RESULTS AND DISCUSSION

In this section some numerical examples have
been experimented with. The comparative
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analysis of the proposed scheme is done with Example 3:
GSOR and RGSOR by using spectral radius and —4 1 0
stability. 1 -4 1
0 1 -4
1 0 0
The below example 1, 2, 3 and 4 are referred A=lo 1 o
from previously conducted studies [6-13]. Also, 0 0 1
the results are depicted in tables 1-4 and figure 1 g 8 8
and 2. Lo 0 0
Example 1:
Example 4:
5 -1 0 0 -1 0 0 -1 -2
[—1 5 -1 0 0 0 -1 —1} [—1] 2 -3
Io -1 5 -1 0 -1 -1 oI I4I -1 4
1 0 -1 5 -1 0 0 -1 13
4511 21 0 0 5 -1 0 -1[PT|4] q=10 -1
lo o -1 -1 0 5 1 -1 2] 0 0
-1 0 0 0 -1 0 5 -1 9
l—1 0 -1 0 -1 0 -1 5J llZJ lo -1
0 0
Example 2:
7 -1 0 -1 0 -1 0 -1 0 0 GSOR

-1 7 -1 0 -1 0 -1 0 -1 O
o -17 -1 0 -1 0 -1 0 -1
1 o -1 7 -1 0 -1 0 -1 0
o -1.0 -1 7 -1 0 -1 0 -1,
-1 0 -1 0 -1 7 -1 0 -1 0}
o -1 0 -1 0 -1 7 -1 0 -1
-1 0 -1 0 -1 0 -1 7 -1 0
o -1.0 -1 0 -1 0 -1 7 -1
to 0 -1 0 -1 0 -1 0 -1 7

NNNNNNNNW-N

0.6

0.4

(=N

OO R O

41

0 0 0 0 O0F [1/5127
1 0 0 0 0 4/512
0 1 0 0 0 9/512
-1 0 0 0 -1 4/512
-5 -1 0 0 -1|;b=]|16/512
1 -4 0 0 1 36/512
0 0 -4 1 0 9/512
1 0 1 -4 1 36/512
0 1 0 1 -4 81/512]

0 0 0 —-5/3

0 -1 0 2/3

0 0o -1 p= 3

2 =3 ol"” 7 |-4/3
-1 4 —1J -1/3

0 -1 4 5/3
RGSOR 1S

o

Example 3 Example 4

0.2
0 .— l- I-

Example 1

Example 2

Fig. 1. The spectral radius of the improved
method in comparison to other schemes.

0 I

Example 1

Example 2

Example 3 Example 4

Fig. 2. The number of iterations taken by the improved method in

comparison to other schemes.

Table 1. Numerical Results from example 1.

Stability (infinity norm)

Methods No of iterations Spectral Radius set up to 4 iteration
GSOR 12 0.1319 0.0372
RGSOR 07 0.0174 0.0004

IS 05 0.0022 0.000003
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Table 2. Numerical Results from example 2.

Stability (infinity norm)

Methods No of iterations Spectral Radius set up to 4™ iteration
GSOR 12 0.1460 0.02777
RGSOR 05 0.0350 0.00024
IIS 04 0.0066 0.000009
Table 3. Numerical Results from example 3.
Methods No of iterations Spectral Radius Stability (mtf:qlty n?rm)
set up to 4" iteration
GSOR 08 0.1617 0.00099
RGSOR 05 0.0261 0.000013
JIN 04 0.0042 0.00000044
Table 4. Numerical Results from example 4.
Methods No of iterations Spectral Radius Stability ('“E'T'ty n?rm)
set up to 4" iteration
GSOR 07 0.5954 0.0589
RGSOR 04 0.3546 0.0005
IS 03 0.2111 0.000003

The null vector is used as an initial approximation
with a tolerance of 0.00001. The value of  is taken
optimally. In example 01, The coefficient matrix
A is SDD and SPD with m=1 and ®=1.0695. In
example 02, A is SDD and an M-matrix with m=1
and ©=1.099. In the example, 03 A is an SDD
matrix with m=1 and ®=1.1617. In example 4, A is
an M matrix with m=1 and ©=1.098.

8. CONCLUSION

An improved iterative scheme using successive
over-relaxation for the solution of a linear system of
equations is presented in this paper. The convergence
of IIS for M-matrix, SPD and SDD, is examined
and four numerical examples are presented using
MATLAB version R2014b (8.4.0.150421). In
aspects of the number of iterations and error
analysis, all results obtained by IIS are compared
to the first refinement of generalized SOR and
generalized SOR, as shown in tables 1, 2, 3 and
4. The evolution of the result shows that the IIS
converges faster than the GSOR and RGSOR.

The presented method works efficiently,
however, it is only applicable to M-matrix, SPD
and SDD matrices, Future work can be done in the

application of similar improvement techniques to
methods that are more robust and can handle a large
variety of matrices.
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