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Abstract: This paper introduces a flexible scalar-splitting (f-SCSP) iterative scheme and examines its convergence
properties. The approach also yields a straightforward matrix-splitting preconditioner for the original linear system.
To confirm the theoretical results and evaluate practical performance, comprehensive numerical examinations are
performed on various test cases. The findings indicate that the proposed method is practical, reliable, and more efficient
than existing techniques for handling demanding classes of complex symmetric linear systems.
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1. INTRODUCTION

We focus on the iterative resolution of linear

systems.
Ax=D>b (1)

where A € ™" and x, b € C"_ In Equation (1),
A =W + iT is a matrix which is non-Hermitian and
symmetric (A # A", A =A") with W,T € R™*™
are real and symmetric, and W and T are positive
definite and positive semidefinite matrices,
respectivelv n this text, the imaginary quantity
. 1'2 = -1 . x

iota, ,1s denoted by the symbol 1. Let there
be a splitting A = M — N of the matrix 4 € C""
i.e., M € C"*" is nonsingular and N € C™*". This
splitting gives rise to a fixed-point iterative method
of the following form.

XM= MTINXR 4+ M7h, k=012,.. ()

where x° € C" is a given starting vector.

Systems corresponding to Equation (1) appear
frequently throughout computational science and

in numerous branches of engineering, where they
form a core component of many modelling and
simulation tasks. A few notable examples include
Diffuse Optical Tomography (DOT); very helpful
for small animal imaging, breast cancer detection,
and functional brain imaging [1]. Because of the
nature of light propagation in scattering media
and the usage of complex coefficients to simulate
absorption and diffusion, the mathematical
modelling and numerical computation required
in DOT frequently result in complex symmetric
linear systems. When time-dependent PDEs are
treated with FFT-driven schemes, the resulting
discretisations commonly lead to complex
symmetric linear algebraic systems, particularly in
frequency-domain formulations or in spectral and
pseudo-spectral frameworks [2].

Advanced scientific applications in structural
dynamics, especially those involving damping,
frequency-domain analysis, or non-proportional
damping models, the governing equations lead
to complex symmetric linear systems [3]. Lattice
Quantum Chromo Dynamics (Lattice-QCD)
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[4] is a computational approach for examining
QCD. Complex symmetric linear systems emerge
naturally in various formulations of Lattice-QCD,
particularly in fermion discretization such as
staggered fermions or twisted mass fermions [5].
Numerical computations in molecular scattering is
a crucial subject in quantum chemistry, chemical
physics, and dynamics. The foundational theory
relies on quantum scattering theory, resulting
in extensive linear algebraic systems that are
frequently complex and occasionally symmetrical
under certain conditions [6].

Recently, Ahmed et al. [7] and Kanwal et
al. [8] suggested that if the forward operator
A is symmetric, iterative over-relaxation can
solve (1) efficiently. Axelsson and Kucherov [9]
presented an iterative method for real matrices,
Benzi and Bertaccini [10] proposed a block
preconditioning for real-valued iterative algorithms,
Bai[l1]and Baietal. [12, 13] introduced a modified
Hermitian and skew-Hermitian splitting (MHSS) as
well as preconditioned-MHSS (PMHSS) iterative
methods and Wang et al. [14] improved the PMHSS
method. Various preconditioning techniques have
been developed to enhance the convergence rate of
these iterative methods. For instance, Salkuyeh et
al. [15], Hezari et al. [16], Axelsson and Salkuyeh
[17], Xie and Li [18], Xiang and Zhang [19],
and Salkuyeh [20], Zhao et al. [21] put forward
a Single-Step-MHSS method (SMHSS) and its
variants with a flexible-shift (f-<SMHSS). Wen ef al.
[22, 23] also suggested some iterative methods and
respective preconditioning techniques. Vorst and
Melissen [24], Freund [25], while, Bunse-Gerstner
and Stover [26] presented the conjugate gradient-
type methods; Clements et al. [27] introduced
Krylov-type methods. In particular, Hezari et al.
[28] proposed the Scale-Spliting (SCSP) method
employing a scaling approach. Later Salkuyeh [29]
suggested a two-step SCSP method, while Salkuyeh
and Siahkolaei [30] introduced a two-parameter
SCSP (TSCSP). Zheng et al. [31] also introduced
a double-step scale splitting iterative method. Li ef
al. [32, 33] put forward a dual-parameter double-
step splitting iteration method, and two iterative
methods with quasi-combining real and imaginary
parts. However, the scaled parameters mentioned
above are given in advance. Motivated by the
optimization models given by Zhao ef al. [21], this
study introduced a flexible-scalar strategy based
on the SCSP iterative method, which the scaled

