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Abstract: The primary circuit of the nuclear power plant is the most advanced and sophisticated loop of the Advanced 
Chinese Pressurized Water Reactor (ACP1000). The primary circuit is composed of most technologically advanced 
nuclear systems and controllers. In this research work, closed loop dynamics of primary circuit (CLPC) of ACP1000 
based nuclear power plant is identified. The closed loop dynamics is comprised of highly nonlinear coupled seven 
control systems. The turbine power, pressurizer temperature, cold leg temperature, hot leg temperature, coolant average 
temperature and feed water flow are the selected parameters of interest as inputs while neutron power, reactor coolant 
pressure, pressurizer level, steam generator pressure, steam generator level and steam generator flow as outputs. 
Therefore, a closed loop multi-input multi-out (MIMO) is configured. The control oriented closed loop dynamics 
of the primary circuit of ACP1000 is estimated by state-of-the-art novel fractional order neural network (FO-ANN) 
tool developed in LabVIEW. The parameters of FO-ANN of CLPC (FO-ANN-CLPC) are optimized using fractional 
order backpropagation (FO-BP) algorithm. The performance of FO-ANN-CLPC is tested and validated in transient 
conditions and the proposed model predicted the desired reactor power with minimizing error function. The robust 
performance of the proposed closed loop model is evaluated by dynamic simulation for a prescribed turbine load 
power increase transient from 20 % to 100 % and validated against reactor power and behaviour of various thermal 
hydraulics parameters are observed and analyzed.

Keywords: Fractional Order, Neural Estimation, Primary Circuit, Coupled Systems, ACP1000, Nuclear Power Plant, 
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1.   INTRODUCTION 

In this research work, the most advanced and 
most sophisticated third generation Advanced 
Chinese Pressurized Water Reactor of 1100 MWe 
(ACP1000) is taken into account for closed loop 
transient modeling of primary circuit of nuclear 
power plant [1-3].
 

A robust fractional order PID controller is 
designed for an uncertain research reactor [4]. 
Fractional order differential equations are solved 
and optimized by artificial neural networks in [5]. 

The dynamic analysis of fractional order recurrent 
neural network is performed in [6]. A research is 
further extended for variable order fractional delay 
differential equations optimized by neural error 
minimization technique. The parameters of artificial 
neural network are tuned by simulated annealing 
method [7]. Nonlinear dynamics identification is 
performed by neuro-fractional order Hammerstein 
model in [8]. Neuro-fractional order problems 
are solved via centralized and decentralized 
data sampling methods in a discrete domain [9]. 
Neural network based fractional order differential 
equations are solved for chaotic systems with 



primarily a control system of secondary circuit but 
it is added to provide essential coupling between 
reactor power and turbine power.

2.2  Coupled Close Loop Dynamics of Primary  
       Circuit Systems  
    
There are seven control systems involved in the 
coupled dynamics of primary circuit of ACP1000. 
These seven controllers are reactor power control 
system (G-bank), reactor power control system          
(R-bank), pressurizer pressure control system, 
pressurizer level control system, digital electro-
hydraulic control system, steam generator water 
level control system and steam dump control 
systems respectively. G-bank consists of sub                  
G1-bank and sub G2-bank while R-bank is a single 
bank. G-bank has more worth than R-bank because 
it is meant for temperature control and reactor power 
control while R-bank is meant for power control 
only. The important key parameters are identified 
as inputs and outputs of closed loop control systems 
for precise dynamic estimations. The coupling of 
closed loop control systems and their associated 
input and output variables are shown in Figure 1. 

