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Abstract: This research aims to facilitate the early and precise identification of Alzheimer’s disease (AD), which 
remains one of the most prevalent neurodegenerative diseases impacting people’s health and quality of life around 
the world. Employing machine learning algorithms, this study aims to develop reliable and effective models that 
support clinical workflows and streamline processes, thereby reducing the burden on patients and their families and 
ultimately enhancing patient-centric diagnostic frameworks. An approach to data cleaning, involving data imputation, 
encoding categorical variables, normalization of certain features, and stratified training and testing data splitting with 
hyperparameter tuning, was employed. This approach utilized both grid search and stratified k-fold cross-validation. 
Traditional models, ensemble techniques, and hybrid models were tested, including Lasso + LightGBM, XGBoost 
+ SVM, and blended models such as LightGBM, CatBoost, Logistic Regression, and XGBoost. Lasso + LightGBM 
outperformed others in hybrid models. Lasso + LightGBM achieved an accuracy of 0.961240, precision of 0.943231, 
recall of 0.947368, and F1score of 0.945295, Cohen’s Kappa of 0.915284, Hamming Loss of 0.038760, and Jaccard 
Index with the value of 0.896266. This research contributes to UNSDG 3, “Good Health and Well-being”, by enhancing 
data-driven health education and resources, and an efficient diagnostic and management system for Alzheimer’s. It 
also promotes healthy aging globally among the population.

Keywords: Predictive Modeling, Biomedical Data Analysis, Feature Engineering, Gradient Boosting, Clinical 
Decision Support, Cross-Validation, Diagnostic Accuracy.

1.    INTRODUCTION

Alzheimer’s is a behavior and progressive dementia 
disorder that impacts behavior, and thinking to a 
major extent and memory. It is the most common 
form of dementia, which induces tremendous 
loss of cognitive ability as people grow older [1]. 
Diagnosing Alzheimer disease is challenging as 
it can resemble the aging process or other brain-
related diseases. In modern times, diagnosis is 
made through cognitive tests, brain scans, as well 
as clinical examinations, which are subjective and 
time-consuming [2, 3]. It does not have a single 
conclusive test, which is why detecting it early is 
a challenge, as it is crucial to the treatment and 
management of the condition. Following advances 
in machine learning (ML), a potent tool has emerged 

for enhancing the diagnosis of Alzheimer’s disease 
by analyzing large and complex medical data. 
Patterns in the patient data have been drawn using 
traditional statistical methods and simple ML 
algorithms like the Naive Bayes and K-Nearest 
Neighbor (KNN), and Support Vector Machine 
(SVM). These methods produce fast results; 
however, as with high-dimensional data, such as 
brain scans and genetic data, the methods are not 
particularly effective, which restricts their accuracy 
[4]. Ensembles and deep learning are sophisticated 
machine learning methods that help to mitigate 
these challenges. Cloud random Forests and 
gradient boosting are ensemble models that involve 
using a combination of models to improve the 
accuracy of predictions [5-7]. Deep learning-based 
models, such as Convolutional Neural Networks 



(CNNs), are indeed powerful tools that enable the 
processing of medical images and the detection of 
subtle changes in medical imaging (e.g., MRI, PET) 
associated with Alzheimer’s disease. It is possible to 
improve patient outcomes by enhancing diagnosis 
accuracy and reducing the diagnosis period, thereby 
decreasing the risks of human error and leading to 
a better situation for clients. By providing better, 
more accurate, and timely diagnostics, researchers 
will be able to improve both treatment strategies 
and disease prevention [8, 9].

Current techniques of Alzheimer’s disease 
(AD) diagnosis predominantly focus on genetic 
factors that involve machine learning and deep 
learning models, particularly by analyzing gene 
expression data for early detection of the disease. 
Studies have shown that deep learning (DL) models, 
including DGS-TabNet, outperform traditional ML 
algorithms by selecting more precise and efficient 
meaningful genes, obtaining superior classification 
performance (up to 93.8% accuracy and 98.53% 
Area under Curve (AUC) in binary classification 
tasks). Moreover, some key genes may also have 
biological significance by revealing their roles in 
other diseases, which could partly confirm that 
the use of network-based analyses in conjunction 
with traditional methods is valuable for identifying 
genetic markers related to AD [10]. Alzheimer’s 
disease prediction has been significantly enhanced 
by recent machine learning algorithms, particularly 
those utilizing ensemble models (e.g., LightGBM 
and Random Forest), which can achieve accuracies 
exceeding 96.35% on several databases [11]. The 
use of Shapley Additive Explanation (SHAP) and 
Local Interpretable Model-agnostic Explanation 
(LIME) enhances artificial intelligence (AI) 
explainability, and as a result, the model’s 
transparency leads to higher clinician trust in it. 
Compared to existing methods that are restricted by 
the number of datasets, data type, or interpretability, 
this method has improved efficiency and usability in 
AD diagnosis [12]. Mahamud et al. [13] developed 
a framework that uses data on handwriting to 
detect Alzheimer’s disease, which involves a two-
phase forward-backward selection of features via 
XGBoost. This strategy limits the workflow to a 
minimal set of tasks to increase interpretability to 
achieve 91.37% accuracy. The robust performance 
by using the leave-one-out cross-validation 
indicates that the sample size was adequate and 
transforms towards more friendly AD diagnosis. 