parameters @ are determined by minimizing the
residuals at each iteration.

Following we present the essential notations.
The set of P X P real (complex) arrays and the P
-dimensional real (complex) vector space are
represented as RP*P and RP (CP*P and CP)
respectively. The conjugate and transpose of a
matrix or a vector x is x* and xT repectively. A
matrix A € CP*P (A € RP*?) is said to be Hermitian
(symmetric) positive definite (or semidefinite),
denoted by A = 0 (or = Q); if it is Hermitian (or
symmetric) and for all x € C*, x # 0, x"Ax >0
(x*Ax = 0) holds true. The real and imaginary parts
of a complex number X are denoted by Je(x) and
Im(x), respectively. p(A) is used to represent the
spectral radius of a matrix A and £(A) represents the
spectrum set of the matrix. The condition number
of a matrix 4 is denoted by x(4). The splitting of A
,definedas A = M — N, is said to be convergent if
p(M~IN) < 1.

A broad range of preconditioning strategies
has been introduced in past to accelerate the
convergence behavior of such iterative schemes.
For instance, a double-step scale splitting iterative
method employing a scaling approach given by
Salkuyeh and Siahkolaei [30]. By multiplying
two parameters (¢ —i) and (1 — ia) both sides
of the Equation (1), two equivalent systems can be
respectively yielded, ie., (@ —i)Ax = (a—i)b
and (1 —ia)Ax = (1 —ia)b, where a is a real
positive number. Then two fixed-point equations
can be generated as follows:

((@W +T) +i(al —W))x = (e—)b.  (3)
((@W +T) +i(alT —W))x = (1 —ia)b.  (4)

Zheng et al. [31] expanded on the PMHSS
iterative method, suggested by Bai et al. [13], and
proposed the following alternative iterative scheme:

(aW + T)ka'% =i(W — aT)x* + (a — )b <012

(aW + T)xhé = i(W —aT)x*+ (1 —ia)b
whereas the Equations (3) and (4) are in fact two
preconditioned systems in Equation (2) when
P=(a—1)I and P = (1 —ia)l, that is to say,
the preconditioned matrices are both the scalar
matrices. Equations (3) and (4) are one whena = 1,
therefore, the alternation ofthe DSS iterative method
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was only carried out in twins of two preconditioned
systems. This work focuses on linear systems whose
coefficient matrices are complex symmetric yet not
Hermitian. We focus on the scaled preconditioned
splitting iterative methods generally and consider
the systems in Equation (2) when P = (a — i)l
with @, 8 are both real numbers in this study.

2. MATERIALS AND METHODS

To provide context and completeness, this section
begins with a brief overview of existing methods for
solving linear systems whose coefficient matrices
are complex symmetric but non-Hermitian, as in
Equation (1). We then introduce the Flexible-Scalar
Splitting (f~SCSP) scheme.

2.1. The Relevant Methods
2.1.1. MHSS method [12, 13]:

The MHSS iteration method: Let x(® € C* be
an initial guess. For k =0,1,2,-, until {x®}
converges, compute x*¥*1  according to the
following sequence:

1
(al + W)x""2 = (al — iT)x* + b,
1
(al + T)x**1 = (al +iW)x*"2—ib,

where « is a given positive constant.
2.1.2. The SMHSS and f~SMHSS methods [21]:

(1) The SMHSS iteration method: Let
x(® € C" be an initial guess. For k =0,1,2,
, until  {x(®} converges, compute x (k+1)
according to  the  following

(al + W)x**1 = (al — iT)x* + b.

