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Abstract: In the existing instrumentation and control system of an operating Pressurized Heavy Water Reactor 
(PHWR) based nuclear power plant, conventional controllers are used to control the reactor power. A new idea of 
Nonlinear Neural Model Predictive Controller (NNMPC) is introduced in this research work. The new 17th order 
nonlinear higher order model of Reactor Regulating System (RRS) is developed under different plant operating modes 
and various parametric conditions in Single Input Multi Output (SIMO) configuration with special emphasis on 
Helium Control Valve Dynamics (HCVD) and Coupled Nonlinear Iodine and Xenon Dynamics (CNIXD). The SIMO 
RRS model is developed based on first principle. The 17th order model is reduced to 9th order lower dynamic model 
using Balanced Truncation Method (BTM). The Reduced Order SIMO RRS (RO-SIMO-RRS) model is programmed, 
simulated and validated in SIMULINK environment. The plant Neural SIMO RRS (N-SIMO-RRS) model is 
developed using innovative data generated from RO-SIMO-RRS simulations. The plant neural N-SIMO-RRS model 
is optimized using Levenberg-Marquardt Algorithm (LMA). Using the identified N-SIMO-RRS model, the Nonlinear 
Neural Model Predictive Controller (NNMPC) is designed, trained, verified, validated, and finally optimized using the 
backtracking technique in the SIMULINK environment. The optimized results are obtained from designed closed loop 
RRS and found within the acceptable design limits. The performance of the proposed closed loop RRS is also tested 
in reference tracking mode with excellent fast tractability near the optimal target demanded power level. 
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1.	 INTRODUCTION

MIn this research work, a Pressurized Heavy Water 
Reactor (PHWR) type nuclear power plant system 
is focused which is associated with reactor power 
control system known as Reactor Power Regulating 
System (RPRS) or simply Reactor Regulating 
System (RRS) [1].   

A robust H-Infinity controller has been 
designed for current PHWR in [2] which is also 
under consideration in this research. A state space 

based Model Predictive Controller (MPC) has 
been designed for reactor power control systems 
for a different Pressurized Water Reactor (PWR) 
type nuclear power generating station in [3]. A 
data driven composite MPC has been captured for 
current PHWR Reactor Power Controller (RPC) 
in [4]. A nonlinear higher order model of RRS of 
operating PHWR type nuclear power generating 
station has been developed in [5] and Linear 
Matrix Inequalities (LMI) based Fast Output 
Sampling (FOS) controller has been designed. 
The higher order dynamics of an Advanced Heavy 
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Water Reactor (AHWR) have been reduced using 
Balanced Truncation Method (BTM) under reactor 
transient conditions for controller design purposes 
in [6]. A Genetic Algorithm (GA) tuned Proportional 
Integral Derivative (PID) controller has been 
designed for reactor kinetics of PWR in [7]. A fuzzy 
PID controller has been identified for PWR in load 
following mode in [8]. A robust H-Infinity mixed 
sensitivity controller has been proposed for small 
PWR with parametric uncertainties in [9]. A robust 
Linear Quadratic Gaussian (LQG) controller has 
been synthesized for the PWR type nuclear power 
plant [10]. A Multi-Layer Perceptron compensated 
output feedback PD controller has been designed 
for Gas Cooled Reactor (GCR) in [11]. A neural 
network based MPC has been designed for Single 
Input Single Output (SISO) power converter in [12]. 
A reactor power change constrained based fuzzy 
logic controller has been designed for a nuclear 
research reactor in [13]. A fuzzy logic-based MPC 
controller has been designed for the reactor power 
control of the PWR type nuclear power plant [14]. 
A decentralized fuzzy MPC has been proposed for 
PWR with xenon dynamics in [15]. A MLP based 
model free MPC has been designed for nuclear 
steam supply system in [16]. 

In this research work, a new multi-objective 
optimized Single-Input Multi-Output (SIMO) 
Nonlinear Neural Network based Model Predictive 
Controller (NNMPC) SIMO-NNMPC is proposed 

for a Novel Full Higher Order Integrated SIMO 
Reactor Regulating System (NFHOI-SIMO-RRS) 
and Reduced Order SIMO RRS (RO-SIMO-RRS) 
models with special emphasis on Helium Control 
Valve Dynamics (HCVD) and Coupled Nonlinear 
Iodine and Xenon Dynamics (CNIXD). The 
proposed NNMPC is designed, for the first time, 
for PHWR type nuclear power generating station 
with substantially reduced online computational 
requirements as compared to conventional MPC 
techniques. The computational effort involved 
in the NNMPC training depends mainly on the 
artificial neural network complexity, and not on the 
length of the control horizon. This makes it feasible 
to design a controller with a longer control horizon.

2.   MATERIALS AND METHODS

2.1 Reactor Regulating System   

SReactor Regulating System (RRS) is designed to 
regulate the reactor power.  RRS is a fine reactivity 
control system using Helium Gas (HG) Control 
Valve (CV) as modulating element. In RRS, there 
are two power channels known as Regulating 
Channel-A and Regulating Channel-B respectively. 
Both channels act like redundant systems. There 
are two Helium Gas Control Valves (HGCV1 and 
HGCV2) installed between the upper and lower 
Calandria in PHWR type CANDU Nuclear Power 
Plant [1]. 
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Derivative (PID) controller has been designed for 
reactor kinetics of PWR in [7]. A fuzzy PID controller 
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(HCVD) and Coupled Nonlinear Iodine and Xenon 
Dynamics (CNIXD). The proposed NNMPC is 
designed, for the first time, for PHWR type nuclear 
power generating station with substantially reduced 
online computational requirements as compared to 
conventional MPC techniques. The computational 
effort involved in the NNMPC training depends mainly 
on the artificial neural network complexity, and not on 
the length of the control horizon. This makes it feasible 
to design a controller with a longer control horizon. 

2. MATERIALS AND METHODS 

2.1 Reactor Regulating System     

Reactor Regulating System (RRS) is designed to 
regulate the reactor power.  RRS is a fine reactivity 
control system using Helium Gas (HG) Control Valve 
(CV) as modulating element. In RRS, there are two 
power channels known as Regulating Channel-A and 
Regulating Channel-B respectively. Both channels act 
like redundant systems. There are two Helium Gas 
Control Valves (HGCV1 and HGCV2) installed 
between the upper and lower Calandria in PHWR type 
CANDU Nuclear Power Plant [1].  

