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Abstract: According to recent research on the brain and cognition, the microtubule level activities in the brain are 
in accordance with the quantum mechanical concepts. Consciousness is the emergent phenomenon of the brain’s 
subsystems and the quantum neural correlates. Based on the global work-space theory and traditional neural networks, 
investigations in machine consciousness and machine intelligence are reporting new techniques.  In this study, a 
novel approach using circuit-based quantum neural network is proposed and simulated. This approach satisfies all 
the criteria of quantum computing and is tested for the exclusive OR (XOR) gate’s nonlinear learning. As a result 
of the use of quantum gates, various quantum circuits, such as quantum adders and subtractors, are also created and 
included in the designing and simulation of circuit of the quantum neural networks. Moreover, it is also argued that the 
proposed circuit of quantum neural network may also be tested and implemented on real quantum computer hardware. 
The present study also stresses the applicability of techniques of machine learning algorithms such as quantum and 
classical neural networks to various challenges of High Energy Physics.
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1.	 INTRODUCTION

To recreate the characteristics of human intellect 
in computers, different theories of consciousness 
such as Global Workspace Theory [1–5] and Neural 
Correlate Theory have proposed different models 
in the recent years [6–18]. In machine intelligence, 
neurological correlates of consciousness are 
employed by artificial neural networks (ANNs) 
[18–21] which consist of layers (input, hidden and 
output) of neurons [21–23]. Real values are used as 
the ANNs’ inputs, weights (connection strengths), 
and outputs [22, 23]. The artificial neural networks 
are being simulated to learn and recognize using 
the typically available computer architecture, 
which represents information with “0” or “1”. By 
claiming that information at the microtubule level 
in human brain follows the laws of quantum physics 
[9], Roger Penrose and Hameroff’s Orch-OR model 
[13, 21] was used to describe the capabilities of the 
brain at the microtubule level. This model further 
contended that higher-level characteristics of the 
brain, such as consciousness and unconsciousness, 

may be explained by general relativity and quantum 
physics principles [6-7, 13, 21]. Quantum physics 
may more effectively describe nature, including 
energy and matter at the microscopic level [24]. 
Quantum computing based upon its marvelous 
features such as superposition and entanglement 
is promising to provide answers to those higher 
dimensional issues that conventional computing 
has not yet been able to resolve [25]. The amazing 
properties of interference, entanglement, and 
superposition in quantum computing also offer a 
genuine parallel architecture [21, 24-27]. 

The typical concepts about Quantum Circuits, 
Quantum Neural Networks (QNNs) and Machine 
Learning in High-Energy Physics are as follows. 
As far as the Quantum Circuits are concerned, 
the quantum counterpart of classical information, 
known as a qubit, is denoted by the Dirac notations 
which are Ket (column) and Bra (row) vectors. 
Qubits may be a superposition of these states 
[24–25, 27] even if they are in the state of “|0>” 
or “|1>.” The arithmetic and logical units, registers, 



and memory are only a few examples of the several 
classical gates utilized in classical computers. 
Quantum computing also consists of Hermitian 
matrices/operators named as single-qubit and 
multiqubit gates (H, X, Y, Z, CNOT, Toffoli, Fradklin 
etc.) to process information in quantum circuits 
required to build quantum computer architecture. 
The Toffoli gate, which can be seen in Figures 1, 
2, and 3, is used to transform classical gates and 
circuits therefore named as the universal gate of 
quantum computing. As a result, Toffoli gate is 
used to form quantum circuits for the corresponding 
classical circuits (as seen in Figures 4, 5, 6, and 7). 

Fig. 1. By fixing the Toffoli gate’s third qubit to |0> or 
|1>, the classical AND and NAND gates are transformed 
into Quantum AND and Quantum NAND gates 
respectively. Where inputs (|A〉, |B〉 and |C〉 are named 
as Qubits (quantum states) with A and B being classical 
bits (0 or 1) [28-30].

Fig. 3. CNOT gate of quantum computing is equivalent 
of Classical XOR gate. Where, inputs (|A〉, |B〉 and |C〉 
are named as Qubits (quantum states) and A and B are 
classical bits (0 or 1) [28-30].