(2) The f-SMHSS iteration method: Let x(®) € C"
be an initial guess, for € >0, k =0,1,2, - until
{x(®} converges, the single-step iteration formula
for computing the next x(k+1) is as follows.

sequence

Step 1: Compute rx = b — Ax.

Step 2: Solve the equation

(agsq] + WKL = (gl —iT)x* + b,

where the flexible shift ap,q 1s the solution
to the following optimization problem:
111&11”({1;’ + W) g ||, With Tiees = b — Axpyq.

Step 3: If lrell2 = €, stop; otherwise, setk = k + 1
and return to Step 1.

2.1.3. The scale-splitting (SCSP) method [28]:

Let @ be a real positive constant and the matrix
aW +T be nonsingular. By multiplying the
complex number (@ —i) through both sides of
Equation (1), the following equivalent system can
be obtained.

Agx = (a—1D)b ®)

Where Ag = (aW +T) +i(aT —W). By
rewriting it as the system of fixed-point equations:
(aW +T)x =i(W — al)x + (a — i)b,

the SCSP iteration method can be summarized as
follows.

The SCSP iteration method: Let x(® € C* be
an initial guess. For k =0,1,2, -+, until {x(k)]
converges, compute x®**1 according to the
following sequence:

(aW + T)x**1 = i(W — aT)x* + (@ — i)b, (6)
where « is a given positive constant.

2.2. Proposed Iterative Method: The Flexible-
Scalar Splitting (f~-SCSP)

The variant system can be obtained by multiplying
the complex number & — i,

[(aW +T) —i(W — aT)]x = (a — i)b.

To use the flexible-scalar strategy, the f-SCSP
method is formulated as follows:

(@1 W + D" = i(W — g1 Dx* + (@ — Db (7)

where,

1. _
Tpy1 = argmin oy (aW +T) 1y, (8)

withrg = b — Ax¥, k =0,1,2, ...
Remark: In fact, the exact solutions of the quadratic
programming models in Equation (8) can be given
theoretically by simple computing. To avoid the
tedious computation of (o, W + T)" , we can use the
inexact line search to find the approximations of @.
In matrix-vector form, the scheme presented in
Equation (7) can be equivalently rewritten as:

oy

X%+ G, b, k=0,12,.. (9)

Tppa Tpra
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where,

Tape, = iag W+ T)HW — a1 T), and G, = (@ — )(aW +T)7 (10)
Here, Tg,,, is the iteration matrix of the f-SCSP
method. In fact, Equation (9) is also generated by
the splitting, A, = Mg, — Ng,, with
-1 +ia

a+i
Mak ZW(QW‘FT), and Nak :W(W_ iT)
Moreover,
Tay., = Ma..,Na,., and M, can be identified

as a preconditioner to all linear systems of type
Equation (1).

Consequently, the preconditioned system can be
expressed as follows.

MglAx = Mg!b. (11)

We now investigate the optimal parameter selection
and the spectral radius characteristics of the iteration
matrix, and assess the convergence behavior of the
previously described f-SCSP method.

Theorem 2.1: Letbe anon-Hermitian but symmetric
matrix A=W +iT€CY", (4 £ A", A=AT)
with both W, T € R™™" being symmetric, W and
T being both positive definite positive. Let @ be
positive real numbers and Amin and Amax be the
extremal eigenvalues of the matrix W ~1T. Then
the following statements hold true:

(1) In the f~SCSP method, the upper bound of the
spectral radius P Ta, ) is:

—®xAmin

_ A Amax
6ak - max {ak+ﬂmin ’ ak""qmax} (12)
(ii) The sequence {x*} produced by Method 2.1
1- )Lmin 1- 'JLmax
— < < —, A €(1,+co
1+ )Lmin g 1+ )Lmax ax ( )
1- )Lmin
ay > ————, T(W-IT) c[0,1
R T A ( ) < [0,1]

In particular, the iterative scheme presented in
Equation (6) is convergent if @ for the case that T
is a positive semidefinite matrix.