2.2 Existing Reactor Power Controller    

Two Reactor Power Controllers (RPC) control 
Regulating Channel-A and Regulating Channel-B. At a 
time, reactor power is controlled by one RPC while 
second RPC works as Backup Controller in tracking 
mode. The existing controller is a digital controller 
known as AC132 controller. The reactor power is 
normalized and expressed in %. In this research paper, 
the plant operation is considered in Reactor Following 
Mode (RFM) also known as Neutron Power Mode (NP-
Mode). In RFM, there are four set points designated as 
moderator level set point (HSET), reactor power set 
point (PSET), logarithmic of reactor power set point 
(LG1SET) and rate of change of logarithmic of reactor 
power set point (LG2SET). Similarly, there are four 
corresponding measured variables designated as 
moderator level (H), reactor power (P), logarithmic of 
reactor power (LG1) and rate of change of logarithmic 
of reactor power (LG2). Therefore, four sub controllers 
will be considered for design and analysis, in detail, in 
subsequent sections. RPC is basically a conventional 
compensator technology implemented on 
Programmable Logic Controllers (PLCs) [1]. The 
closed loop architecture of existing RRS is shown in 
Fig.1.  

 
Fig. 1. Closed loop design architecture of existing and proposed RRS.

46	 Malik et al



2.2  Existing Reactor Power Controller  
 
Two Reactor Power Controllers (RPC) control 
Regulating Channel-A and Regulating Channel-B. 
At a time, reactor power is controlled by one RPC 
while second RPC works as Backup Controller in 
tracking mode. The existing controller is a digital 
controller known as AC132 controller. The reactor 
power is normalized and expressed in %. In this 
research paper, the plant operation is considered 
in Reactor Following Mode (RFM) also known as 
Neutron Power Mode (NP-Mode). In RFM, there 
are four set points designated as moderator level 
set point (HSET), reactor power set point (PSET), 
logarithmic of reactor power set point (LG1SET) 
and rate of change of logarithmic of reactor power 
set point (LG2SET). Similarly, there are four 
corresponding measured variables designated as 
moderator level (H), reactor power (P), logarithmic 
of reactor power (LG1) and rate of change of 
logarithmic of reactor power (LG2). Therefore, 
four sub controllers will be considered for design 
and analysis, in detail, in subsequent sections. RPC 
is basically a conventional compensator technology 
implemented on Programmable Logic Controllers 
(PLCs) [1]. The closed loop architecture of existing 
RRS is shown in Fig.1. 

2.3  Proposed Reactor Power Controller

The proposed reactor power controller is basically 
Nonlinear Neural Model Predictive Controller 
(NNMPC). Therefore, two major milestones 
are required to achieve in this research work. 
Firstly, a Neural SIMO RRS (N-SIMO-RRS) 
model is required to developfor NNMPC. Such a 
N-SIMO-RRS model is extracted from Reduced 
Order SIMO-RRS (RO-SIMO-RRS) modelusing 
data driven technique. RO-SIMO-RRS model is 
developed after implementing dimension reduction 
technique on Full Higher Order SIMO-RRS (FHO-
SIMO-RRS) model. The closed loop architecture of 
proposed RRS is shown in Fig.1. 

NNMPC1 consists of N-SIMO-RRS model and 
the optimizer. The optimizer computes controller 
signal u^’ that minimizes the controller cost 
function JC which is given as [16]:

Where

 

 
Where N1, N2 and Nu define the minimal and 
maximal prediction horizons of controlled output 
of RO-SIMO-RRS and prediction horizon of 
controller signal. The u^’is the predicted NNMPC 
controller signal, yr is the desired response of RO-
SIMO-RRS model and ym is the network model 
response of N-SIMO-RRS model. The ρ value 
determines the contribution of the sum of the 
squares of the control increments that has an impact 
on the performance index.

Since, four sub controllers are configured for 
H, P, LG1 and LG2 separately in SISO form for 
HGCV1, therefore, four separate cost functions are 
defined against the same input L as:  
 
 
 

 

The structure of neural MPC of reduced order 
plant model is shown in Fig. 2. 

Similarly, cost functions are designed for 
HGCV2. Constraints are imposed on input, change 
in input, output and change in output for each sub 
controllers for HGCV1 and HGCV2.

2.4  Nonlinear Neural MPC Optimization 

2.4.1 Backtracking Technique 

A one-dimensional (1D) linear cost function 
minimization technique that works on a linear 
search algorithm is called backtracking. It uses 
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reduced then a cubic approximation is used and 
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minimized.

2.4.2 Stopping Criteria 

When training of NNMPC is accomplished 
with minimum error then this represents that the 
maximum number of iterations (epochs) reached. 
Minimum mean square error of the epoch is the 
square root of the sum of squared differences 
between the NNMPC predicted outputs and actual 
existing RPC outputs divided by the number of 
training samples of controller.

2.5  NewNonlinear Higher Order Dynamics of   	
SIMO RRS Model

2.5.1. Choice of Reference Model 

The reference model is adopted from an already 
conducted and established research [5] which 
is a Single Input and Multi-Output RRS model 
that includes Nuclear Reactor Dynamics (NRD) 
and Helium Control Valve Dynamics (HCVD) 
in electrical form for reactivity management 
for the current PHWR under consideration. The 
assumptions taken into account for higher order 
modelling as reference model are that six precursor 
groups are chosen, reactor power is only controlled 
by Helium control valves and moderator level is 
not entered in the band of reactor regulating control 
rods. This non-linear 15th order SIMO-RRS model 
is linearized and transformed into state equation 
model form as [5]: 

 where A 𝝐 Rn , B  𝝐 Rm and C 𝝐 Rp are the 
matrices of appropriate dimensions. 

2.5.2. Coupled Nonlinear Iodine and Xenon 	  	
           Dynamics

In a reactor power system, nuclear fission reactions 
take place. In nuclear reactions, fission fragments 
are produced and all fission products absorb 
neutrons to some extent, so are known as reactor 
poisons. Most fission product poisons simply build 
up slowly as the fuel burns up and are accounted 
for as a long-term reactivity. The neutron absorbing 
fission products Xenon-135 and Samarium-149 
have particular operational importance. Their 
concentrations can change quickly, produces major 
changes in neutron absorption on a relatively short 
time scale. Each arises from the decay of a precursor 
fission product, which controls their production 
rate, but, because they have large absorption 
cross-sections, their removal changes quickly with 
changes in thermal neutron flux ØT.