Fig. 4. Classical half adder is transformed into quantum 
half adder by applying Toffoli gate on the three qubits 
followed by CNOT gate applied to the first two qubits. 
Where, inputs (|A〉, |B〉 and |C〉 are named as Qubits 
(quantum states), and A, B, S (Sum), and C (Carry) are 
classical bits (0 or 1) [28-30].

Fig. 5. Classical full adder is transformed into quantum 
full adder with CNOT gate and three Toffoli gates acting 
on different qubits. Where, inputs (|A〉, |B〉 and |C〉are 
named as Qubits (quantum states) and A, B, S (Sum), 
and C (Carry) being classical bits (0 or 1) [28-30].

Fig. 6. Classical Half Subtractor is transformed into 
quantum Half Subtractor with two CNOT gates and one 
Toffoli gate acting on different qubits. Where, inputs 
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states), 
A and B are classical bits (0 or 1), D (Difference) and B 
(borrowed) are classical outputs (0 or 1) [28-30].

Fig. 2. By fixing third qubit of Toffoli gate to be |1> or 
|0>, the classical OR and NOR gates are transformed 
into QOR and QNOR gates respectively. Where, inputs 
(|A〉, |B〉 and |C〉 are named as Qubits (quantum states) 
and A and B are classical bits (0 or 1) [28-30].
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conventional neural networks, as shown by earlier 
research in this field [22–23]. Li Fei [22] argued 
that one quantum neuron outperforms a network 
of six conventional neurons for the different input 

    The Quantum Neural Networks (QNNs) are 
neural networks that use quantum mechanical 
concepts. Similar to artificial neuron, the quantum 
neurons are arranged in different layers of neuron 
such as input, hidden, and output. In contrast to 
conventional neural networks, quantum neural 
networks (QNNs) use complex column vectors for 
input and output, and complex Hermitian matrices 
or quantum operators for connection weights. 
Quantum neural networks are more effective than 
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patterns of the XOR gate’s nonlinear learning.
The concepts of Machine Learning in High-
Energy Physics are also quite important. The high 
energy physicists (HEP) conduct experiments 
employing accelerator and detector technology as 
well as the Standard Model of particle physics to 
study the fundamental properties of the cosmos. 
Gravitational, strong, electromagnetic, and weak 
interactions are the basic forces that control how 
particles behave towards one another. The Standard 
Model, which was created in the 1970s, has proven 
very effective in describing physical processes 
involving basic interactions (apart from gravity), 
becoming the most thoroughly tested theory of 
physics, and accurately predicting the results in a 
broad range of events [31-33]. To optimize high-
energy physics processes, several issues are being 
resolved using artificial neural networks [34–39]. 
Artificial neural networks are used in experimental 
high energy physics for classification of events [43–
44], reconstruction of objects [45–46], triggering 
process [47–48], and track finding [49–50], while 
they are used in theoretical high energy physics to 
solve the Schrodinger wave equation and calculate 
the mass spectra of particles [40–42]. In addition, 
ordinary and partial differential equations of various 
domains [52-54] as well as quantum many-body 
problems are being resolved using artificial neural 
networks [51]. Quantum neural networks have also 
been emphasized recently by developments in high-
energy physics and machine learning [55–58]. This 
research will be expanded in the future to address 
the issues in the aforementioned fields.  

During the last ten years, a lot of research has 
been done on quantum neural networks [18-20, 
22-23, 58-75]. Alexander’s research on “quantum 
neural networks” basically presents explanation of 
the paradigm of shifting from classical computing 
to quantum computing. There was also discussion 
of the advantages of quantum computing (using 
quantum neural networks) over conventional 
computing (using conventional neural networks) 
[23]. These advantages included high performance, 
Exponential memory, faster learning, processing 
speed, compact size, great stability, and reliability. 
By duplicating certain characteristics of the 
conventional neural network into a quantum 
counterpart, many algorithms have been developed 
for quantum neural networks, however, they are 
missing other qualities and limitations imposed by 
quantum computing. 

