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Abstract: This research aims to facilitate the early and precise identification of Alzheimer’s disease (AD), which
remains one of the most prevalent neurodegenerative diseases impacting people’s health and quality of life around
the world. Employing machine learning algorithms, this study aims to develop reliable and effective models that
support clinical workflows and streamline processes, thereby reducing the burden on patients and their families and
ultimately enhancing patient-centric diagnostic frameworks. An approach to data cleaning, involving data imputation,
encoding categorical variables, normalization of certain features, and stratified training and testing data splitting with
hyperparameter tuning, was employed. This approach utilized both grid search and stratified k-fold cross-validation.
Traditional models, ensemble techniques, and hybrid models were tested, including Lasso + LightGBM, XGBoost
+ SVM, and blended models such as LightGBM, CatBoost, Logistic Regression, and XGBoost. Lasso + LightGBM
outperformed others in hybrid models. Lasso + LightGBM achieved an accuracy of 0.961240, precision of 0.943231,
recall of 0.947368, and Flscore of 0.945295, Cohen’s Kappa of 0.915284, Hamming Loss of 0.038760, and Jaccard
Index with the value 0f 0.896266. This research contributes to UNSDG 3, “Good Health and Well-being”, by enhancing
data-driven health education and resources, and an efficient diagnostic and management system for Alzheimer’s. It
also promotes healthy aging globally among the population.

Keywords: Predictive Modeling, Biomedical Data Analysis, Feature Engineering, Gradient Boosting, Clinical
Decision Support, Cross-Validation, Diagnostic Accuracy.

1. INTRODUCTION for enhancing the diagnosis of Alzheimer’s disease

by analyzing large and complex medical data.

Alzheimer’s is a behavior and progressive dementia
disorder that impacts behavior, and thinking to a
major extent and memory. It is the most common
form of dementia, which induces tremendous
loss of cognitive ability as people grow older [1].
Diagnosing Alzheimer disease is challenging as
it can resemble the aging process or other brain-
related diseases. In modern times, diagnosis is
made through cognitive tests, brain scans, as well
as clinical examinations, which are subjective and
time-consuming [2, 3]. It does not have a single
conclusive test, which is why detecting it early is
a challenge, as it is crucial to the treatment and
management of the condition. Following advances
in machine learning (ML), a potent tool has emerged

Patterns in the patient data have been drawn using
traditional statistical methods and simple ML
algorithms like the Naive Bayes and K-Nearest
Neighbor (KNN), and Support Vector Machine
(SVM). These methods produce fast results;
however, as with high-dimensional data, such as
brain scans and genetic data, the methods are not
particularly effective, which restricts their accuracy
[4]. Ensembles and deep learning are sophisticated
machine learning methods that help to mitigate
these challenges. Cloud random Forests and
gradient boosting are ensemble models that involve
using a combination of models to improve the
accuracy of predictions [5-7]. Deep learning-based
models, such as Convolutional Neural Networks
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(CNNs), are indeed powerful tools that enable the
processing of medical images and the detection of
subtle changes in medical imaging (e.g., MRI, PET)
associated with Alzheimer’s disease. It is possible to
improve patient outcomes by enhancing diagnosis
accuracy and reducing the diagnosis period, thereby
decreasing the risks of human error and leading to
a better situation for clients. By providing better,
more accurate, and timely diagnostics, researchers
will be able to improve both treatment strategies
and disease prevention [8, 9].

Current techniques of Alzheimer’s disease
(AD) diagnosis predominantly focus on genetic
factors that involve machine learning and deep
learning models, particularly by analyzing gene
expression data for early detection of the disease.
Studies have shown that deep learning (DL) models,
including DGS-TabNet, outperform traditional ML
algorithms by selecting more precise and efficient
meaningful genes, obtaining superior classification
performance (up to 93.8% accuracy and 98.53%
Area under Curve (AUC) in binary classification
tasks). Moreover, some key genes may also have
biological significance by revealing their roles in
other diseases, which could partly confirm that
the use of network-based analyses in conjunction
with traditional methods is valuable for identifying
genetic markers related to AD [10]. Alzheimer’s
disease prediction has been significantly enhanced
by recent machine learning algorithms, particularly
those utilizing ensemble models (e.g., LightGBM
and Random Forest), which can achieve accuracies
exceeding 96.35% on several databases [11]. The
use of Shapley Additive Explanation (SHAP) and
Local Interpretable Model-agnostic Explanation
(LIME) enhances artificial intelligence (Al)
explainability, and as a result, the model’s
transparency leads to higher clinician trust in it.
Compared to existing methods that are restricted by
the number of datasets, data type, or interpretability,
this method has improved efficiency and usability in
AD diagnosis [12]. Mahamud et al. [13] developed
a framework that uses data on handwriting to
detect Alzheimer’s disease, which involves a two-
phase forward-backward selection of features via
XGBoost. This strategy limits the workflow to a
minimal set of tasks to increase interpretability to
achieve 91.37% accuracy. The robust performance
by wusing the leave-one-out cross-validation
indicates that the sample size was adequate and
transforms towards more friendly AD diagnosis.