Xenon-135 (often simply referred to just as 
xenon) is the most important fission product poison. 
It has a very large absorption cross-section and high 
production rate. 

Xenon is a strong neutron absorber so its 
presence in the fuel creates a large negative 
reactivity in the core. The reactivity worth of the 
Xe-135 is known as the Xenon load. Therefore, the 
relationship between Xenon load and reactor power 
is inverse, as the Xenon load increases, the reactor 
power decreases.  Similarly, the iodine load is the 
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Fig. 1. Closed loop design architecture of existing and 
proposed RRS. 

2.3 Proposed Reactor Power Controller 

The proposed reactor power controller is basically 
Nonlinear Neural Model Predictive Controller 
(NNMPC). Therefore, two major milestones are 
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Neural SIMO RRS (N-SIMO-RRS) model is 
required to developfor NNMPC. Such a N-SIMO-
RRS model is extracted from Reduced Order SIMO-
RRS (RO-SIMO-RRS) modelusing data driven 
technique. RO-SIMO-RRS model is developed after 
implementing dimension reduction technique on Full 
Higher Order SIMO-RRS (FHO-SIMO-RRS) model. 
The closed loop architecture of proposed RRS is shown 
in Fig.1.  
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and the optimizer. The optimizer computes controller 
signal    that minimizes the controller cost function JC 

which is given as [16]: 
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Where N1, N2 and Nu define the minimal and maximal 
prediction horizons of controlled output of RO-SIMO-
RRS and prediction horizon of controller signal. The 
  is the predicted NNMPC controller signal, yr is the 
desired response of RO-SIMO-RRS model and ym is the 
network model response of N-SIMO-RRS model. The 
ρ value determines the contribution of the sum of the 
squares of the control increments that has an impact on 
the performance index. 
 

Since, four sub controllers are configured for 
H, P, LG1 and LG2 separately in SISO form for 
HGCV1, therefore, four separate cost functions are 
defined against the same input L as:   
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The structure of neural MPC of reduced order plant 
model is shown in Fig. 2.  
 

 
 

Fig. 2. Structure of neural MPC of reduced order plant  
model. 

Similarly, cost functions are designed for 
HGCV2. Constraints are imposed on input, change in 
input, output and change in output for each sub 
controllers for HGCV1 and HGCV2. 

2.4 Nonlinear Neural MPC Optimization  

2.4.1 Backtracking Technique  

A one-dimensional (1D) linear cost function 
minimization technique that works on a linear search 
algorithm is called backtracking. It uses step multiplier 
and backtracks, till the quadratic approximation of 
controller cost function which is a function of step 
multiplier and current point is minimized in the search 
direction. If the quadratic approximation based cost 
function is not sufficiently reduced then a cubic 
approximation is used and minimized. 

 

2.4.2 Stopping Criteria  

When training of NNMPC is accomplished with 
minimum error then this represents that the maximum 
number of iterations (epochs) reached. Minimum mean 
square error of the epoch is the square root of the sum 
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of squared differences between the NNMPC predicted 
outputs and actual existing RPC outputs divided by the 
number of training samples of controller. 

2.5 NewNonlinear Higher Order Dynamics of SIMO 

RRS Model 

2.5.1. Choice of Reference Model  

The reference model is adopted from an already 
conducted and established research [5] which is a 
Single Input and Multi-Output RRS model that includes 
Nuclear Reactor Dynamics (NRD) and Helium Control 
Valve Dynamics (HCVD) in electrical form for 
reactivity management for the current PHWR under 
consideration. The assumptions taken into account for 
higher order modelling as reference model are that six 
precursor groups are chosen, reactor power is only 
controlled by Helium control valves and moderator 
level is not entered in the band of reactor regulating 
control rods. This non-linear 15th order SIMO-RRS 
model is linearized and transformed into state equation 
model form as [5]:  
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where A Rn , B  Rmand C  Rp are the matrices of 
appropriate dimensions.  

2.5.2. Coupled Nonlinear Iodine and Xenon 
Dynamics 

In a reactor power system, nuclear fission reactions 
take place. In nuclear reactions, fission fragments are 
produced and all fission products absorb neutrons to 
some extent, so are known as reactor poisons. Most 
fission product poisons simply build up slowly as the 
fuel burns up and are accounted for as a long-term 
reactivity. The neutron absorbing fission products 
Xenon-135 and Samarium-149 have particular 
operational importance. Their concentrations can 
change quickly, produces major changes in neutron 
absorption on a relatively short time scale. Each arises 
from the decay of a precursor fission product, which 
controls their production rate, but, because they have 

large absorption cross-sections, their removal changes 
quickly with changes in thermal neutron flux T. 

Xenon-135 (often simply referred to just as 
xenon) is the most important fission product poison. It 
has a very large absorption cross-section and high 
production rate.  

 
Xenon is a strong neutron absorber so its 

presence in the fuel creates a large negative reactivity 
in the core. The reactivity worth of the Xe-135 is 
known as the Xenon load. Therefore, the relationship 
between Xenon load and reactor power is inverse, as 
the Xenon load increases, the reactor power decreases.  
Similarly, the iodine load is the reactivity that it would 
insert into the reactor, if all the iodine present suddenly 
changes into xenon [1]. 
 

Iodine dynamics is represented by the following 
expression in PHWR [15]:  
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Where I is the concentration of I-135 (atoms/cm3),   is 
the effective yield of I-135 (atoms per fission), Ʃf is the 
thermal fission cross-section,   is the reactor neutron 
flux, λIis the decay constant for I-135, and σaIis the I-
135 absorption cross-section.  
 

Xenon dynamics is represented by the 
following expression in PHWR [15]:  
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Where X is the concentration of Xe-135, ɣ is the 
effective yield of Xe-135,   is the decay constant for 
Xe-135, and σaXis the absorption cross-section for Xe-
135.  
 

The thermal flux and reactor power are 
correlated by the following expression for an operating 
PHWR[1]:
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reactivity that it would insert into the reactor, if all 
the iodine present suddenly changes into xenon [1].
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correlated by the following expression for an 
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2.5.3 Integrated  SIMO  RRS Model

The nonlinear poison model of 2nd order developed 
in this research work is then linearlized and 
integrated with alrealy developed linearlized 15th 
order SIMO RRS model. The new Higher Order 
Integrated SIMO-RRS (HOI-SIMO-RRS) model is 
highly precise and state of the art. 