Proof (i): By Equation (12) and direct calculations,
we have:

p(Ta,,) = p(i(@xW + D)7 (W — a,T))
< liaxW +T)"2(W — ax )l

< [[(exW + T)"HI2IW — i Tl
= |[(axl + WAT) 7|2l — aW T2

—{Ik/‘l
4% + 4 |

= max
AEZ(W—1T)

In the last step, the equality holds since W 1T is a

symmetric positive definite matrix, and then so is

(al + WTIT)"L.

It is known that 4 is positive. By introducing the

following function:

—ad
) =——
f& a+ A
it is obtained that f (4) is a decreasing function
2
with respect to 4 since f'(1) = — (;i)z < 0.

Thus Equation (12) provides the upper bound of
P (Tak)'

Proof (ii): For the case that Amax > 1, 8g, < 1is
equivalent to a > % by simple calculations.

min

And then p(Ty) <1, so the sequence {x*}
produced by the f-SCSP method converges to the
nnique solution to Equation (1) for any initial guess
x*

Forthe case thatZ(W ~1T) < [0, 1],then A4 < 1
at that time. Thus, 64, <1 is only equivalent to

A
{Ik > mln‘
1+ﬂmin

It is well-known that Amin = 0 if T is a positive
semidefinite matrix. And then P(Tak) = 0-’_1, the
iterative scheme in Equation (6) is convergent if
a > 1. The proof is completed.

Corollary 2.1: Assuming the conditions of
Theorem 2.1 hold, the optimal the parameters «
that minimises the upper bound dg, of the spectral
radius P(Ta,.) is given by:

]
l—ﬂmm}{max+\‘|'[1+ﬂfmn)[1+ﬂ§nax)

(13)

{I =
Amin+Amax

A similar proof is presented in [28, theorem 1],

which is omitted here.

Theorem 2.2: Let be a non-Hermitian, symmetric
matrix A=W +iT € C"", with W,T € Rnxn
being both symmetric, also, W being positive-
definite and_ T positive definite or semidefinite.
Then P(Tz,) < 1 if for all x € C*, it holds that

XWx—-x"Tx
X*Wx+x*Tx

Proof: Let an eigenvalue of the matrix Ty,
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be A with the corresnonding eigenvector
x, le., M Nayx = 2% which means,
AlaW + T)x = i(W — aT)x. Then we have from
the assumptions that:

|x*Wx —ax Tx
" ax Wx + x*Tx

. TWx—x"T. . .
We obtain @ > w by direct calculations
X*Wx+x*Tx |
under 4] < 1. The theorem is proved.
Remark: Theorem 2.2 implies that all eigenvalues
of the matrix Ty, lie along the imaginary axis.
The last of this section, a property of the matrix

Mg ! A can be given.

4]

Theorem 2.3: Let A = W + iT € C"*" be a non-
Hermitian but symmetric matrix (4= A°, 4=AT
) with W, T € R™" be real, symmetric, and W
being positive-definite and T positive definite or
semidefinite. Assuming that [t is any eigenvalue
of the matrix Mg,'A defined by Theorem (2.2), the
Re(u) = 1.

Proof: Let A be an eigenvalue of the matrix M(;;A
and x be the corresponding eigenvector of the
eigenvalue 4 with ||x||; = 1. It is known that:

(ap — i) (W +iT)x = A(apW + T)x.

So, we have:

1 apx Wx + x"Tx + i(apx"Tx — x"Wx)
apx Wx + x*Tx '

From assumptions, x*Wx =c > 0, x*Tx =d = 0.
Then we yield Ne(u) = 1.

3. RESULTS AND DISCUSSION

This section presents a series of numerical
experiments designed to evaluate the practicality,
reliability, and computational efficiency of the
proposed f-SCSP method in comparison with
existing approaches. The evaluation is based on
three key performance metrics: the number of
iterations to convergence (IT), the total processing
time taken by our computer in seconds for
convergence (CPU), and the final residual norm
(RES). These measures provide a comprehensive
assessment of both the convergence characteristics
and computational cost of each method.