The present study also provides autography as a 
more reliable and straightforward strategy for early 
detection of AD. 

The proposed research problem in the present 
study is the Computer-Aided Diagnosis (CAD) 
of Alzheimer’s disease, which is addressed by 
designing and testing hybrid supervised machine 
learning models that combine adaptive feature 
selection, blended probability fusion, and gradient 
boosting. Responses to existing research have proven 
encouraging with the use of individual classifiers 
and the simple ensemble technique; however, they 
often fail to address high-dimensional, imbalanced, 
and heterogeneous clinical data, which ultimately 
results in poor generalizability and reduced clinical 
interpretability. To address these weaknesses, 
this work generalizes gradient boosting in a 
meta-modeling system, which has enhanced the 
robustness, discrimination, and interpretability of 
both linear and nonlinear learners.

The dataset used in the present study is the 
result of less controlled environments, specifically 
community-based and non-specialist clinical 
environments, where the data may be noisier, 
less standardized, and even completely missing, 
compared to strictly controlled research studies. 
This feature drove the adoption of hybrid designs 
that can tolerate uncertainty and variability while 
preserving the performance of diagnosis. In this 
connection, the objectives of this study will be the 
following:

•	 To build and test a set of hybrid machine 
learning models to classify Alzheimer’s disease, 
which incorporate feature selection (i.e., Lasso) 
with effective gradient-boosting algorithms (i.e., 
LightGBM, XGBoost, CatBoost).
•	 To evaluate the capabilities of such 
hybridization in terms of predictive reliability and 
robustness, in comparison with standalone methods 
and conventional ensemble methods reported in 
recent literature.
•	 To ensure that the final models can be interpreted 
clinically, where interpretability is measured by the 
sparsity of the chosen features and the transparency 
of the linear elements in the hybrid structures.

The present study focuses on integrating and 
benchmark existing strategies to address the issue 
in the Alzheimer’s CAD system. These issues 
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include data heterogeneity, small sample size and 
transparency of the model. Rather than proposing 
the new model, the approach in the present study 
aims to increase the effectiveness of current models, 
by developing the ML models that are clinically 
viable and applicable in practice. 

2.    METHODOLOGY

2.1. Dataset and Preprocessing

The Alzheimer’s disease dataset, which was 
submitted to Kaggle by Rabie El Kharoua in 
2024 and is released under the Attribution 4.0 
International (CC BY 4.0) license (DOI: 10.34740/
KAGGLE/DSV/8668279), is utilized in this 
research. 35 variables, including demographic, 
lifestyle, medical history, cognitive evaluation, 
symptoms, and diagnostic information pertaining 
to Alzheimer’s disease, are included in the dataset, 
which includes 2,149 patient records (IDs 4751-
6900). Because it is a binary variable that indicates 
whether Alzheimer’s disease is present (1) or not 
(0), the diagnosis column is the target variable.

2.1.1. Handling missing values

Missing values in the dataset can compromise 
the reliability of model predictions. Therefore, all 
missing data are imputed using the mode (i.e., the 
most frequent value) for each column [14]. This 
approach is mathematically expressed as:

	 (1)

Where  denotes the imputed value for feature i, 
while n represents samples. This method ensures 

the categorical and numerical integrity of the 
dataset, preserving both the sample size and 
variance structure.

2.1.2. Categorical encoding

To transform categorical variables into a numerical 
format, Label Encoding is applied to all features 
except the target column [15]. Each category is 
mapped to a unique integer, enabling the models to 
process categorical features mathematically:

      (2)

2.1.3. Normalization

For all continuous features, normalization using the 
Standard Scalar is performed, transforming the data 
to have a zero mean and unit variance [16].

                               (3)

where σ is the standard deviation, μ is the mean, and 
x is the initial value for each feature. To guarantee 
that feature-scaling-sensitive models (like SVM 
and KNN) operate at their best, this step is essential.

2.1.4. Feature importance 

The features of the Alzheimer’s disease dataset 
have been ranked based on the scores of feature 
importance from the model using Random Forests, 
as illustrated in Figure 1. Random Forest has been 
used because the dataset is not very large, and it 
is capable of handling a large number of features 
without any problem. Functional Assessment 
and ADL (Activities of Daily Living) were the 

Fig. 1. Top 10 feature importance for Alzheimer’s classification.
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most significant factors. Therefore, they are the 
most important in predicting whether a case is 
Alzheimer’s disease or non-Alzheimer’s disease. 

The other characteristics, such as the MMSE 
(Mini-Mental State Examination) and Memory 
Complaints, also play a significant role, showing 
that they are important in the clinical assessment 
of cognitive abilities. Conversely, the importance 
of features such as Cholesterol/Triglycerides, 
Sleep Quality, and Diet Quality is lower, which is 
a sign of weakness in these variable predictors in 
the dataset. This distribution is logical, given that 
functional and cognitive assessments are primary 
constituents for diagnosing Alzheimer’s disease, 
thereby confirming the dataset’s primary clinical 
relevance.