Now, the continuous time state space model 
of SIMO-RRS expressed equations (6) and (7) 
is appended with Xenon poison dynamics. The 
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for Helium Control Valve Dynamics (HCVD) and 
transformed into non-electrical form and finally 
represented in state space form as:

  

 
 

Where AAR𝝐 Rr , BAR𝝐 Rm and CAR𝝐Rp are the 
appended and restructured matrices of appropriate 
dimensions (r>n). 

The integrated appended dimensionality of 
input vectors for both control valves in the proposed 
design 17×1.

The input vector, state vector and output vector 
of a PHWR model described in equations (6) and 
(7) are as follows:

 
 
 

 
 

where H, P, LG1 and LG2 are moderator level, 
power, log power and rate log power respectively. 
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of squared differences between the NNMPC predicted 
outputs and actual existing RPC outputs divided by the 
number of training samples of controller. 
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RRS Model 

2.5.1. Choice of Reference Model  
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conducted and established research [5] which is a 
Single Input and Multi-Output RRS model that includes 
Nuclear Reactor Dynamics (NRD) and Helium Control 
Valve Dynamics (HCVD) in electrical form for 
reactivity management for the current PHWR under 
consideration. The assumptions taken into account for 
higher order modelling as reference model are that six 
precursor groups are chosen, reactor power is only 
controlled by Helium control valves and moderator 
level is not entered in the band of reactor regulating 
control rods. This non-linear 15th order SIMO-RRS 
model is linearized and transformed into state equation 
model form as [5]:  
 

)6()()()( tuBtxAtx 

)7()()( txCty 
where A Rn , B  Rmand C  Rp are the matrices of 
appropriate dimensions.  

2.5.2. Coupled Nonlinear Iodine and Xenon 
Dynamics 
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produced and all fission products absorb neutrons to 
some extent, so are known as reactor poisons. Most 
fission product poisons simply build up slowly as the 
fuel burns up and are accounted for as a long-term 
reactivity. The neutron absorbing fission products 
Xenon-135 and Samarium-149 have particular 
operational importance. Their concentrations can 
change quickly, produces major changes in neutron 
absorption on a relatively short time scale. Each arises 
from the decay of a precursor fission product, which 
controls their production rate, but, because they have 

large absorption cross-sections, their removal changes 
quickly with changes in thermal neutron flux T. 

Xenon-135 (often simply referred to just as 
xenon) is the most important fission product poison. It 
has a very large absorption cross-section and high 
production rate.  

 
Xenon is a strong neutron absorber so its 

presence in the fuel creates a large negative reactivity 
in the core. The reactivity worth of the Xe-135 is 
known as the Xenon load. Therefore, the relationship 
between Xenon load and reactor power is inverse, as 
the Xenon load increases, the reactor power decreases.  
Similarly, the iodine load is the reactivity that it would 
insert into the reactor, if all the iodine present suddenly 
changes into xenon [1]. 
 

Iodine dynamics is represented by the following 
expression in PHWR [15]:  
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of squared differences between the NNMPC predicted 
outputs and actual existing RPC outputs divided by the 
number of training samples of controller. 

2.5 NewNonlinear Higher Order Dynamics of SIMO 

RRS Model 

2.5.1. Choice of Reference Model  

The reference model is adopted from an already 
conducted and established research [5] which is a 
Single Input and Multi-Output RRS model that includes 
Nuclear Reactor Dynamics (NRD) and Helium Control 
Valve Dynamics (HCVD) in electrical form for 
reactivity management for the current PHWR under 
consideration. The assumptions taken into account for 
higher order modelling as reference model are that six 
precursor groups are chosen, reactor power is only 
controlled by Helium control valves and moderator 
level is not entered in the band of reactor regulating 
control rods. This non-linear 15th order SIMO-RRS 
model is linearized and transformed into state equation 
model form as [5]:  
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appropriate dimensions.  
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some extent, so are known as reactor poisons. Most 
fission product poisons simply build up slowly as the 
fuel burns up and are accounted for as a long-term 
reactivity. The neutron absorbing fission products 
Xenon-135 and Samarium-149 have particular 
operational importance. Their concentrations can 
change quickly, produces major changes in neutron 
absorption on a relatively short time scale. Each arises 
from the decay of a precursor fission product, which 
controls their production rate, but, because they have 

large absorption cross-sections, their removal changes 
quickly with changes in thermal neutron flux T. 

Xenon-135 (often simply referred to just as 
xenon) is the most important fission product poison. It 
has a very large absorption cross-section and high 
production rate.  

 
Xenon is a strong neutron absorber so its 

presence in the fuel creates a large negative reactivity 
in the core. The reactivity worth of the Xe-135 is 
known as the Xenon load. Therefore, the relationship 
between Xenon load and reactor power is inverse, as 
the Xenon load increases, the reactor power decreases.  
Similarly, the iodine load is the reactivity that it would 
insert into the reactor, if all the iodine present suddenly 
changes into xenon [1]. 
 

Iodine dynamics is represented by the following 
expression in PHWR [15]:  
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flux, λIis the decay constant for I-135, and σaIis the I-
135 absorption cross-section.  
 

Xenon dynamics is represented by the 
following expression in PHWR [15]:  

)9()( XXI
dt

tdX
TaXXITfX  
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effective yield of Xe-135,   is the decay constant for 
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The thermal flux and reactor power are 
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of squared differences between the NNMPC predicted 
outputs and actual existing RPC outputs divided by the 
number of training samples of controller. 
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2.5.1. Choice of Reference Model  

The reference model is adopted from an already 
conducted and established research [5] which is a 
Single Input and Multi-Output RRS model that includes 
Nuclear Reactor Dynamics (NRD) and Helium Control 
Valve Dynamics (HCVD) in electrical form for 
reactivity management for the current PHWR under 
consideration. The assumptions taken into account for 
higher order modelling as reference model are that six 
precursor groups are chosen, reactor power is only 
controlled by Helium control valves and moderator 
level is not entered in the band of reactor regulating 
control rods. This non-linear 15th order SIMO-RRS 
model is linearized and transformed into state equation 
model form as [5]:  
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where A Rn , B  Rmand C  Rp are the matrices of 
appropriate dimensions.  
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take place. In nuclear reactions, fission fragments are 
produced and all fission products absorb neutrons to 
some extent, so are known as reactor poisons. Most 
fission product poisons simply build up slowly as the 
fuel burns up and are accounted for as a long-term 
reactivity. The neutron absorbing fission products 
Xenon-135 and Samarium-149 have particular 
operational importance. Their concentrations can 
change quickly, produces major changes in neutron 
absorption on a relatively short time scale. Each arises 
from the decay of a precursor fission product, which 
controls their production rate, but, because they have 

large absorption cross-sections, their removal changes 
quickly with changes in thermal neutron flux T. 