The present study also provides autography as a
more reliable and straightforward strategy for early
detection of AD.

The proposed research problem in the present
study is the Computer-Aided Diagnosis (CAD)
of Alzheimer’s disease, which is addressed by
designing and testing hybrid supervised machine
learning models that combine adaptive feature
selection, blended probability fusion, and gradient
boosting. Responsesto existingresearch have proven
encouraging with the use of individual classifiers
and the simple ensemble technique; however, they
often fail to address high-dimensional, imbalanced,
and heterogeneous clinical data, which ultimately
results in poor generalizability and reduced clinical
interpretability. To address these weaknesses,
this work generalizes gradient boosting in a
meta-modeling system, which has enhanced the
robustness, discrimination, and interpretability of
both linear and nonlinear learners.

The dataset used in the present study is the
result of less controlled environments, specifically
community-based and non-specialist clinical
environments, where the data may be noisier,
less standardized, and even completely missing,
compared to strictly controlled research studies.
This feature drove the adoption of hybrid designs
that can tolerate uncertainty and variability while
preserving the performance of diagnosis. In this
connection, the objectives of this study will be the
following:

* To build and test a set of hybrid machine
learning models to classify Alzheimer’s disease,
which incorporate feature selection (i.e., Lasso)
with effective gradient-boosting algorithms (i.e.,
LightGBM, XGBoost, CatBoost).

* To -evaluate the capabilities of such
hybridization in terms of predictive reliability and
robustness, in comparison with standalone methods
and conventional ensemble methods reported in
recent literature.

» Toensure that the final models can be interpreted
clinically, where interpretability is measured by the
sparsity of the chosen features and the transparency
of the linear elements in the hybrid structures.

The present study focuses on integrating and
benchmark existing strategies to address the issue
in the Alzheimer’s CAD system. These issues
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include data heterogeneity, small sample size and
transparency of the model. Rather than proposing
the new model, the approach in the present study
aims to increase the effectiveness of current models,
by developing the ML models that are clinically
viable and applicable in practice.

2. METHODOLOGY
2.1. Dataset and Preprocessing

The Alzheimer’s disease dataset, which was
submitted to Kaggle by Rabie El Kharoua in
2024 and is released under the Attribution 4.0
International (CC BY 4.0) license (DOI: 10.34740/
KAGGLE/DSV/8668279), is utilized in this
research. 35 wvariables, including demographic,
lifestyle, medical history, cognitive evaluation,
symptoms, and diagnostic information pertaining
to Alzheimer’s disease, are included in the dataset,
which includes 2,149 patient records (IDs 4751-
6900). Because it is a binary variable that indicates
whether Alzheimer’s disease is present (1) or not
(0), the diagnosis column is the target variable.

2.1.1. Handling missing values

Missing values in the dataset can compromise
the reliability of model predictions. Therefore, all
missing data are imputed using the mode (i.e., the
most frequent value) for each column [14]. This
approach is mathematically expressed as:

G = mod(qi1 Gi2: i3y e vee e = Qim) M

Where Gi denotes the imputed value for feature i,
while n represents samples. This method ensures
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the categorical and numerical integrity of the
dataset, preserving both the sample size and
variance structure.

2.1.2. Categorical encoding

To transform categorical variables into a numerical
format, Label Encoding is applied to all features
except the target column [15]. Each category is
mapped to a unique integer, enabling the models to
process categorical features mathematically:

Encoded(x) = i,wherex € Categories,i EN  (2)
2.1.3. Normalization

For all continuous features, normalization using the
Standard Scalar is performed, transforming the data
to have a zero mean and unit variance [16].

z="" &)

a
where o is the standard deviation, p is the mean, and
x is the initial value for each feature. To guarantee
that feature-scaling-sensitive models (like SVM
and KNN) operate at their best, this step is essential.

2.1.4. Feature importance

The features of the Alzheimer’s disease dataset
have been ranked based on the scores of feature
importance from the model using Random Forests,
as illustrated in Figure 1. Random Forest has been
used because the dataset is not very large, and it
is capable of handling a large number of features
without any problem. Functional Assessment
and ADL (Activities of Daily Living) were the
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Fig. 1. Top 10 feature importance for Alzheimer’s classification.
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most significant factors. Therefore, they are the
most important in predicting whether a case is
Alzheimer’s disease or non-Alzheimer’s disease.