2.3  Framework of FO-ANN-CLPC

Instead of designing the FO-ANN for each closed 
loop control system, the overall closed loop model 

backlash nonlinearity [10]. A research is adopted 
for model reduction of large scale systems using 
fractional order neural networks [11]. A neural 
network is used to tackle the nonlinear fractional 
order systems for multi-model estimation and fault 
detection purposes [12]. A multilayer fractional 
order fault classifier is developed for X-rays 
image processing in LabVIEW [13]. A research is 
explored for stability analysis of fractional order 
neural time delay systems [14]. A wavelet neural 
network optimized fractional order PID controller 
is designed for Integrated PWR (IPWR) nuclear 
power plant load shedding studies [15]. The 
research is further extended to explore reactor 
power control in turbine load following scenarios 
for marine applications [16]. This type of study is 
very useful for PWR based nuclear power plants for 
load following purposes.   
    

In this research work, a novel state-of-the-art 
coupled closed loop dynamic MIMO (CCLD-
MIMO) model of primary circuit of ACP1000 
is developed for the first time in LabVIEW 
incorporating nonlinear dynamics of reactor power 
control system (G-bank), reactor power control 
system (R-bank), pressurizer pressure control 
system, pressurizer level control system, digital 
electro-hydraulic control system, steam generator 
water level control system and steam dump 
control system. CCLD-MIMO model is structured 
in Fractional Order Back Propagation Artificial 
Neural Network (FO-BP-ANN) form in LabVIEW. 

2.   MATERIALS AND METHODS 

2.1. Primary Circuit of ACP1000    

The primary circuit of ACP1000 is comprised of 
systems responsible for reactor power generation 
in the reactor core in response to turbine load 
changes. The basic objective of this research work 
is to establish a relationship between reactor power 
and turbine power through various control systems 
associated with the primary loop of ACP1000 using 
the fractional order neural network technique. In 
order to account for the turbine load impact on 
the primary loop of ACP1000, the Digital Electro 
Hydraulic (DEH) control system is considered 
as a part of closed loop for dynamic analysis and 
simulation studies otherwise it is not needed to 
consider for modeling primary circuit. DEH is 
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            Fig. 1. Closed loop primary circuit of ACP1000. 

2.3 Framework of FO-ANN-CLPC  

Fig. 1. Closed loop primary circuit of ACP1000.
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is configured in MIMO form with six inputs and six 
outputs as shown in Figure 2.
  

The closed loop primary circuit of ACP1000 
configured in MIMO form as shown in Fig. 1 is 
represented in symbolic form with detailed internal 
configuration in Figure 3. 
            
2.4  FO-ANN Intelligent Learning 

2.4.1 Idea of Fractional Order System 

The fractional order dynamics is basically a system 
of differential equations containing non-integer 
order. The purpose of fractional order dynamics is 

to have improved complex signal processing, better 
control performance and enhanced optimization 
process with guaranteed convergence and finite 
behaviour. 

2.4.2 Choice of Machine Learning Algorithm 

In this research work, fractional order 
machine learning is employed. The improved 
backpropagation algorithm is formulated in a 
fractional order fashion. This improved algorithm 
is formulated using Grunwald Letnikow fractional 
derivative approximation [8]. 

2.5  FO-ANN-CLPC-ACP1000 Modeling

2.5.1. Design Basis

Now, the input vector u (i), i = 1,2,3,..,6 and output 
vector y (j),  j = 1,2,3,..,6 based on Fig. 2 are defined 
as:  

Where k is the instant of discretization. The 
dimension of MIMO system is 6x6. If p = i is 
the number of neurons or nodes in the input layer 
(np =1,2,3,….., p), q is the number of neurons 
in the hidden layer (nq =1,2,3,….., q) and                                                          
r = j is the number of neurons in the output layer                                                                                         
(nr =1,2,3,….., r) then WI and WH are the weight 
matrices of input and hidden layers comprised of 
wnp,nq and wnq,nr weights respectively, BI and BH are 
bias vectors of input and hidden layers comprised 
of bnq and bnr bias elements respectively then θI (.) 
and θH (.) are nonlinear activation functions of input 
and hidden layers respectively. 

2.5.2 Problem Formulation CCLD-MIMO Model

The basic idea presented by [8] is adopted to 
derive the formulation for CCLD-MIMO model of 
ACP1000.