Xenon-135 (often simply referred to just as 
xenon) is the most important fission product poison. It 
has a very large absorption cross-section and high 
production rate.  

 
Xenon is a strong neutron absorber so its 

presence in the fuel creates a large negative reactivity 
in the core. The reactivity worth of the Xe-135 is 
known as the Xenon load. Therefore, the relationship 
between Xenon load and reactor power is inverse, as 
the Xenon load increases, the reactor power decreases.  
Similarly, the iodine load is the reactivity that it would 
insert into the reactor, if all the iodine present suddenly 
changes into xenon [1]. 
 

Iodine dynamics is represented by the following 
expression in PHWR [15]:  
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2.5.3. Integrated  SIMO  RRS Model 

The nonlinear poison model of 2nd order developed in 
this research work is then linearlized and integrated 
with alrealy developed linearlized 15th order SIMO 
RRS model. The new Higher Order Integrated SIMO-
RRS (HOI-SIMO-RRS) model is highly precise and 
state of the art.  

Now, the continuous time state space model of 
SIMO-RRS expressed equations (6) and (7) is 
appended with Xenon poison dynamics. The appended 
higher order model is then restructured for Helium 
Control Valve Dynamics (HCVD) and transformed into 
non-electrical form and finally represented in state 
space form as: 
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Where AAR Rr , BAR Rm and CAR Rp are the 
appended and restructured matrices of appropriate 
dimensions (r>n).  

The integrated appended dimensionality of 
input vectors for both control valves in the proposed 
design 17×1. 

The input vector, state vector and output vector 
of a PHWR model described in equations (6) and (7) 
are as follows: 
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where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 

2.5.4. Reduced Order SIMO RRS Model 

The 17th order SIMO RRS model is reduced by 
Balanced Truncation Method [6] and the Reduced 9th 
Order SIMO RRS (RO-SIMO-RRS) model is obtained 
from equations (11) and (12) based on optimal value of 
tolerance value of error bound for RO-SIMO-RRS 
model as:  
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where AR Rd, BR Rm and CR Rp are the matrices of 
appropriate dimensions (d<r ).  
The input vector, state vector and output vector of RO-
SIMO-RRS model described in equations (13) and (14) 
are as follows: 
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Where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 
The error bound for RO-SIMO-RRS model in 
frequency domain is defined as: 
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Where  is tolerance value. 

2.6.  Neural SIMO RRS Model 

2.6.1. Choice of Neural Inputs and Outputs 

Assuming for HGCV1, the dataset Di contains Q 
number of data patterns and di is an (nu+nt) dimensional 
vector containing nu number of inputs and nt number of 
outputs defined as: 

Nonlinear Neural Model Predictive Controller  

 

 5  
 

2.5.3. Integrated  SIMO  RRS Model 

The nonlinear poison model of 2nd order developed in 
this research work is then linearlized and integrated 
with alrealy developed linearlized 15th order SIMO 
RRS model. The new Higher Order Integrated SIMO-
RRS (HOI-SIMO-RRS) model is highly precise and 
state of the art.  

Now, the continuous time state space model of 
SIMO-RRS expressed equations (6) and (7) is 
appended with Xenon poison dynamics. The appended 
higher order model is then restructured for Helium 
Control Valve Dynamics (HCVD) and transformed into 
non-electrical form and finally represented in state 
space form as: 

)11()()()( tuBtxAtx ARAR 
 

)12()()( txCty AR
 

Where AAR Rr , BAR Rm and CAR Rp are the 
appended and restructured matrices of appropriate 
dimensions (r>n).  

The integrated appended dimensionality of 
input vectors for both control valves in the proposed 
design 17×1. 

The input vector, state vector and output vector 
of a PHWR model described in equations (6) and (7) 
are as follows: 

Ltu )(  

 TIM XQLRGLCPtx  1212)(   

Where 

 TCCCCCCC 654321    

 TLGLGG 2112    

 TLLL 21    

 TI IXX    

   TT LGLGPHyyyyty 21)( 4321   

where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 

2.5.4. Reduced Order SIMO RRS Model 

The 17th order SIMO RRS model is reduced by 
Balanced Truncation Method [6] and the Reduced 9th 
Order SIMO RRS (RO-SIMO-RRS) model is obtained 
from equations (11) and (12) based on optimal value of 
tolerance value of error bound for RO-SIMO-RRS 
model as:  

)13()()()( tuBtxAtx RR 
 

)14()()( txCty R
 

where AR Rd, BR Rm and CR Rp are the matrices of 
appropriate dimensions (d<r ).  
The input vector, state vector and output vector of RO-
SIMO-RRS model described in equations (13) and (14) 
are as follows: 
 

Ltu )(  

 Txxxxxxxxxtx 987654321)(   

   TT LGLGPHyyyyty 21)( 4321   
Where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 
The error bound for RO-SIMO-RRS model in 
frequency domain is defined as: 

)15()()(   sGsG RRSSMOHOIRRSSMORO

Where  is tolerance value. 

2.6.  Neural SIMO RRS Model 

2.6.1. Choice of Neural Inputs and Outputs 

Assuming for HGCV1, the dataset Di contains Q 
number of data patterns and di is an (nu+nt) dimensional 
vector containing nu number of inputs and nt number of 
outputs defined as: Nonlinear Neural Model Predictive Controller  

 

 5  
 

2.5.3. Integrated  SIMO  RRS Model 

The nonlinear poison model of 2nd order developed in 
this research work is then linearlized and integrated 
with alrealy developed linearlized 15th order SIMO 
RRS model. The new Higher Order Integrated SIMO-
RRS (HOI-SIMO-RRS) model is highly precise and 
state of the art.  