QNNs are created by solely altering the input, 
output, and weights of artificial neural network 
into their quantum counterparts, by having overall 
architecture and methodology to be the same [19-20, 
22-23, 57-58, 69-73]. However, Gradient Descent-
based Algorithms are used for the majority of ANN 
implementation [22]. The present architecture 
of conventional and quantum neural networks is 
shown in Figure 8, and it has the following three 
shortcomings:
(a) Cloning in Quantum Circuits: In conventional 

computers, it is simple to make a duplicate of 
the information, but according to the quantum 
theory of nature, because information is the 
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Figure 8, and it has the following shortcomings: 

 

Fig. 8. Currently existing Classical or Quantum Neural 
Network Structure [30] 

(a) Cloning in Quantum Circuits: In conventional 
computers, it is simple to make a duplicate of the 
information, but according to the quantum theory of 
nature, because information is the representational state 
of a physical system, like electrons or photons, it cannot 
be directly copied.  In quantum computing, information 
may be copied from one location to another via the fan-
out operator or circuit of teleportation [76]. Therefore, 
without teleportation or the use of the fan-out operator, 
it is not feasible to transmit copies of the quantum 
information to the other neurons. (b) Reversibility in 
Quantum Computing: In quantum computing, 
information is processed by using quantum gates which 
are Hermitian matrices which make quantum circuits 
and quantum processes to be reversible. Because 
classical weight signals are not Hermitian matrices, 
therefore, a straight modification from classical to 
quantum is irretrievable. (c) Loss of Information: In 
classical circuits, number of inputs varies from number 
outputs resulting into loss of information in the form of 
heat and direct conversion of classical neural network 
into quantum neural network in which inputs are qubits 
which represent of the physical system and this 
variation of input and output results into loss of 
information. 

The main objectives of the present studies are as 
follows: (i) To highlight the drawbacks of the 
architecture of the existing conversion of classical 
neural networks to quantum neural networks, (ii) To 
address these drawbacks through a proposed quantum 
circuit-based approach and to simulate for the non-
linear learning of XOR Gate, (iii) To process the 
proposed algorithm for each pattern of the truth table of 
the XOR Gate. 

2. MATERIALS AND METHODS 

The rules of quantum computing are not satisfied when 
a conventional neural network circuit or design is 
replicated into a quantum counterpart, therefore, it is 
essential to create a circuit or architecture for quantum 
neural networks that complies with all conceivable 
principles and computing/quantum mechanics 
limitations. Since traditional gates/circuits and neural 
networks have only one output and two input lines, 
respectively. Moreover, they are irreversible and lost 
their information as heat. However, one cannot claim 
that limitations exist in quantum computing, such as 
information loss, irreversibility, and the no-cloning 
theorem, since the number of input and output lines in 
quantum circuits is identical. The current research in 
quantum neural networks continues in accordance with 
the classical hierarchy rather than the principles of 
quantum mechanics/computing. The present work 
argues that every transformation of the classical circuit 
into its quantum counterpart must satisfy all limitations 
or principle(s) of quantum computing. Therefore, it is 
argued that present practice of QNNs may not be used 
for the quantum mechanical way of implementation of 
higher-level feature of mind and brain into machines to 
accomplish intelligence. Because of the above-
mentioned flaws, it is difficult to say that existing 
QNNs are capable of quantum learning. The presented 
quantum neuron has four inputs and four outputs, as 
shown in Figure 9. The connection weights are 
quantum operators with complex entities, whereas the 
inputs and outputs are complex column vectors.  

Fig. 8. Currently existing Classical or Quantum Neural 
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it is essential to create a circuit or architecture for 
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and two input lines, respectively. Moreover, they 
are irreversible and lost their information as heat. 
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irreversibility, and the no-cloning theorem, since 
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neural networks continues in accordance with the 
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argues that every transformation of the classical 
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Therefore, it is argued that present practice of QNNs 
may not be used for the quantum mechanical way 
of implementation of higher-level feature of mind 
and brain into machines to accomplish intelligence. 
Because of the above-mentioned flaws, it is difficult 
to say that existing QNNs are capable of quantum 
learning. The presented quantum neuron has four 
inputs and four outputs, as shown in Figure 9. The 
connection weights are quantum operators with 
complex entities, whereas the inputs and outputs 
are complex column vectors. 