The other characteristics, such as the MMSE
(Mini-Mental State Examination) and Memory
Complaints, also play a significant role, showing
that they are important in the clinical assessment
of cognitive abilities. Conversely, the importance
of features such as Cholesterol/Triglycerides,
Sleep Quality, and Diet Quality is lower, which is
a sign of weakness in these variable predictors in
the dataset. This distribution is logical, given that
functional and cognitive assessments are primary
constituents for diagnosing Alzheimer’s disease,
thereby confirming the dataset’s primary clinical
relevance.

2.2. Data Splitting

A stratified train-test split is utilized to maintain
class distribution in both sets. 70% of the data is
allocated for training (Xtrain,ytrainX {train},
y_{train}Xtrain,ytrain), and 30% for testing
(Xtest,ytestX {test},y {test}Xtest,ytest), ensuring
that performance metrics generalize to unseen data.

(Xtraim Yn'ain)r (Xtestr Ytest) = Sh'aﬁfiEdSP]it(X'Yn testscore = 3-0) (4)

2.3. Model Training and Hyperparameter
Tuning

A variety of supervised learning models are
compared, with a particular focus on hybrid models
developed by combining model outputs or feature
selection pipelines. We performed hyperparameter
optimization using GridSearchCV with stratified
k-fold cross-validation (k = 5) to optimize precision
and recall. We aimed to optimize the Fl-score as
the basic criterion for the model selection. In this
process, stratified fold cross-validation was used to
preserve the properties of class, decreasing the risk
of overfitting. Moreover, this strategy ensured that
hyperparameter estimation remains robust.

2.4. Used Models

We trained models using grid search with traditional
classifiers, including Random Forest, Support
Vector Machine (SVM), K-Nearest Neighbors
(KNN), Logistic Regression, and boosting and
bagging techniques (XGBoost, LightGBM,

CatBoost, AdaBoost, and Bagging Classifier).
These may be used as standalone benchmarks or
in conjunction with hybrid approaches. The model
parameters are listed in Table 1.

2.4.1. K-nearest neighbors (KNN)

KNN is a non-parametric, instance-based algorithm
where classification is based on the majority vote
among the k closest training samples in the feature
space [17]. The value of k is selected via grid
search. The distance metric, typically Euclidean, is
calculated as:

d(xix;) = \/Zf: (i — xj)? (%)

The size of the data affects this approach;
hence, the previously mentioned normalization
step is required. The curse of dimensionality
can cause KNN’s performance to deteriorate in
high-dimensional environments, yet it is still a
useful baseline for tabular datasets with modest
complexity [18].

2.4.2. AdaBoost

Adaptive Boosting, also known as AdaBoost,
is a technique that builds a powerful classifier
by repeatedly training weak learners, typically
decision stumps. However, each new learner is
modeled after its predecessors, focusing on their
mistakes [19]. The last model is the weighted sum
of such learners:

H(x) = sign (Z?: 1ache (x)) (6)

Where a, is the weight assigned to weak classifier
h(x). AdaBoost is especially robust to overfitting in
many practical cases, but can be sensitive to noisy
data and outliers.

2.4.3. Bagging (bootstrap aggregating)

Bagging trains multiple base estimators on different
bootstrap samples of the dataset and averages
their predictions to reduce variance. For binary
classification:

¥y = majority vote(hy (x), hy(x), ..., hy(x)) (7)

This strategy makes the models more stable
especially, when wusing high variance base
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Model

Hyperparameter Name

Hyperparameter Values

RandomForestClassifier

SVM (Support Vector
Machine)

KNN (K-Nearest Neighbors)

n_estimators, max_depth, min_samples_split,
min_samples_leaf, bootstrap

C, kernel, gamma, degree, coef0, tol

n_neighbors, weights, algorithm, leaf size, p

LogisticRegression C, penalty, solver, max_iter, tol

XGBoost n_estimators, learning rate, max_depth,
subsample, colsample bytree, gamma

LightGBM n_estimators, learning rate, max_depth,
num_leaves, min_child samples, subsample

CatBoost iterations, learning_rate, depth, 12_leaf reg,
subsample, colsample bylevel

AdaBoost n_estimators, learning_rate, algorithm

Bagging n_estimators, max_samples, max_features,
bootstrap, n_jobs

StackingClassifier estimators, final _estimator, cv

RF + Logistic Regression
(Stacked)

XGBoost + SVM (Stacked)

Lasso + LightGBM (Hybrid)

RF-FeatureSelection + LR

(Hybrid)

Blended Probabilities (LGBM

+ CatBoost + XGB) + LR

rf n_estimators, rf max depth, rf min_
samples_split, rf min samples leaf, Ir C,
Ir penalty, Ir _solver

xgb n estimators, xgb__learning_rate,
xgb max depth, svm C, svm__ kernel,
svm__ gamma

lasso__alpha, Igbm n_estimators, Ilgbm
learning_rate, lgbm__max_depth, lgbm_
num_leaves, Igbm_min_child samples

rf n_estimators, rf max_ depth, rf min_
samples_split, rf min samples leaf, Ir C,
Ir penalty, Ir solver