Now, the continuous time state space model of 
SIMO-RRS expressed equations (6) and (7) is 
appended with Xenon poison dynamics. The appended 
higher order model is then restructured for Helium 
Control Valve Dynamics (HCVD) and transformed into 
non-electrical form and finally represented in state 
space form as: 

)11()()()( tuBtxAtx ARAR 
 

)12()()( txCty AR
 

Where AAR Rr , BAR Rm and CAR Rp are the 
appended and restructured matrices of appropriate 
dimensions (r>n).  

The integrated appended dimensionality of 
input vectors for both control valves in the proposed 
design 17×1. 

The input vector, state vector and output vector 
of a PHWR model described in equations (6) and (7) 
are as follows: 

Ltu )(  

 TIM XQLRGLCPtx  1212)(   

Where 

 TCCCCCCC 654321    

 TLGLGG 2112    

 TLLL 21    

 TI IXX    

   TT LGLGPHyyyyty 21)( 4321   

where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 

2.5.4. Reduced Order SIMO RRS Model 

The 17th order SIMO RRS model is reduced by 
Balanced Truncation Method [6] and the Reduced 9th 
Order SIMO RRS (RO-SIMO-RRS) model is obtained 
from equations (11) and (12) based on optimal value of 
tolerance value of error bound for RO-SIMO-RRS 
model as:  

)13()()()( tuBtxAtx RR 
 

)14()()( txCty R
 

where AR Rd, BR Rm and CR Rp are the matrices of 
appropriate dimensions (d<r ).  
The input vector, state vector and output vector of RO-
SIMO-RRS model described in equations (13) and (14) 
are as follows: 
 

Ltu )(  

 Txxxxxxxxxtx 987654321)(   

   TT LGLGPHyyyyty 21)( 4321   
Where H, P, LG1 and LG2 are moderator level, power, 
log power and rate log power respectively.  
 
The error bound for RO-SIMO-RRS model in 
frequency domain is defined as: 

)15()()(   sGsG RRSSMOHOIRRSSMORO

Where  is tolerance value. 

2.6.  Neural SIMO RRS Model 

2.6.1. Choice of Neural Inputs and Outputs 

Assuming for HGCV1, the dataset Di contains Q 
number of data patterns and di is an (nu+nt) dimensional 
vector containing nu number of inputs and nt number of 
outputs defined as: 

(13)

(14)

	 Nonlinear Neural Model Predictive Controller 	 49



of appropriate dimensions (d<r ). 

The input vector, state vector and output vector 
of RO-SIMO-RRS model described in equations 
(13) and (14) are as follows:

 
 
Where H, P, LG1 and LG2 are moderator level, 
power, log power and rate log power respectively.
The error bound for RO-SIMO-RRS model in 
frequency domain is defined as:

 Where ℰ is tolerance value.

2.6   Neural SIMO RRS Model

2.6.1 Choice of Neural Inputs and Outputs

Assuming for HGCV1, the dataset Di contains 
Q number of data patterns and di is an (nu+nt) 
dimensional vector containing nu number of inputs 
and nt number of outputs defined as:
 

Similarly, assuming for HGCV2, the dataset Dj 
contains number of data patterns and dj is an (nu+nt)
dimensional vector containing nu number of inputs 
and nt number ofoutputs defined as:

2.6.2 Optimization of  N-SIMO-RRS Model

N-SIMO-RRS model is divided into four sub
N-SISO-RRS models. N-SISO1-RRS, N-SISO2-
RRS, N-SISO3-RRS and N-SISO4-RRS sub 
models are optimized in distributed parallel 
computing fashion using standard Levenberg-
Marquardt algorithm implemented in MATLAB.

2.6.3 Formulation of MSE for N-SIMO-RRS 	    	
         Model

Now, if where tnt is the desired outputs of SIMO-RRS 
model for each input pattern and yntis the actual 

output produced by each N-SISO-RRS model, then 
Mean Square Error (MSE) is a dimensionless value
computed to deduce the N-SISO-RRS model 
performance for training, testing and validation for 
each nt.

For moderator level (H), MSEs can be defined as:

Similarly, all rest of the MSEs can be defined for P, 
LG1 and LG2.

The structure of N-SIMO-RRS model for training, 
testing and evaluation is shown in Fig. 2.
	  
3.  RESULTS AND DISCUSSION 

The simulations and analysis of 15th order SIMO-
RRS model described in equations (1) and (2) were 
discussed in detail in [5]. Now, in this research 
work, a new addition of coupled dynamics of Iodine 
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testing and evaluation is shown in Fig. 2. 

3 RESULTS AND DISCUSSION 

The simulations and analysis of 15th order SIMO-RRS 
model described in equations (1) and (2) were 
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described in equations (8), (9) and (10) are modeled in 
Simulink environment in MATLAB as shown in Fig. 3. 
This model is very useful for long term dynamic studies 
of nuclear reactor dynamics. All the constants and 
parameters are properly modeled for dynamic analysis 
purposes. The impact of Xenon dynamics is considered 
and integrated with reference model [5].    

 Basically, the Xenon dynamics is highly 
nonlinear in nature and helpful for power dynamics on 
large time-scale, especially in power transients. The 
power transient consists of reactor power maneuvering 
in either direction depending on the power demand 
changes.  
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and a reduced 9th order RO-SIMO-RRS model is 
obtained as described in equations (13) and (14). 
The comparison of frequency responses of HOI-
SIMO-RRS and RO-SIMO-RRS models is shown 
in Fig. 4.

The error bound is computed using equation 
(15) and found 10-4, which shows a very good 
agreement. The RO-SIMO-RRS model is 
implemented in Simulink environment as shown in 
Fig. 5.

3.2  Estimation and Implementation of 		
       NNMPC-1 and NNMPC-2

The Configuration of redundant NNMPC-1 and 
NNMPC-2 interfaced with RO-SIMO RRS model 
is shown in Fig. 6.

This configuration is basically designed for 
Automatic / Manual (AUTO/MAN) operation of 
an operating PHWR type nuclear power plant. The 

advantage of proposed redundant controllers is 
that when the controlling controller is failed then 
tracking controller is configured as backup controller 
in a bump less manner. In this research work, MAN 
mode is selected for dynamic parametric studies 
embedded with four sub controllers in Neutron 
Power Reactor Control Mode (NP-Mode) [1]. NP-
mode is a mode before Steam Pressure Mode (SP-
Mode). 

