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Abstract: We have studied the Laplacian equation in non-integer space which had been previously used to describe 
complex phenomena in physics and electromagnetism.  We have applied this idea to a dielectric cylindrical shell to 
find the electric potential and field of a dielectric coated cylinder analytically in fractional dimensional space. The 
problem is derived using Gegenbauer polynomials. This close form gneral solution solved in fractional dimensional 
space can be applied for various materials of cylindrical shell, outside shell and inside the cylindrical core. The 
obtained solution is retrieved for integer order by setting the fractional parameter α=3. 
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1. INTRODUCTION

MThe idea of non-integer space (FD space) is 
considered to be very useful in various areas of 
physics and electromagnetism and discussed 
by many researchers [1-19] and had applied it 
accordingly. Wilson [3] was the first who applied 
the non-integer space in quantum field theory. 

Further, the non-integer space had been used as 
a parameter in the Ising limit of quantum field theory 
[6]. Stillinger [4]  provided an axiomatic basis of 
this concept for the formulation of Schrodinger 
wave mechanics and Gibbsian statistical mechanics 
in the α-dimensional space. Svozil and Zeilinger 
[10] have presented the operationalistic definition 
of the dimension of space-time which has provided 
the possibility of experimental determination of the 
space-time dimension. It has also been stated that 
the non-integer dimension of space-time is slightly 
less than 4. In the new era, Gauss law [11] has been 
formulated in the  α-dimensional fractional space. 
The solutions of electrostatic problems [13-18] have 

also been investigated in the FD space “(2<α≤3)”. 

We have extended this problem from J.D. 
Jackson [13] exercise problem 4.8. The main focus 
is to use the Laplacian equation to find electric 
potential and field due to a dielectric cylindrical 
shell in FD Space. In this paper, the main focus 
is to use the Laplacian equation to find electric 
potential and field due to a dielectric cylinder 
in fractional space. Here the plan of the paper is 
to be described briefly. In Section 2, we have 
presented the mathematical model of the boundary 
value problem where a dielectric cylindrical shell 
is placed in a uniform electrical field. Then we 
elaborated potential of dielectric cylindrical shell 
by solving Laplacian equation to obtain the solution 
in FD space and constructed the solution for three 
different regions, namely outside shell, between 
shell and within the core of the cylinder.  Lastly,  the 
unknown constants are determined using boundary 
conditions and the electric potential and field for 
the regions in fractional space are derived. Final 
Section  is devoted to our conclusions.
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2.   MATHEMATICAL MODEL 

We have considered an infinitely long circular 
cylindrical shell [13] of dielectric constant      for 

which inside and outside radii are taken to be ‘a’ 
and ‘b’ respectively and are placed in uniform 
field   . The cylinder is oriented with its axis at 
the right angle to the applied primary field   . The 
medium within the interior cylinder and outside of 
the exterior cylinder has a dielectric constant of 
unity. 

Fig. 1. Dielectric Cylindrical shell Placed in 
Fractional  

We will find the potential and field in 
fractional space       in the three regions. 
We now employ the cylindrical coordinates       
for the appropriate solutions. 
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This is also known as the cylindrical wave 
equation  

       
 
  ( 

  
 )  

 
  
   
    

   
     

            (2) 

We will deal this problem in electrostatic and 
magnetostatics, where     so that k=0. Because 
of the translational symmetry of the problem along 
the z-axis,   is independent of  ‘z’ and we need 
only to consider the problem in the      -plane. 
Furthermore, the symmetry in this problem leads 
us to choose cylindrical coordinates in which 
Poisson’s equation is considered as follows,  
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The Eq(3) is solved by separable method and 
its possible solutions in the uniform field [17] are 
      and        .  

The general solution of equation (3) can be 
expressed as  
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   (          )              (4) 

          where,              .  

Eq(3) is solved by separable method in 
fractional space and suppose  
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The angular and radial differential equations 
are derived in [18] and [19] and are expressed as, 
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The generalized  solution of scalar potential of 
cylinder in fraction space is, 

    ∑   
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On physical grounds, we can check and 
contain the derived form of the solution outside 
and inside the cylindrical region. Outside, we need 
to have the electric field at infinity, but we 
certainly do not want the field to diverge. The 
logarithmic and    with     terms diverge as ‘r’ 
goes to infinity. Clearly, these terms are 
unphysical. Therefore, we are interested only in 
the solution for    , where   

            
         . Because each region has the same 
symmetry with respect to the external field, so the 
expressions of the potentials in each region are 
expressed as follows, 

we find the potetnial outside region,  

       (              )                  (9) 

In between the cylinders:  

       (             )                 (10) 

and In side the cylinder:  

                                 (11) 

The boundary conditions at      and      
are  
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From the above four boundary conditions, we           
obtain four equations in simplified form such that  
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          where          and         
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                 (            )                    (19) 

By solving Eq.(16) and Eq.(17) we eliminate 
the unknown coefficient A and obtain, the 
following expression  
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Next we solve Eq.(18) and Eq.(19) to 
eliminate constant D and get  
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Now we compare Eq.(20) and Eq.(21), and 
easily determine the unknown constant B  
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By substitution the value of the constant B in 
Eq.(22), we find the constant C  
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From Eq.(18), by substitution of B and C, we 
find the unknown constant D such that  
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Next we substitute the value of B and C in 
Eq.(16) and obtain the unknown constant A  

 

 

 

                                    

                                            

Now we retrieve the exact solution [13] by 
setting     and         , that is given 
below:  
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By substitution the value of the constant B in 
Eq.(22), we find the constant C  
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From Eq.(18), by substitution of B and C, we 
find the unknown constant D such that  
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Next we substitute the value of B and C in 
Eq.(16) and obtain the unknown constant A  
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Special Cases 
(1): For a dielectric cylinder, If we  the inner 
radius  of the cylinder decreases to zero, that is, 
   , we get the solution such that In FD Space  
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In Integer order  
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In Integer order  
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(2) For the cylindrical cavity, we place the 
surface of the outer shell at infinity,    , In this 
case A is ill-defined, so we would not ignore it. 
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3.   CONCLUSION  

In this paper the Laplacian equation has been 
studied in  -dimensional non-integer space. The 
expressions of potentials and electric fields of the 
dielectric cylindrical shell are obtained in non-
integer space. The classical results are recovered 
from the investigated solution for    . Further, 
this solution can be applied for various materials. 
The host medium and core medium can be studied 
for multiple materials like meta-materials, plasma 
etc.  
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