The suggested quantum neurons (Figure. 9) 
may be used to build quantum neural networks 
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The suggested quantum neurons (Figure. 9) may 
be used to build quantum neural networks (Figure. 10). 
The circuit lines that are not used by the next quantum 
neuron, may be passed on to other brain cells to 
accomplish additional functions. The suggested design 
prevents information loss by having an equal number 
of input and output lines, avoiding copying of quantum  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 10. Suggested model of Quantum Neural 
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The suggested quantum neurons (Figure. 9) may 
be used to build quantum neural networks (Figure. 10). 
The circuit lines that are not used by the next quantum 
neuron, may be passed on to other brain cells to 
accomplish additional functions. The suggested design 
prevents information loss by having an equal number 
of input and output lines, avoiding copying of quantum 
information, and having a reversible neural network. 
Quantum neuron layers may also be added to aid in the 
understanding of complicated events. 

 

Fig. 10. Suggested model of Quantum Neural Network 

The suggested quantum neural network in this 
research complies with all restrictions and quantum 
computing principles. The identification and recovery 
of data about the suggested circuit/hierarchy of 
quantum neural networks is thus said to be beneficial 
for the employment of quantum learning, and it may 
also be advantageous to title it for the quantum-oriented 
involvement of the complicated processes in the brain 
and mind.   

For quantum circuit-based simulation of the non-linear 
learning of XOR Gate, it is necessary to initially define 
the input and output patterns of the Quantum XOR 
gate. Table 1 shows the Truth table with the 
corresponding input and output patterns of the 
Quantum XOR gate.  

Table 1. Truth table with corresponding input and output 
patterns of Quantum XOR gate. 

Input 
Pattern # 

|A〉 |B〉 |t〉 

1 |0〉 |0〉 |0〉 

2 |0〉 |1〉 |1〉 

3 |1〉 |0〉 |1〉 

4 |1〉 |1〉 |0〉 

Where |𝟎𝟎〉 = [𝟏𝟏
𝟎𝟎]  , |𝟏𝟏〉 = [𝟎𝟎

𝟏𝟏]  and mixed or 

superposition state |𝚿𝚿〉 = [𝐚𝐚
𝐛𝐛] = 𝐚𝐚|𝟎𝟎〉 + 𝐛𝐛|𝟏𝟏〉  (here 𝒂𝒂 

and 𝒃𝒃 are probability amplitudes). 
 

Subsequently, the following quantum circuit-based 
algorithm/approach or steps are proposed for the 
simulation of non-linear learning of XOR Gate.  

Step 1: Set up the quantum neuron's initial parameters, 
such as count=0, the connection weights as quantum 
operators, the learning rate (eta), the acceptable 
minimal error as Emin, and ∅, 𝜸𝜸, 𝜹𝜹 𝒂𝒂𝒂𝒂𝒂𝒂 𝜽𝜽 with random 
values for each various weight.  

Step 2: Compute Wa and Wb by using undermentioned 
function for further calculation of corresponding output 
for different patterns of XOR gate. 

W (∅, 𝛾𝛾, 𝛿𝛿, 𝜃𝜃) = ei∅ ( cos 𝛿𝛿ei𝛾𝛾 sin 𝛿𝛿ei𝜃𝜃

−sin 𝛿𝛿e−i𝜃𝜃 cos𝛿𝛿e−i𝛾𝛾) 

 |Out>=W*|In> 

e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B> 
Note: A tensor product of weights may be used to 
match the desired input order. 
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(Figure. 10). The circuit lines that are not used 
by the next quantum neuron, may be passed on to 
other brain cells to accomplish additional functions. 
The suggested design prevents information loss 
by having an equal number of input and output 
lines, avoiding copying of quantum information, 
and having a reversible neural network. Quantum 
neuron layers may also be added to aid in the 
understanding of complicated events.

The suggested quantum neural network in 
this research complies with all restrictions and 
quantum computing principles. The identification 
and recovery of data about the suggested circuit/
hierarchy of quantum neural networks is thus said 
to be beneficial for the employment of quantum 
learning, and it may also be advantageous to title 
it for the quantum-oriented involvement of the 
complicated processes in the brain and mind.