An innovative dataset of 9000 samples is 
generated very sophisticatedly from RO-SIMO-
RRS model at a sample time TS = 0.16 second. 
5400 samples are used for training, 1800 for testing 
and 1800 for validation of N-SIMO-RRS model. 
All the training, testing and validation of N-SIMO-
RRS model are carried out in MATLAB Simulink 
environment. All the design parameters of N-SIMO-
RRS model are estimated using methodology 
discussed in section 2.3 and are tabulated in Table 
1. 
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Similarly, all rest of the MSEs can be defined for P, 
LG1 and LG2. 
 

The structure of N-SIMO-RRS model for training, 
testing and evaluation is shown in Fig. 2. 
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The new 17th order SIMO-RRS (HOI-SIMO-RRS) 
model is reduced using BTM in MATLAB and a 
reduced 9th order RO-SIMO-RRS model is obtained as 
described in equations (13) and (14). The comparison 
of frequency responses of HOI-SIMO-RRS and RO-
SIMO-RRS models is shown in Fig. 4. 
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and are tabulated in Table 1.  
 

 

 

 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9

Gain Gain Gain Gain

4
To Controller3

3
To Controller2

2
To Controller1

1
To Controller

log Power

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
4

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
3

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
2

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
1

Rate log Power

Power

Moderator Level

Manual Switch

1
s

1
s1

s

1
s

1
s

1
s

1
s

1
s

1
s

inn2

From
Workspace

G1

G2

G3

G4

G5

G6

G7

G8

Foeward gain

X1

X2

X3

X4

X5

X6

X7

X8

X9

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Out8

Out9

Feedback Gains

1
From Controller

Nonlinear Neural Model Predictive Controller  

 

 7  
 

The new 17th order SIMO-RRS (HOI-SIMO-RRS) 
model is reduced using BTM in MATLAB and a 
reduced 9th order RO-SIMO-RRS model is obtained as 
described in equations (13) and (14). The comparison 
of frequency responses of HOI-SIMO-RRS and RO-
SIMO-RRS models is shown in Fig. 4. 
 

 
Fig. 4. Comparison of frequency responses of HOI- SIMO-RRS and 

RO-SIMO-RRS models. 
 
The error bound is computed using equation (15) and 
found 10-4, which shows a very good agreement. The 
RO-SIMO-RRS model is implemented in Simulink 
environment as shown in Fig. 5.  

 
 

Fig. 5. Simulink model of RO-SIMO-RRS model 
 

3.2. Estimation and Implementation of NNMPC-1 
and NNMPC-2 

 

The Configuration of redundant NNMPC-1 and 
NNMPC-2 interfaced with RO-SIMO RRS model is 
shown in Fig. 6. 
 

 
 
Fig. 6. Configuration of redundant NNMPC-1 and NNMPC-
2 interfaced with RO-SIMO RRS model 
 
This configuration is basically designed for Automatic / 
Manual (AUTO/MAN) operation of an operating 
PHWR type nuclear power plant. The advantage of 
proposed redundant controllers is that when the 
controlling controller is failed then tracking controller 
is configured as backup controller in a bump less 
manner. In this research work, MAN mode is selected 
for dynamic parametric studies embedded with four sub 
controllers in Neutron Power Reactor Control Mode 
(NP-Mode) [1]. NP-mode is a mode before Steam 
Pressure Mode (SP-Mode).  

An innovative dataset of 9000 samples is 
generated very sophisticatedly from RO-SIMO-RRS 
model at a sample time TS = 0.16 second. 5400 samples 
are used for training, 1800 for testing and 1800 for 
validation of N-SIMO-RRS model. All the training, 
testing and validation of N-SIMO-RRS model are 
carried out in MATLAB Simulink environment. All the 
design parameters of N-SIMO-RRS model are 
estimated using methodology discussed in section 2.3 
and are tabulated in Table 1.  
 

 

 

 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9

Gain Gain Gain Gain

4
To Controller3

3
To Controller2

2
To Controller1

1
To Controller

log Power

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
4

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
3

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
2

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
1

Rate log Power

Power

Moderator Level

Manual Switch

1
s

1
s1

s

1
s

1
s

1
s

1
s

1
s

1
s

inn2

From
Workspace

G1

G2

G3

G4

G5

G6

G7

G8

Foeward gain

X1

X2

X3

X4

X5

X6

X7

X8

X9

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Out8

Out9

Feedback Gains

1
From Controller

Nonlinear Neural Model Predictive Controller  

 

 7  
 

The new 17th order SIMO-RRS (HOI-SIMO-RRS) 
model is reduced using BTM in MATLAB and a 
reduced 9th order RO-SIMO-RRS model is obtained as 
described in equations (13) and (14). The comparison 
of frequency responses of HOI-SIMO-RRS and RO-
SIMO-RRS models is shown in Fig. 4. 
 

 
Fig. 4. Comparison of frequency responses of HOI- SIMO-RRS and 

RO-SIMO-RRS models. 
 
The error bound is computed using equation (15) and 
found 10-4, which shows a very good agreement. The 
RO-SIMO-RRS model is implemented in Simulink 
environment as shown in Fig. 5.  

 
 

Fig. 5. Simulink model of RO-SIMO-RRS model 
 

3.2. Estimation and Implementation of NNMPC-1 
and NNMPC-2 

 

The Configuration of redundant NNMPC-1 and 
NNMPC-2 interfaced with RO-SIMO RRS model is 
shown in Fig. 6. 
 

 
 
Fig. 6. Configuration of redundant NNMPC-1 and NNMPC-
2 interfaced with RO-SIMO RRS model 
 
This configuration is basically designed for Automatic / 
Manual (AUTO/MAN) operation of an operating 
PHWR type nuclear power plant. The advantage of 
proposed redundant controllers is that when the 
controlling controller is failed then tracking controller 
is configured as backup controller in a bump less 
manner. In this research work, MAN mode is selected 
for dynamic parametric studies embedded with four sub 
controllers in Neutron Power Reactor Control Mode 
(NP-Mode) [1]. NP-mode is a mode before Steam 
Pressure Mode (SP-Mode).  

An innovative dataset of 9000 samples is 
generated very sophisticatedly from RO-SIMO-RRS 
model at a sample time TS = 0.16 second. 5400 samples 
are used for training, 1800 for testing and 1800 for 
validation of N-SIMO-RRS model. All the training, 
testing and validation of N-SIMO-RRS model are 
carried out in MATLAB Simulink environment. All the 
design parameters of N-SIMO-RRS model are 
estimated using methodology discussed in section 2.3 
and are tabulated in Table 1.  
 