Igbm n estimators, Igbm_learning rate,

catboost _iterations, catboost learning rate,
xgb n estimators, Ir  C

100, 10, 2, 1, True
1, rbf, scale, 3, 0.0, 1e-3

5, uniform, auto, 30, 2
1,12, Ibfgs, 100, le-3
100, 0.1, 6, 0.8, 0.8, 0.1

100, 0.1, 6, 31, 20, 0.8
100, 0.1, 6,3, 0.8, 0.8

100, 1.0, SAMME.R
100, 1.0, 1.0, True, -1

RandomForestClassifier,
XGBClassifier,
LogisticRegression, 5

100, 10, 2, 1, 1, 12, Ibfgs

100, 0.1, 6, 1, rbf, scale

0.1, 100, 0.1, 6, 31, 20

100, 10, 2, 1, 1, 12, Ibfgs

100, 0.1, 100, 0.1, 100, 1

This rigorous methodology underpins both the fairness and scientific validity of model comparison, ensuring that
reported results are robust, replicable, and meaningful for biomedical decision-making.

learners like decision trees. Hyperparameters (e.g.
estimators) are optimized with the help of cross-
validation [20].

2.4.4. Logistic regression

Standard Logistic Regression is used as a core
linear baseline [21]. It estimates the probability of
the binary outcome using the logistic function:

1
Py = 11x) = 1+ exp(— (B + BTX)) )

When the coefficients of f are estimated using the

maximum likelihood method. C is a parameter that
is regularized to control the model’s complexity.
Despite being linear, Logistic Regression is likely
to compete with biomedical data and provide
understandable coefficients.

It is not new to use some of the models
employed in the present study; however, when
applied to a comparatively strict and data-driven
technique for Alzheimer’s disease, which has high
dimensionality and noise, they are instructive in
science. Not merely accumulating, but this choice
supposes the potential of an orderly examination
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of model action and hybrid synergy, by which
empirically information on what architectures will
be evident in most clinically diverse situations.
This is the gap, which is negatively addressed in
the literature.

2.5. Hybrid Model Architectures

The study constructs and evaluates five advanced
hybrid models, each leveraging the strengths of its
constituent algorithms to address the nonlinearity,
feature interaction, and potential collinearity within
the dataset.

2.5.1. Hybrid 1: Random forest probabilities as
features for logistic regression (RF + LR)

First, a Random Forest classifier is trained on the
original feature set, outputting class probabilities
for each sample:

1

Pre(y = 1]x) = Y70 he(x) )

Ntrees

Where h (x) is the prediction probability from tree
t. The predicted probability Pgr is then appended as
a new feature to both the training and test datasets:

X' = [X, Pgg] (10)

The hybrid RF+LR model follows a two-stage

stacking formulation. Consider frr(X) is the
random forest probability estimator then:

far =7 X1 he () (11)

We produce out of fold (OOF) predictions by using:

n —k
Prri = frp " (x1) (12)
The meta feature matrix becomes:
XRF = [X, Prr] (13)

Now the logistic regression function for the decision
is given by:

firXFF)=0(Bo +BTX +vPrr)  (14)
¥ represent the weight assigned to RF-derived
probability, so the final hybrid prediction is
computed using:

¥ = H{frr(X*F) > 0.5} (15)

A Logistic Regression model is subsequently
trained on X', learning a linear boundary in
the enriched feature space. This hybridization
combinesthenonlinear feature extraction capability
of Random Forests with the interpretability and
regularization strength of Logistic Regression.
The hybrid model can potentially address
nonlinearity and feature interactions missed by
Logistic Regression alone. However, there is a
risk of overfitting if the new probability feature
is highly correlated with the target, particularly in
small or unbalanced datasets. In this study, cross-
validation and the use of the test set mitigate such
risks [22].

2.5.2. Hybrid 2: XGBoost probabilities as features
for SVM (XGBoost + SVM)

An XGBoost model, known for its gradient-boosted
tree structure and robustness to feature collinearity,
is first trained. The predicted probabilities for each
sample, Px¢p, are calculated:
Pxee(y = 1]x) = o(fxea(X))  (16)
Where o denotes the sigmoid function. These
probabilities are appended as an additional feature
to the input matrix, after which a Support Vector
Machine (SVM) classifier is trained and OFF
probabilities PxGs are concatenated with the input
features:
X" = [X, PXGB] (17)
The SVM with a radial bases function
(RBF) kernel learns separating hyperplane in the
augmented space:
form(X'") = sign(wTX) + ypxes + b (18)
The term YPxcBs quantifies the contribution
of initial stage boosted the probabilities to SVM
margin. This hybrid combines XGBoost’s nonlinear
learning capacity with the margin-maximizing
properties of SVMs. This approach can significantly
enhance performance if XGBoost probabilities
encapsulate a high-level structure that is not
easily captured by SVM alone. However, SVMs
are sensitive to irrelevant features, so the benefit

depends on the informativeness of the probability
feature [23].
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2.5.3. Hybrid 3: Lasso feature selection followed
by LightGBM (Lasso + LightGBM)