  
For quantum circuit-based simulation of the 
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initially define the input and output patterns of the 
Quantum XOR gate. Table 1 shows the Truth table 
with the corresponding input and output patterns of 
the Quantum XOR gate. 

Subsequently, the following quantum circuit-
based algorithm/approach or steps are proposed for 
the simulation of non-linear learning of XOR Gate.
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algorithm/approach or steps are proposed for the 
simulation of non-linear learning of XOR Gate.  
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operators, the learning rate (eta), the acceptable 
minimal error as Emin, and ∅, 𝛾𝛾, 𝛿𝛿 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 with random 
values for each various weight. 

Step 2: Compute Wa and Wb by using undermentioned 
function for further calculation of corresponding output 
for different patterns of XOR gate. 
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e.g. |Ao> = Wa*|A>, |Bo> = Wb*|B> 
Note: A tensor product of weights may be used to 
match the desired input order. 

Step 3: Quantum neuron's final output is calculated by 
applying the quantum adder upon |Ao> and |Bo>. 

Step 4: Obtain a transfer function to use on the 
estimated |Out> that is comparable to the one 
mentioned by Li Fei [22]. The following is the transfer 
function: 

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Step 5: Use the transfer function:  |Yo> =FT*|Out> i.e 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here |Out〉 may be a mixed state: 

 |Out〉 = [±a
±b]  

|Yo >= 1
√2

[0 1
1 −1] [sin(•) 0

0 sin(•)] [±a
±b] 

=  1
√2

[0 1
1 −1] [sin(±a)

sin(±b)] =
1

√2
[0 1
1 −1] [+a

+b] 

|Yo >= 1
√2

[ b
a − b] 

Step 6: Calculate error for the current patterns using 
|Er> = QSub(|t>, |Yo>) 

Step 7: Determine error by taking the inner product 
with itself error = <Er|Er>  

Step 8: compare this error with the Emin If error is less 
than Emin then increases the value of count++. 

Table 1. Truth table with corresponding input and output 
patterns of Quantum XOR gate.
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Let |A〉 = |0〉 = [1
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calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
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] (assume QAdd 

provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]. 
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Final output is calculated as |Yo> =FT*|Out> 

|Yo> = 1
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As |t> = |0>, |Yo> = |0> calculate  

|Er> = QSub(|t>,|Yo>)  

to Estimate error= ‖QSubt(|t >, |Yo >)‖2=0.  

Based upon this error weights parameter will be 
updated by following formulas.  

For Wa,    |In > = |A > = |0 > 

∅=∅+ eta*<In| ( QSub (|t>,|Yo>)> 

∅=∅+ eta*<A| Er> 
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For Wb, |In >  is |B > = |0 >  and the factors 
α, ψ, φ and χ  will be revised to evaluate Wb 
consequently. For the current pattern weights will not 
be updated because error=0, therefore, XOR gate’s 
second pattern will be processed which is |A> = |0〉 =
[1
0] , |B> = |1〉 = [0

1] 
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√2 [1 1
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Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
0 ] 

(Assume QAdd provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]  
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− 1
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Quantum adder is applied on |Ao> and |Bo> to 
calculate the quantum neuron’s final |Out>. 

|Out> = QAdd (|Ao> and |Bo>) =  [√2
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(Assume QAdd provides this output) 

Apply the following transfer function upon the 
calculated |Out> which is considered by Li Fei [22]  

FT = 1
√2

[0 1
1 −1] [sin (•) 0

0 sin (•)] 

Final output is calculated as |Yo> =FT*|Out> 

|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] |Out〉 

Here we may get |Out〉  aa a mixed quantum state 

|Out〉 = [±a
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|Yo> = 1
√2 [0 1

1 −1] [sin(•) 0
0 sin(•)] [√2

0 ] 

=  1
√2

[0 1
1 −1] [sin(√2)

sin(0) ] = 1
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[0 1
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|Yo >= 1
√2

[ 0
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As |t> = |1>, |Yo> = |1> calculate  

|Er> = QSub(|t>,|Yo>)  

to Estimate error= ‖QSub(|t >, |Yo >)‖2=0.  