 

 

 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9

Gain Gain Gain Gain

4
To Controller3

3
To Controller2

2
To Controller1

1
To Controller

log Power

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
4

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
3

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
2

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

y
1

Rate log Power

Power

Moderator Level

Manual Switch

1
s

1
s1

s

1
s

1
s

1
s

1
s

1
s

1
s

inn2

From
Workspace

G1

G2

G3

G4

G5

G6

G7

G8

Foeward gain

X1

X2

X3

X4

X5

X6

X7

X8

X9

Out1

Out2

Out3

Out4

Out5

Out6

Out7

Out8

Out9

Feedback Gains

1
From Controller

Fig. 4. Comparison of frequency responses of HOI- SIMO-
RRS and RO-SIMO-RRS models.

Fig. 5. Simulink model of RO-SIMO-RRS model

Fig. 6. Configuration of redundant NNMPC-1 and NNMPC-2 
interfaced with RO-SIMO RRS model

52	 Malik et al



Four sub controllers NNMPC11, NNMPC12, 
NNMPC13 and NNMPC14 are configured in 
distributed parallel computing framework in 
Simulink environment using equations (2) to (5). 
The parameters of designed sub controller of 
NNMPC11 for moderator levelare tabulated in 
Table (2) for reference purposes.

Similarly, the design parameters of rest of 
three sub controllers NNMPC12, NNMPC13 and 
NNMPC14 for HGCV1and four sub controllers 
NNMPC21, NNMPC22, NNMPC23 and 
NNMPC24 HGCV2are evaluated in NP-mode.    
3.3  Closed Loop Simulation Scenarios for 	   	
        Validation of Proposed NNMPC

Two case studies are considered in this research 
work that shall be discussed in the subsequent 
sections. 

3.3.1 Rule based Reactor Power Rising Scenario 	
         from 0% to 75%  

In this first case study, reactor power rising 
transient is considered with RO-SIMO-RRS model 

and NNMPC. The reactor power is increased from 
0% to 75% as per procedure as laid down in [1]. 
This procedure is known as rule based transient in 
engineering language. The rule base scenario is a 
predefined combination of steps, ramps, checks, 
permissives and interlocks. The behaviour of 
Helium control valve controller and corresponding 
changes in moderator level, reactor power, 
logarithmic reactor power and rate of logarithmic 
reactor power are simulated and analyzed as shown 
in Fig.7 to Fig. 11 respectively.

All the parametric behavior is well controlled 
and well within the design constraints imposed on 
closed loop RRS [1, 5]. The Helium control valve 
signal is observed highly nonlinear in nature and 
remained within 100% throughout the power rising 
transient. The moderator level rises from 35 inches 
to 175 inches which is well within 190 inches 
control limit. The reactor power increases from 
0% to 75% without any overshoot which is one 
of most important design basis of RRS[1, 5].The 
logarithmic reactor power is quite well because rate 
oflogarithmic reactor power is within 4%RP/sec 
design limit. 
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Parameters Design Values 

Number of Input (nu) 1 
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No of neurons in hidden layer 
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3.3.2 Reactor Power Rising Scenario from 0% to 	
         50% in Reference Tracking Mode

In this second case study, reactor power rising 
transient is considered with HOI-SIMO-RRS 
model and NNMPC in reference tracking mode. In 
this mode, plant is to follow the reference command 
signal which is implemented as per plant design 
procedure. Such design studies are carried with 
any of the redundant channel that replicates the 
actual plant operating configuration. The proposed 
NNMPC is configured with HOI-SIMO-RRS 
model as shown in Fig. 12.

The reactor power is increased from 0% to 
50% in reference tracking mode in NP-mode. 
This procedure is known as ramp transient in 
engineering language. The behavior of HOI-
SIMO-RRS model with special emphasis on Xenon 

dynamics, the behavior of Iodine concentration, 
Xenon concentration, moderator level as a result 
of Helium control valve controller signal variation 
and corresponding changes in reactor power are 
simulated and compared with reference signal as 
patent ramp transient as shown in Fig. 13 to Fig. 
16 respectively.All the parametric behavior is well 
controlled and well within the design constraints 
imposed on closed loop RRS in reference tracking 
mode in a reactor following transient.

There is no overshoot observed in any of the 
parameter. Moderator level and reactor power as 
key parameters of interest are observed smooth 
andfast with leading dynamics and reached the 
target moderator level of 175 inches and reactor 
power of 50%. The moderator level is found within 
design limits even with Xenon load. Hence, the 
proposed closed loop SIMO-RRS is sufficiently 
stable and found robust in reference tracking mode.  
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Fig. 14. Variation of Xenon concentration in reference 

tracking mode. 

 
Fig. 15. Performance of proposed closed loop RRS 
moderator level in reference tracking mode.  

 

Fig. 16. Performance of proposed closed loop RRS  
reactor power in reference tracking mode. 

 
There is no overshoot observed in any of the 

parameter. Moderator level and reactor power as key 
parameters of interest are observed smooth andfast with 

leading dynamics and reached the target moderator 
level of 175 inches and reactor power of 50%. The 
moderator level is found within design limits even with 
Xenon load. Hence, the proposed closed loop SIMO-
RRS is sufficiently stable and found robust in reference 
tracking mode.    

 
4. CONCLUSIONS 

 
In this research work, a new nonlinear neural model 
predictive controller has been designed as new 
innovative replacement of conventional compensator of 
RRS. The performance of NNMPC has been tested and 
evaluated with RO-SMO-RRS model under rule based 
reactor power transient and with HOI-SIMO-RRS 
model under reference tracking mode and found 
smooth, faster and robust in closed loop configuration. 
All the parametric trends prove that the proposed 
closed loop SIMO-RRS model with NNMPC is 
realistic and within design bounds. 
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4.   CONCLUSIONS 

In this research work, a new nonlinear neural 
model predictive controller has been designed 
as new innovative replacement of conventional 
compensator of RRS. The performance of NNMPC 
has been tested and evaluated with RO-SMO-RRS 
model under rule based reactor power transient 
and with HOI-SIMO-RRS model under reference 
tracking mode and found smooth, faster and robust 
in closed loop configuration. All the parametric 
trends prove that the proposed closed loop SIMO-
RRS model with NNMPC is realistic and within 
design bounds.
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