A Logistic Regression model with L1 regularization
(Lasso) is employed to perform feature s A Logistic
Regression model with L, regularization (Lasso) is
employed to perform feature selection:

ming = (—logL(B) +AXj_, B (19)

Where L(f) is the likelihood, B ;7 are the coefficients,
and A is the regularization parameter. Only features
with nonzero coefficients are retained:

S ={:p=0} (20)
The reduced feature matrix is:

XL(I.SSO — X[,S] (21)
LightGBM is trained on the reduced space:

Y = fream(XH%5°) (22)

This hybrid is a sequential architecture an
optimizing based selector followed by the gradient
boosting. LightGBM, a fast and efficient gradient
boosting implementation, is trained on the selected
features. This hybrid is especially effective in high-
dimensional data, as it removes redundant and
noisy variables before applying a strong tree-based
learner. The risk is that overly aggressive feature
selection can discard weak but informative features,
potentially lowering overall model capacity [24].

2.5.4. Hybrid 4: Top N random forest feature
importance with logistic regression
(RF-Feature Selection + LR)

Random Forests naturally provide feature
importance measures based on mean decrease
in impurity (MDI) or mean decrease in accuracy
(MDA). Random forest computed the importance
values by:

I = 2?:12565'”3{(5) (23)

The top N features with the highest importance
scores are selected:

Sy = argsort(Importancegp)[:N] (24)

Logistic regression is trained on:
XRF = X[, 5] (25)
The model is then given by:

fir(XBF) = o (Bo + BTXFF) (26)

This hybrid is featuring selection driven linear model
contrasting with fully nonlinear boosters. Logistic
Regression is then trained on this reduced feature
set. Selecting the most predictive variables reduces
dimensionality and may improve generalization,
especially for linearly separable relationships.
However, feature importance scores can be unstable
in the presence of multicollinearity or redundant
predictors, and choosing N is somewhat heuristic
[25].

2.5.5. Hybrid 5: Blended probabilities of multiple
boosting models with logistic regression
(Blended Probabilities + LR)

LightGBM, CatBoost, and XGBoost models are
independently trained on the original dataset. For
each sample, the predicted probabilities from each
model are extracted:

Preeu(y = 1]X) 27)
Pear(y = 1[X) (28)
Pxee(y = 11X) (29)

These probabilities are concatenated with the
original features to create a new, augmented feature
space:

X"" = [X, Prggm Pcar Pxcs] 30)

Let the blended meta feature vector be:

PrBumi
z; = | Peari (31)
Pxgp,i
The final model is:

fir(X") = a(B"X + ayPrgpy + azPear + azPyge +b) (32)

This is the probabilistic blending architecture that
combines diverse gradient boosting models.
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A Logistic Regression model is trained
on X", learning how to combine the output of
diverse boosting models optimally. This method
synthesizes predictions from heterogeneous
boosting frameworks, enabling the final model to
exploit differences in model behavior [26]. While
potentially powerful, this approach increases the
risk of overfitting if the boosting models themselves
are highly correlated or overfit the training data.

The benefits of these hybrid models extend
beyond the advantages of conventional classifiers
(such as Random Forest and Logistic Regression)
to more complex algorithms, including feature
selection with Lasso, boosting on XGBoost,
LightGBM, and CatBoost, as well as ensemble
learning methods like Stacking and Blended
Probabilities. The hybrid models that use the
probabilities generated by one model as input for
the other model are helpful for the consideration
of complexities like intricate feature interactions
and nonlinearity that providing a novel approach
to increase the model performance. A stronger
decision is achieved using combined models,
such as RF + LR, XGBoost + SVM, and Lasso +
LightGBM, which present a novel perspective for
processing high-dimensional imbalanced data.

2.6. Evaluation Metrics

The performance and robustness of these
classification models are evaluated using specific
metrics. These provide complementary information,
accurately reflecting the overall correctness of the
model, while precision measures how many of the
predicted positives are truly positive. Recall shows
how many actual positives are identified correctly
and the Fl-score balances the tradeoff between
false positive and false negative. Cohen’s Kappa,
Hamming loss, and Jaccard Index capture the
nuances of agreement and multi-label performance.
The use of these measures enables a more advanced
and less biased assessment of predictive models in
various situations under different data distributions
[27].