Now, the error dynamics from input layer to 
hidden layer is calculated as:

 
The activation function associated with the 

hidden layer is given as:
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Instead of designing the FO-ANN for each closed loop 
control system, the overall closed loop model is 
configured in MIMO form with six inputs and six 
outputs as shown in Figure 2. 
  

          

 

 

  Fig. 2. FO-ANN-CLPC input-output MIMO configuration 
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The closed loop primary circuit of ACP1000 
configured in MIMO form as shown in Fig. 1 is 
represented in symbolic form with detailed internal 
configuration in Figure 3.  

            

Fig. 3. Coupled symbolic internal architecture of FO-ANN-
CLPC-ACP1000. 
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The basic idea presented by [8] is adopted to derive the 
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Now, the error dynamics from input layer to hidden 
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Where η is the learning rate. 
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The accuracy of the FO-ANN-CLPC-ACP1000 is 
measured in terms of goodness of fit (FIT), which is 
computed as: 
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Where yj is the j-th actual output of CCLD-MIMO 
model of ACP1000, jy is the j-th predicted output of 

FO-ANN-CLPC-ACP1000 and jy  is j-th mean of the 
actual output of CCLD-MIMO model of ACP1000. 
 
3.   RESULTS AND DISCUSSION 
The closed loop training and testing framework of 
primary circuit of ACP1000 is shown in Figure 4. 
 

     
 
Fig. 4. Closed loop framework for FO-ANN-CLPC design of 
ACP1000. 
A state-of-the-art novel virtual Instrument (VI) is 
designed for FO-ANN-CLPC in LabVIEW, as shown in 
Figure 5. 
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primary circuit of ACP1000 is shown in Figure 4.
A state-of-the-art novel virtual Instrument (VI) 
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shown in Figure 5.
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shown in Figure 10. 
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Where yj is the j-th actual output of CCLD-MIMO 
model of ACP1000, jy is the j-th predicted output of 

FO-ANN-CLPC-ACP1000 and jy  is j-th mean of the 
actual output of CCLD-MIMO model of ACP1000. 
 
3.   RESULTS AND DISCUSSION 
The closed loop training and testing framework of 
primary circuit of ACP1000 is shown in Figure 4. 
 

     
 
Fig. 4. Closed loop framework for FO-ANN-CLPC design of 
ACP1000. 
A state-of-the-art novel virtual Instrument (VI) is 
designed for FO-ANN-CLPC in LabVIEW, as shown in 
Figure 5. 
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Fig. 5. Fractional order BP neural network VI.

Fig. 6.  Fractional order BP neural network training VI.
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The block diagram of FO-ANN-CLPC VI configured in 
training phase is shown in Figure 6. 
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3.1. Performance Evaluation of FO-ANN-CLPC in 
LabVIEW 

 
In this research work, the testing of the FO-ANN-CLPC 
tool is performed in LabVIEW. In closed loop training 
and testing framework of the primary circuit of 
ACP1000, reactor power transient data with a data set 
of 60% samples and 40% samples are selected for 
reactor shutdown, power-up, power-down and steady 
power operational data, respectively. In the testing 
phase, the predicted normalized reactor power which is 
an ANN approximation tested against the cluster of 
normalized reactor power. A sample testing part is 
shown in Figure 7 against a few samples of the real 
cluster of reactor power data. 
 

     
  
Fig. 7. Comparison of ANN and normalized real reactor 
power front panel in testing phase. 
 

In validation phase, the comparison of measured and 
predicted reactor power is shown in Figure 8. 
 

 

Fig. 8. Comparison of measured and predicted reactor power 
in validation phase. 