The performance of f-SCSP is assessed
in comparison with four well-known iterative
techniques. The MHSS method [12, 13], SMHSS
method [21], the f~SMHSS method [21], and the

SCSP method [28], which were introduced and
discussed in Section 2. In all numerical experiments,
the initial guess is taken as the zero vector, and the
iterations are terminated once the relative residual
norm meets the predefined stopping criterion, set
here as an £,-norm of the residual < 107°, The
iteration process is considered unsuccessful if
convergence is not achieved within a maximum
of 8000 iterations. This limit guarantees an
equitable assessment among all techniques and
aids in avoiding excessive computation time when
convergence is not reached as expected. All these
experiments are done with different vector space
sizes m given A : C™ — C™; the results provide
empirical validation of the theoretical analysis
and demonstrate the performance of the proposed
method.

Example 3.1 [28]: The linear system of equations
in (1) represents the form (W + iT)x = b, with

W=100QV.+V.®I) +9(eel, +ele) ®1I

and T=IQV+VQ®! where V =tridiag(-1,2 -1) € R™™
V.=V —eel, +ele € ]Rmxm’ e, = (1,0,...,00T e R™
and e, =(0,0,..,1)T € R™. The vector b on the
right-hand side can be choosen as b = (1 +i)A1,
where 1 is the vector with all entries equal to 1.

Example 3.2 [28]: The complex linear systems (1)
is of the form:

[(—w?M + K) + i(wCy + Cx)lx = b

where @ denote the driving circular frequency,
with M and K representing the inertia and
stiffness matrices, and Cy and Cy are denoting
the viscous and hysteretic damping matrices.
The viscous damping is modelled as Cy = uK
where p is given as the damping coefficient,
M=I C,=10I K=1®By + B, QI, with

By, = h—lzh'idiag(—I,Z, —1) € R™m*m, and mesh
size h =ﬁ. Accordingly, K takes the form

of an n Xn block-tridiagonal matrix with block
dimension n=m?. We further specify w=m
, u=0.02, and construct the right-hand vector
b = (1 + i)A1, where 1 denotes the vector with all
components equal to 1. To standardise the system,
we pre-multiply both sides by h%thereby obtaining
a normalised formulation.

Example 3.3: Consider the two-dimensional
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convection-diffusion equation:

—(uxx + uyy) + I}(ur + uy) =g(x, y)’

the region of interest is considered over the unit
square domain [0, 1] x [0, 1] assuming constant
coefficient 17 and imposing Dirichlet boundary
conditions. Employing the five-point central
difference discretisation leads to the linear system
(1), characterised by the following coefficient
matrix:
W=T,QI+IQT,andT=1QV+VRI,
where the matrices T; and V are given by:

T; =tridiag(-1 - R.,2,-1 + R,),V = tridiag(2, -1, -1)
with R, = th/2, being the mesh Reynolds number,
and h = 1/(m + 1) being the equidistant step-size.
Moreover, the right-hand side vector b is taken to
be b = Ax, with x* = (1,1,1,...,1)T € R" being
the true solution.

In the conducted experiments, matrices
with dimensions approaching 270,000 (i.e.,
n=m? =512 x 512 = 262,144) were examined.
The numerical results are summarized in Tables
1-3. Evidently, the SCSP and f-SCSP methods
perform commendably; the f-SCSP method
achieves convergence in the fewest iterations,
whereas the SCSP method demonstrates superior
computational efficiency in most tests. The
challenge of balancing iteration count and
execution time to develop an enhanced method
constitutes a key direction for forthcoming research.

When compared against its counterparts,
SCSP, f-~-SMHSS, SMHSS and MHSS, the proposed
f-SCSP method exhibits a compelling balance
between iteration count and computational cost.
Table 1 shows results from Example 3.1, and that
SCSP is achieving convergence in 10-103 iterations
across increasing problem sizes, closely matching
the iteration efficiency of flexible f-SCSP but
requiring only approximately halfthe CPUtime (e.g.,
0.0153s vs. 0.0592s for m = n = 16), highlighting
its lower overhead in parameter selection. Although
f-SCSP attains marginally fewer iterations in some
cases, its per-iteration optimization of &k sustain
a significant time penalty. In contrast, classical
SMHSS and MHSS methods demand up to an order
of magnitude more iterations and substantially
longer runtimes, often exceeding SCSP by factors
of 5-10, reflecting the superior conditioning induced
by the scaled preconditioning. Overall, f~SCSP