TP + TN

- 33
ACCUTaY =rp « FP + TN + FN (33)

.. TP
precision = _———— (34)

TP

recall = (35)

TP + FN

Precision X Recall

F1 —score =2 X precision + recall 30
By—P,
Cohen's Kappa = —lo_P: 37)
. 1 -
Hamming Loss = EE?;I 1y = ¥1) (38)
__|anB|
Jaccard Index = AUB| (39)

This rigorous methodology underpins both the
fairness and scientific validity of model comparison,
ensuring that reported results are robust, replicable,
and meaningful for biomedical decision-making.

3. RESULTS AND DISCUSSION

The cross-evaluation of model benchmarks reveals
reasonable differences in various measures,
indicating the impact of different machine learning
and hybrid methods for classifying Alzheimer’s
disease. Table 2 presents the evaluation metrics
values for all models. The best accuracy is reported
for , CatBoost, and Lasso + LightGBM, both
scoring 0.961240, closely followed by XGBoost
0.961041, LightGBM and stacking at 0.958140
and Blended Probabilities (LGBM + CatBoost
+ XGB) + LR at 0.956589. This identifies the
better performance of gradient boosting-based and
ensemble hybrid methods for classifying the disease
status. On the other hand, the KNN (0.737984)
and RF-FeatureSelection + LR (0.846512) models
exhibit relatively lower accuracy, which stems from
high dimensionality and the sensitivity to feature
selection, respectively. The accuracy achieved in
this research is slightly higher than previous values
of 0.9635 reported by Mahamud et a/. [13] and
0.9380 recorded by Jin ef al. [10].

Table 2 shows that the highest precision is
recorded for CatBoost (0.951111) and XGBoost
+ SVM (0.950893), which are higher than the
previous values of 0.95 stated by Mahamud et al.
[13] and 0.9396 (with proposed model), reported
by Jin et al. [10]. Both are effective in minimizing
false positive rates and thereby curtailing diagnosis
overestimation, which is crucial for less invasive
procedures in clinical practice. Traditional
classifiers, such as SVM (0.774336) and KNN
(0.680982), perform markedly worse and are
often unable to manage the class imbalance and
complexity of features, despite normalization.
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Table 2. Performance metrics (Accuracy, Precision, Recall, F1-Score) for various machine learning models evaluated

in Alzheimer’s disease classification.

Model Accuracy  Precision Recall F1-Score
RandomForest 0.941085 0.943925  0.885965  0.914027
SVM 0.838760 0.774336  0.767544  0.770925
KNN 0.737984  0.680982  0.486842  0.567775
LogisticRegression 0.838760  0.787037  0.745614  0.765766
XGBoost 0.961041 0.941831 0.943468  0.941155
LightGBM 0.958140  0.938865 0.942982  0.940919
CatBoost 0.961240 0.951111  0.938596  0.944812
AdaBoost 0.927132 0.891775  0.903509  0.897603
Bagging 0.947287 0.925439  0.925439  0.925439
Stacking 0.958140 0.942731  0.938596  0.940659
RF + LR 0.945736  0.940639  0.903509  0.921700
XGBoost + SVM 0.959690  0.950893  0.934211  0.942478
Lasso + LightGBM 0.961240  0.943231 0.947368  0.945295
RF-FeatureSelection + LR 0.846512 0.781659  0.785088  0.783370
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.956589 0.942478  0.934211  0.938326
The XGBoostand Lasso+LightGBMachieved  insufficient reliability to validate incomplete

the highest values of recall, that are 0.943468 and
0.947368, respectively, that is higher than the value
of 0.9380, reported by Jin et al. [10]. This aspect
is crucial in clinical practice, where this kind of
performance is needed to minimize the number
of missed cases. Models such as the KNN model
(score = 0.486842) have vast potential for further
improvement, indicating that a simple model is
underfitted in the presence of complex data.

As shown in Table 2, XGBoost (0.941155),
CatBoost (0.944812), and Lasso + LightGBM
(0.945295) achieved the highest Fl-score,
indicating that they can balance the precision-recall
tradeoft better than other models, which is crucially
important for medical diagnosis. The error spread is
small; therefore, we can expect good accuracy from
these algorithms.

Table 3 presents the Cohen’s Kappa values
of hybrid and ensemble approaches, including
XGBoost (0.915284), CatBoost (0.914946), and
Lasso + LightGBM (0.915284), which demonstrate
considerable reliability in model -classification
consistency and performance, as well as reasonable
performance. With Kappa point classification,
the SVM (0.646527) and KNN (0.387154) are
considered too soft, indicating that both have

agreement. The hamming loss value is decreased
with perfect classification and is particularly low
when models XGBoost (0.038760), Catboost
(0.038760) and Lass + LightGBM (0.038760)
outperform the other models. As expected, KNN,
due to its loss, suffers significant losses, which
remain at 0.262016, primarily due to poor recall
and precision, resulting in numerous mismatches.
The three algorithms, XGBoost, CatBoost, and
Lasso + LightGBM, scored the best with scores of
0.896266, 0.895397, and 0.896266, respectively,
indicating that they have better predictive ability
than other models and align more closely with the
predicted true label. Many traditional and hybrid
strategies like KNN (0.39642) and RF-feature
Selection + LR (0.64388) performed below the
chance level as expected due to their lower overall
classification performance.