For this pattern weights will not again be updated 
because error=0. In the same way, next input will be 

processed i.e. (|B> = |0〉 = [1
0] , |A> = |1〉 = [0

1]) and 

the fourth pattern (|A> = |1〉 = [0
1] , |B> = |1〉 = [0

1]) 

for XOR Gate. If four patterns yield no error, the 
processing will be stopped; if not, it will resume with 
first pattern of truth table by using updated weights and 
will continue until acceptable error is obtained. 

There is no information loss or copying since the 
circuit for quantum neurons or neural networks has an 
equal number of input and output lines. Therefore, the 
suggested approach qualifies all limitations of quantum 
computing by considering the architecture's processing 
power, which is used to run the proposed algorithm’s 
simulation. The findings and execution of the 
suggested method make it evident that the limitations 
discussed in this study are resolved. The suggested 
quantum neuron’s corresponding circuit and algorithm 
satisfy all the fundamental laws and theorems of 
quantum computing. The simulation findings also 
demonstrate that it can learn many phenomena. 
Therefore, the proposed quantum circuit and algorithm 
is it is suggested, for the solution of Partial differential 

equations (PDEs) and Ordinary Differential Equations 
(ODEs), to implement quantum neural correlates of 
consciousness into machines, to calculate mass 
spectroscopy, and in high energy physics instead of 
using existing quantum or classical artificial neural 
networks. The related detail can be seen in author's PhD 
thesis [30] for further information.   

A prominent work on the non-linear learning of 
XOR gate through quantum neural network is by Li Fei 
[22]. The algorithm used by Li Fei [22] violates the 
quantum computing principles such as no-loss of 
information, reversibility, and no-cloning theorem etc. 
The algorithm explained in the present study is free of 
such drawbacks and ensures that principles of quantum 
computing are fully satisfied. 

4. CONCLUSION 

The present study proposes and implements a novel 
paradigm of quantum neural networks for the XOR 
gate’s nonlinear learning. It is demonstrated that the 
proposed method follows all quantum computing 
constraints. Therefore, it is recommended to utilize the 
suggested QNNs circuit and corresponding algorithm 
for the modelling and employment of higher-level 
characteristics in conscious robots if the brain functions 
are in accordance with the principle of quantum 
mechanics. Additionally, the suggested quantum neural 
network and its associated circuits and algorithms may 
be employed to address certain high-energy physics 
issues. 
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There is no information loss or copying since the 
circuit for quantum neurons or neural networks has an 
equal number of input and output lines. Therefore, the 
suggested approach qualifies all limitations of quantum 
computing by considering the architecture's processing 
power, which is used to run the proposed algorithm’s 
simulation. The findings and execution of the 
suggested method make it evident that the limitations 
discussed in this study are resolved. The suggested 
quantum neuron’s corresponding circuit and algorithm 
satisfy all the fundamental laws and theorems of 
quantum computing. The simulation findings also 
demonstrate that it can learn many phenomena. 
Therefore, the proposed quantum circuit and algorithm 
is it is suggested, for the solution of Partial differential 

equations (PDEs) and Ordinary Differential Equations 
(ODEs), to implement quantum neural correlates of 
consciousness into machines, to calculate mass 
spectroscopy, and in high energy physics instead of 
using existing quantum or classical artificial neural 
networks. The related detail can be seen in author's PhD 
thesis [30] for further information.   

A prominent work on the non-linear learning of 
XOR gate through quantum neural network is by Li Fei 
[22]. The algorithm used by Li Fei [22] violates the 
quantum computing principles such as no-loss of 
information, reversibility, and no-cloning theorem etc. 
The algorithm explained in the present study is free of 
such drawbacks and ensures that principles of quantum 
computing are fully satisfied. 

4. CONCLUSION 

The present study proposes and implements a novel 
paradigm of quantum neural networks for the XOR 
gate’s nonlinear learning. It is demonstrated that the 
proposed method follows all quantum computing 
constraints. Therefore, it is recommended to utilize the 
suggested QNNs circuit and corresponding algorithm 
for the modelling and employment of higher-level 
characteristics in conscious robots if the brain functions 
are in accordance with the principle of quantum 
mechanics. Additionally, the suggested quantum neural 
network and its associated circuits and algorithms may 
be employed to address certain high-energy physics 
issues. 
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