converges in fewer iterations with better efficiency
in all system sizes compared to MHSS, SMHSS,
and f~SMHSS. The comparison between f-SCSP
and SCSP is however subtle; f-SCSP converges
with fewer iterations and a slightly better relative
residual in larger system sizes, but the CPU time
shows that SPSC is the most efficient throughout.
Similarly, Table 2 shows results from Example 3.2,
and again f~SPSC and SPSC are very close, with
f-SPSC convergeing in fewer iterations and with
better relative residual, and SPSC being faster in
terms of CPU computational time. All the other
methods follow f-SCSP and SCSP. In Table 3,
we see results from Example 3, which show that
f-SCSP performs superior to all of the existing
methods, including SCSP, in terms of all, number of
iterations required to converge, the relative residual,
and the required CPU time for computation, while
SMHSS variants exceed hundreds to thousands of
iterations. This consistent performance highlights
SCSP’s robustness and its practical advantage for
large-scale complex symmetric systems.

A catch is the use of the initial guess. All
our experiments use x, = 0, but many practical
solvers benefit from warm starts. Finally, while the
convergence proofs (Theorems 2.1-2.3) guarantee
p(T) < 1 under stated assumptions, the potential
for combining f~SCSP with Krylov acceleration
can be addressed, representing an opportunity for
further speed-ups in challenging regimes.

Our numerical results presented in the tables
are given in line plots. Figure 1 shows the CPU
time of taken by the respective methods plotted
vs the vector space size M in Example 3.1. The
f-SCSP is much faster than most other methods,
and it performs very close to the existing SCSP.
Similarly, Figure 2 show that in 3.2, as the system
size increases, the SCSP performs better than the
proposed method. However, it can be seen in Figure
3 for Example 3.3 that both methods perform
equally well for all system sizes. Figure 4 show
the convergence behavior of the proposed method
in Example 3.1 with different system sizes. The
residual error is plotted vs the number of iterations,
and f-SCSP outperforms the existing methods
in all tests, as demonstrated. Similarly, Figure 5
shows how f-SCSP outperforms all of the existing
methods in convergence in Example 3.2. In Figure
6, the difference in convergence between f-SCSP
and SCSP looks tight, especially in figure 6(b),
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Table 1. Tests from Example 3.1. The first column lists the system sizes in €™. The second column shows iteration
count, CPU time, and residual error. Columns 3-7 present the results from SCSP, {-SCSP, {~SMHSS, and MHSS
respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 10 10 16 18 54

16 CPU Time (s) 0.015 0.059 0.048 0.026 0.160
Res. Err. 5.218e-7 9.694e-7 8.918e-7 6.845¢e-7 8.238e-7
Iter. Count 16 16 26 24 131

32 CPU Time (s) 0.150 0.243 0.306 0.202 1.840
Res. Err. 9.321e-7 4.443e-7 9.043e-7 7.460e-7 9.525e-7
Iter. Count 22 20 32 36 171

48 CPU Time (s) 0.419 0.608 1.113 0.683 5.053
Res. Err. 5.287e-07 8.892e-07 7.711e-07 9.641e-07 9.716e-07
Iter. Count 28 26 49 55 191

64 CPU Time (s) 0.809 1.063 2.681 1.680 5.954
Res. Err. 6.803¢-07 8.043¢-07 9.987¢-07 8.918e-07 9.875e-07
Iter. Count 63 46 119 108 306

128 CPU Time (s) 5.971 6.999 13.862 9.638 52.724
Res. Err. 8.541e-07 9.464¢-07 9.601e-07 8.168¢-07 9.893¢-07
Iter. Count 63 60 325 332 997

256 CPU Time (s) 28.805 42.680 199.335 302.205 804.894
Res. Err. 8.258e-07 8.122¢-07 9.949¢-07 9.929¢-07 9.981e-07
Tter. Count 103 84 1093 7080 3345