These results support the reasoning behind
the methodology’s focus on ensembles of hybrid
models, as the integration of feature selection with
probabilistic augmentation and gradient boosting
is expected to improve performance significantly.
The dataset underwent extensive preprocessing,
including the meticulous imputation of missing
values, label encoding, normalization, and
stratified train-test splitting, which preserved class
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Table 3. Cohen’s Kappa, Hamming Loss, and Jaccard Index scores for different machine learning models in

Alzheimer’s disease classification.

Model Cohen Kappa Hamming Loss  Jaccard Index
RandomForest 0.869284 0.058915 0.841667
SVM 0.646527 0.161240 0.627240
KNN 0.387154 0.262016 0.396429
LogisticRegression 0.642971 0.161240 0.620438
XGBoost 0.915284 0.038760 0.896266
LightGBM 0.908506 0.041860 0.888430
CatBoost 0.914946 0.038760 0.895397
AdaBoost 0.841049 0.072868 0.814229
Bagging 0.884671 0.052713 0.861224
Stacking 0.908324 0.041860 0.887967
RF + LR 0.880208 0.054264 0.854772
XGBoost + SVM 0.911455 0.040310 0.891213
Lasso + LightGBM 0.915284 0.038760 0.896266
RF-FeatureSelection + LR 0.664523 0.153488 0.643885
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.904834 0.043411 0.883817

proportions to ensure the data’s integrity while
enhancing model generalizability. Grid search with
stratified cross-validation for class-preserved folds
enabled extensive multi-criteria hyperparameter
optimization, minimizing the risk of overfitting and
further augmenting model performance through
fine-tuned hyperparameter adjustment.

The complicated nonlinear correlations
observed in clinical and demographic data cannot
be fully represented by simpler models such as
KNN and Logistic Regression, in addition to the
more traditional boundary-defining approximations
and closest neighbor assumptions. The successful
use of feature engineering and hyperparameter
tuning has led to the development of clinical
decision support tools for testing, highlighting the
potential of complicated ensemble models for early
Alzheimer’s disease identification.

Figure 2 illustrates the pairwise distributions
and interrelations between the significant predictors
(Functional Assessment, ADL, MMSE, Memory
Complaints, Behavioral Problems, and Sleep
Quality) by diagnosis class. It is also easy to note
clear differences between the Alzheimer and non-
Alzheimer groups of the Functional Assessment,
ADL, and MMSE, which indicates their great
discriminative power. Contrastingly, Memory

Complaints and Behavioral Problems have a
higher overlap, meaning a lower predictive ability
independently. Such visual trends are reflected in
the rankings of feature importance gained with
the help of Random Forest and Lasso selection,
with functional and cognitive measures prevailing.
Feature selection methods like mRMR and mutual
information have also explained their efficiency in
enhancing the prediction of Alzheimer’s disease
with an accuracy of 0.9908 [28].

More importantly, the figure also presents
qualitative data on why the hybrid and ensemble
models (e.g., Lasso + LightGBM) performed well:
these models can learn nonlinear and partially
collinear relationships between features, especially
between cognitive and behavioral variables. Such
curved or overlapping boundaries are not easily
modeled using standard linear classifiers (e.g.,
Logistic Regression), which is why such classifiers
achieve relatively low recall and F1 scores. That
is why a pair-plot is not only justifying feature
selection, but also the models’ success, as it sets up
the data structure visually and demonstrates where
simple models may fail.

3.1. Model Behavior and Error Analysis

Lasso + LightGBM. L1 selection yielded a sparse
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Fig. 2. Pairwise feature relationships by Alzheimer’s diagnosis.

and lower-correlation subsample that reduces noise
and redundancy; LightGBM then learned nonlinear
interactions in this low-dimensional space, which
are consistent with the more evident separations
in the cases of Functional Assessment, ADL, and
MMSE in Figure 2. Blended probabilities + LR.
The base boosters had a high prediction correlation
due to theoretical gains, which constrained the
meta-learner’s ability to be diverse. In a small
sample size, the inclusion of correlated probability
enhanced variance and decreased net benefit;
moreover, variation in probability calibration was
likely a restraining factor for the LR combiner.
The combination of RF with Adaboost achieved
0.9255 accuracy which explained the benefits of
ensemble learning in boosting model performance.
The combination of DT, Adaboost and LR achieved
highest accuracy of 0.9546 which shows the
effectiveness of blending different models [29].