The error between the measured and predicted 
reactor power is shown in Figure 9. The predicted 
reactor power follows the measured reactor power with 
minimizing error function in transient condition. In 
order to assess the accuracy of the minimizing error, the 
zoomed view of the error is shown in Figure 10.  
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The parameters of FO-ANN-CLPC-ACP1000 
are tabulated in Table 1. The computational 
performance of FO ANN is gauged in simulations in 
terms of goodness of fit (FIT).  

 
 
 
 
 
 

Table 1. Parameters of FO-ANN-CLPC-ACP1000 model 
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expressed in % is increased from 20% to 100% as per 
procedure as laid down in [1,3] and various parameters 
are simulated and analyzed against this transient power 
turbine load in LabVIEW environment. For the sake of 
better understanding and inter comparison purposes, all 
power dependent parameters are plotted on same time 
scale. Similarly, other thermal parameters, pressure 
hydraulic parameters, level hydraulic parameters and 

flow hydraulic parameters are plotted on same time 
scales.  

The turbine power or power turbine load and 
power reactor power or power neutron flux are both 
dependent parameters and their dynamic behavior is 
shown in Figure 11.  

 
Fig. 11. Dynamic simulation of reactor power and turbine 
power. 

               Figure 11 clearly proves that power neutron 
flux follows the power turbine load. This plot also 
proves the overall performance of closed loop 
dynamics. The power neutron flux drops initially 
because of inverse Xenon dynamics as the power 
turbine load demands the increasing power signal which 
is compensated by the lead compensator when the 
turbine power stabilizes around 30%. When turbine 
power takes up the next sequence of ramp-up for power 
rising transient then leading dynamics of reactor power 
controller appears and a slight little over shoot is 
observed in the dynamic behavior. 
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Fig. 11. Dynamic simulation of reactor power and turbine power.
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is shown in Figure 13. 
 

The pressurizer saturation temperature remains 
around 345 0C. Hot leg temperature increases 
as the reactor power increases but the cold leg 
temperatures decreases because of the gain in hot 
leg temperature and pressurizer controls provided 
on the hot leg. Reactor coolant average temperature 
follows the averaging dynamics of cold and hot leg 
temperatures. 

The dynamic simulation of pressure hydraulic 
parameters is shown in Figure 14. The reactor 
coolant pressure is kept constant by pressurizer 
pressure controller. The steam pressure decreases 
as the turbine load increases that proves the inverse 
relationship between the turbine power and steam 
pressure. 
    

The dynamic simulation of level hydraulic 

parameters is shown in Figure 15.

The steam generator level decreases due to the 
increase in turbine power and decrease in steam 
pressure. Since the reactor coolant pressure and 
pressurizer saturation temperatures are almost 
constant, therefore, the pressurizer level controller 
increases the pressurizer level as the reactor power 
and reactor coolant average temperature increases. 
The dynamic simulation of flow hydraulic 
parameters is shown in Figure 16.

Figure 17 also clearly proves that feed water 
flow follows the steam generator flow. This plot 
also proves the overall performance of closed loop 
dynamics. When steam generator flow increases 
due to the increase in turbine power then the leading 
dynamics feed water flow appears and a slight little 
over shoot is observed in the dynamic behavior on 
every increase in turbine power ramp-up transient.
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4.  CONCLUSION

The dynamics of the primary circuit of a third 
generation ACP1000 nuclear power plant has been 
focused on in this research work. The coupled 
nonlinear dynamics of reactor power control system 
(G-bank), reactor power control system (R-bank), 
pressurizer pressure control system, pressurizer level 
control system, digital electro-hydraulic control 
system, steam generator water level control system 
and steam dump control system has been identified 
in MIMO framework. Parameters of closed loop 
MIMO system are estimated by a new specialized 
tool developed for the first time in LabVIEW. The 
new specialized tool is a mathematical fractional 
order differential equations based on graphical 
code. The evaluation of the designed tool is proved 
successful and upto mark through dynamic transient 
simulation experiments of reactor power following 
turbine power. The proposed model and tool can 
be extended for secondary circuit and accident 

analysis in future.    
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