512 CPU Time (s) 252.411 510.790 3640.200 17965.00 22926.00
Res. Err. 9.731e-07 9.537¢-07 9.962¢-07 9.995¢-07 9.993¢-07

Table 2. Tests from Example 3.2. The first column lists the system sizes in C™. The third column shows iteration count,
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 37 40 268 268 34

16 CPU Time (s) 0.053 0.104 0.772 0.372 0.094
Res. Err. 8.345e-07 8.514e-07 9.782e-07 9.667e-07 9.539e-07
Iter. Count 42 38 245 244 49

32 CPU Time (s) 0.243 0.364 1.729 1.107 0.557
Res. Err. 8.969¢-07 9.367¢-07 9.600e-07 9.878e-07 8.624¢-07
Tter. Count 44 39 231 231 82

48 CPU Time (s) 0.584 0.808 2.900 1.795 1.310
Res. Err. 8.230e-07 9.204e-07 9.940e-07 9.771e-07 8.920e-07
Iter. Count 45 40 222 222 128

64 CPU Time (s) 1.147 1.101 6.738 3.955 6.312
Res. Err. 7.628e-07 7.895e-07 9.781e-07 9.625e-07 9.766e-07
Iter. Count 46 41 200 199 440

128 CPU Time (s) 4.321 5.710 49.653 30.106 138.168
Res. Err. 7.429¢-07 7.176e-07 9.574e-07 9.870e-07 9.928e-07
Iter. Count 46 41 177 177 835

256 CPU Time (s) 18.428 26.657 225.347 143.796 1118.5
Res. Err. 8.145e-07 7.801e-07 9.778e-07 9.643e-07 9.998e-07
Iter. Count 46 41 153 152 3160

512 CPU Time (s) 140.608 186.084 581.892 355.640 17228.00
Res. Err. 8.371e-07 7.998e-07 9.613e-07 9.838e-07 9.987e-07
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Table 3. Tests from Example 3.3. The first column lists the system sizes in €™. The third column shows iteration count,
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 6 3 131 131 150
16 CPU Time (s) 0.009 0.010 0.468 0.201 0.443
Res. Err. 5.645¢-07 2.396e-07 9.467¢-07 9.374e-07 9.449¢-07
Iter. Count 6 3 226 226 238
32 CPU Time (s) 0.040 0.036 1.938 1.241 1.934
Res. Err. 5.645¢e-07 2.396e-07 9.974e-07 9.955e-07 9.782e-07
Iter. Count 6 3 345 323 347
48 CPU Time (s) 0.080 0.080 5.208 3.519 5.710
Res. Err. 5.645¢-07 2.396e-07 9.934¢-07 9.809¢e-07 9.956e-07
Iter. Count 6 3 437 428 624
64 CPU Time (s) 0.158 0.155 11.377 7.933 15.952
Res. Err. 5.645¢e-07 2.396e-07 9.876e-07 9.973e-07 9.848e-07
Iter. Count 6 3 815 751 912
128 CPU Time (s) 0.887 0.852 121.434 83.248 177.660
Res. Err. 5.645¢-07 2.396e-07 9.942¢-07 9.898e-07 9.914e-07
Iter. Count 6 3 1426 1350 1905
256 CPU Time (s) 3.062 2.553 1091.90 814.111 1906.40
Res. Err. 5.645¢e-07 2.396e-07 9.955e-07 9.950e-07 9.973e-07
Iter. Count 6 3 4712 4421 5233
512 CPU Time (s) 15.015 13.637 11507.4 17269.0 42689.00
Res. Err. 5.645¢-07 2.396e-07 9.9966¢-07 9.994¢-07 9.9989¢-07
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Fig. 1. Comparing f-SCSP with the existing methods in
terms of CPU time from Example 3.1. {-SCSP performs
better than its most counterparts.

but f~-SCSP outperforms SCSP both in number of
iterations and final residual error, taking half the
number of iterations.