The study relies on a single dataset from
Kaggle that may limit the generalizability of
the model to clinical datasets. The models in the
present study were evaluated only on provided
dataset and external validation on an independent
dataset was not performed. It is difficult to confirm
the robustness and real-world applicability of the
proposed models. Hybrid models such as Lasso +
LightGBM and blended probabilities show strong
performance; these may remain complex and less

interpretable. This can limit their practical use in
clinical settings where model transparency and
interpretability are very important for clinical trust
and decision-making.

RF-FeatureSelection + LR. RF importances
based on impurity can be unstable under collinearity
and biased against specific types of features; in a
top-N heuristic, weak yet informative variables
can be discarded. A linear LR fitted on this subset
underfits the nonlinear structure, shown in Figure
2, which explains the gap between the accuracy
and recall. Practical note: Future variants will (i)
apply permutation/Boruta or stability selection to
features, (ii) impose out-of-fold predictions and
temperature/Platt calibration in blending, and (iii)
take into account Elastic-Net LR or monotone-
constrained boosting to make the thus far observed
structure more like reality.

To evaluate the robustness, consistency
and adaptability of the models, we used many
established = mechanisms.  Robustness  and
generalization were assessed by using the stratified
5-folds cross validation, where models were trained
and validate on multiple class preserving split ad
by using was the out-of-fold (OOF) predictions to
avoid the information leakage in hybrid stacking.
Consistency was verified by using a various set of
metrics like accuracy, precision, recall, Flscore,
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kappa, hamming loss, Jaccard index that showed
stable rankings within the Table 2 and Table 3.
Adaptability was evaluated testing the models on
heterogeneous mix of demographic. Cognitive,
behavioral and clinical features. Lastly, all results
were confirmed on a held 30% unseen test set to
ensure the valid generalization.

3.2. Comparative Discussion

Direct and cross-paper comparisons of point
estimations (e.g., accuracy or F1) are necessarily
constrained since results are highly dependent on
the particular dataset (size, difficulty, feature set,
and class balance) and preprocessing options, as
well as the evaluation protocol. We therefore do not
claim that we are better than previous studies solely
because our point estimates (e.g., accuracy 0.961)
are numerically larger than those obtained with
other datasets and setups (e.g., 0.938). Rather, we
place our findings on a par with ranges reported in
recent literature on classifying ADs using gradient-
boosted and hybrid ensemble classifiers, with
overall similar levels of accuracy and F1 where
tasks and data are similar [10, 12, 13].

Future research must incorporate evaluation
on common publicly available benchmarks (e.g.,
using the same train/test splits with ADNI, OASIS,
or the same Kaggle dataset). It also incorporates
the standardization of preprocessing pipelines to
reduce variability and measurement of uncertainty
(e.g. per-split results and 95% Cls through
bootstrapping) and paired-sample tests (e.g.,
McNemar test to establish accuracy, DeLong test
to establish AUC). Calibration and decision-curve
analyses to supplement the results are indicated
within these limits, we find that hybrid strategies
(e.g., Lasso + LightGBM) can produce state-of-the-
art dataset competitive performance and practical
interpretability in line with the trends of previous
work [10, 12, 13].

4. CONCLUSIONS

The paper compared conventional, ensemble, and
hybrid supervised classifiers in the classification
of Alzheimer’s disease using tabular clinical data.
CatBoost and Lasso + LightGBM (accuracy =
0.96124) were the closest as the strongest point
estimate, and XGBoost was considered the third
closest (accuracy = 0.96104). All with a strong F1

(0.94 - 0.95). Since we did not report any measures
of variance or formal tests of significance, we do not
claim to have been statistically better than the other
models; instead, the models can be viewed as those
that perform best and are statistically equivalent,
given the evidence at hand. On a methodological
level, the results are congruent with the hypothesis
that, with L1-Based selection, features may be
denoised and decorrelated, allowing a gradient-
boosting learner (LightGBM) to represent
nonlinear feature interactions more effectively.
Nevertheless, we have seen that the Lasso +
LightGBM hybrid cannot be readily interpreted:
Lasso produces sparse selections, but the black box
model of the final boosted model remains a black
box. Future studies will (i) quantify the uncertainty
(per-fold results, bootstrap Cls, paired tests such
as McNemar/DelLong) to find out whether small
metric deltas are statistically significant; (ii) provide
explanatory analyses (e.g. SHAP global summaries,
local explanations, partial dependence/ICE, and
calibration curves) to describe how the output
of functional and cognitive measures drives the
predictions; (iii) assess blending/stacking on out-
of-fold meta-features and probability calibration to
increase the diversity among base learners. These
criteria suggest that gradient-boosted and hybrid
studies are dataset-competitive in AD classification
on structured clinical data, and that an additional
investigation into uncertainty and explainability
is necessary to make comparative or clinical
assertions.
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