Moreover, Figure 7 shows the eigenvalues spread
of the preconditioned matrix vs the actual system
matrix in Examples 3.1 for a system size of 48 x 48
. The real part of an eigenvalue is directly related to
how a system behaves over time. If the real part is
positive, the system grows exponentially, meaning
it becomes unstable over time. If the real part is
negative, the system decays exponentially, meaning

terms of CPU time from Example 3.2. {~SCSP performs
better than its counterparts, and is close to SCSP, if not
matches its performance. f~-SCSP takes a little longer to
converge for larger system sizes.

it settles down to zero. In all preconditioned cases,
we see that the eigenvalues have a real part of
one and that the system has no fast growing or
decaying. Instead, it might oscillate or stay at a
constant amplitude. This doesn’t guarantee that the
matrix is strictly stable, but it demonstrates that the
matrix is not unstable either. The same behaviour
of strong clustering of the spectrum resulting due to
preconditioning canalso be observedin Figures 8 and
9 for Example 3.2 and 3.3, respectively, where the
preconditioned matrix Mg, ,:A evidently has a faster
convergence compared to the original matrix A.
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Fig. 3. Comparing f-SCSP with the existing methods in
terms of CPU time from Example 3.3. f-SCSP performs
better than its counterparts, and performs equally well as
SCSP, matching its performance.
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Fig. 4. The convergence behavior of f-SCSP vs its
counterparts. (a) show tests from Example 3.1 with
vector space €32 and (b) shows €236, Clearly, the
convergence in f~-SCSP dominates others with a margin.
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Fig. 5. The convergence behavior of f-SCSP vs its
counterparts. (a) test results from Example 3.2 with
vector space €32 and (b) shows results with vector space
C?56_ £.SCSP dominates others in convergence with a
margin. (a) show the dominance of f-SCSP clearly;
whereas (b) shows convergence line of f-SCSP close to
SCSP; however, f-SCSP convergence in fewer iterations
and with lower residual error.
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Fig. 6. The convergence behavior of f-SCSP vs its
counterparts. (a) test results from Example 3.3 with
vector space €3 and (b) shows results with vector space
C?56_ f-SCSP dominates others in convergence with a
margin. (a) show the dominance of f-SCSP clearly;
however, (b) shows almost overlapping lines for f-SCSP
and SCSP; but f-SCSP convergence in half the number
of iterations required by SCSP and with lower residual
error.



310 Wen et al

8 T
7 (@)
ol
sk
=
E 4
al
A
1}
o
0 10 20 30 40 50 60 70 80
Re(A)
1
0.8[ (b)
06
¥
0.4 1
1
0.2 1
2 1
E i
-0.2
-0.4
-0.6
-0.8
-1
-1 -0.5 0 0.5 1 15 2
Re(A)

Fig. 7. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix Mgy A (b), from the
system matrix in Example 3.1. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.
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Fig. 8. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix M;,}A (b), from the
system matrix in Example 3.2. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.
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Fig. 9. The eigenvalues of the matrices A compared
(a), and the preconditioned matrix M, ;:A (b), from the
system matrix in Example 3.3. The eigenvalues spread in
preconditioned system matrix (b) shows the eigenvalues
clustered much closer compared to the original matrices
(a). Note that the axes ranges are not consistent.

4. CONCLUSIONS

In this paper, we have presented a flexible-scalar
splitting iterative methods based on the SCSP
method for effectively solving a broad category
of complex symmetric linear systems. Special
attention is given to the structure and properties
of the equivalent systems (a —i)Ax = (a —i)b
particularly in cases where the parameters « is
chosen to preserve the symmetry and improve the
conditioning of the original system. Theoretical
analyses have been conducted to demonstrate
that the proposed method is convergent under
reasonable and practically relevant assumptions.
Moreover, explicit expressions linking the optimal
parameters « to the spectral radius of the associated
iteration matrix have been established, offering a
rigorous theoretical basis for parameter tuning and
enhanced convergence rates.

To evaluate the practical efficacy of the proposed
approaches, extensive numerical experiments were
performed comparing the f~-SCSP method against
four established algorithms from the literature [28].
The findings consistently highlight the proposed
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method’ reliability, robustness, and computational
efficiency. Notably, the f-SCSP method exhibit
equal or superior convergence rates and iteration
counts, thereby confirming their suitability for
tackling complex symmetric linear systems.
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