2.2. Data Splitting

A stratified train-test split is utilized to maintain 
class distribution in both sets. 70% of the data is 
allocated for training (Xtrain,ytrainX_{train}, 
y_{train}Xtrain​,ytrain​), and 30% for testing 
(Xtest,ytestX_{test}, y_{test}Xtest​,ytest​), ensuring 
that performance metrics generalize to unseen data.

            
   (4)

2.3. Model Training and Hyperparameter 
       Tuning

A variety of supervised learning models are 
compared, with a particular focus on hybrid models 
developed by combining model outputs or feature 
selection pipelines. We performed hyperparameter 
optimization using GridSearchCV with stratified 
k-fold cross-validation (k = 5) to optimize precision 
and recall. We aimed to optimize the F1-score as 
the basic criterion for the model selection. In this 
process, stratified fold cross-validation was used to 
preserve the properties of class, decreasing the risk 
of overfitting. Moreover, this strategy ensured that 
hyperparameter estimation remains robust. 

2.4. Used Models 

We trained models using grid search with traditional 
classifiers, including Random Forest, Support 
Vector Machine (SVM), K-Nearest Neighbors 
(KNN), Logistic Regression, and boosting and 
bagging techniques (XGBoost, LightGBM, 

CatBoost, AdaBoost, and Bagging Classifier). 
These may be used as standalone benchmarks or 
in conjunction with hybrid approaches. The model 
parameters are listed in Table 1.

2.4.1. K-nearest neighbors (KNN)

KNN is a non-parametric, instance-based algorithm 
where classification is based on the majority vote 
among the k closest training samples in the feature 
space [17]. The value of k is selected via grid 
search. The distance metric, typically Euclidean, is 
calculated as:

	 (5)

The size of the data affects this approach; 
hence, the previously mentioned normalization 
step is required. The curse of dimensionality 
can cause KNN’s performance to deteriorate in 
high-dimensional environments, yet it is still a 
useful baseline for tabular datasets with modest 
complexity [18].

2.4.2. AdaBoost

Adaptive Boosting, also known as AdaBoost, 
is a technique that builds a powerful classifier 
by repeatedly training weak learners, typically 
decision stumps. However, each new learner is 
modeled after its predecessors, focusing on their 
mistakes [19]. The last model is the weighted sum 
of such learners:

		  (6)

Where αt​ is the weight assigned to weak classifier 
ht(x). AdaBoost is especially robust to overfitting in 
many practical cases, but can be sensitive to noisy 
data and outliers.

2.4.3. Bagging (bootstrap aggregating)

Bagging trains multiple base estimators on different 
bootstrap samples of the dataset and averages 
their predictions to reduce variance. For binary 
classification:

   (7)

This strategy makes the models more stable 
especially, when using high variance base 
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learners like decision trees. Hyperparameters (e.g. 
estimators) are optimized with the help of cross-
validation [20].

2.4.4. Logistic regression

Standard Logistic Regression is used as a core 
linear baseline [21]. It estimates the probability of 
the binary outcome using the logistic function:

	 (8)

When the coefficients of  are estimated using the 

maximum likelihood method. C is a parameter that 
is regularized to control the model’s complexity. 
Despite being linear, Logistic Regression is likely 
to compete with biomedical data and provide 
understandable coefficients.

It is not new to use some of the models 
employed in the present study; however, when 
applied to a comparatively strict and data-driven 
technique for Alzheimer’s disease, which has high 
dimensionality and noise, they are instructive in 
science. Not merely accumulating, but this choice 
supposes the potential of an orderly examination 

Model Hyperparameter Name Hyperparameter Values
RandomForestClassifier n_estimators, max_depth, min_samples_split, 

min_samples_leaf, bootstrap
100, 10, 2, 1, True

SVM (Support Vector 
Machine)

C, kernel, gamma, degree, coef0, tol 1, rbf, scale, 3, 0.0, 1e-3

KNN (K-Nearest Neighbors) n_neighbors, weights, algorithm, leaf_size, p 5, uniform, auto, 30, 2
LogisticRegression C, penalty, solver, max_iter, tol 1, l2, lbfgs, 100, 1e-3
XGBoost n_estimators, learning_rate, max_depth, 

subsample, colsample_bytree, gamma
100, 0.1, 6, 0.8, 0.8, 0.1

LightGBM n_estimators, learning_rate, max_depth, 
num_leaves, min_child_samples, subsample

100, 0.1, 6, 31, 20, 0.8

CatBoost iterations, learning_rate, depth, l2_leaf_reg, 
subsample, colsample_bylevel

100, 0.1, 6, 3, 0.8, 0.8

AdaBoost n_estimators, learning_rate, algorithm 100, 1.0, SAMME.R
Bagging n_estimators, max_samples, max_features, 

bootstrap, n_jobs
100, 1.0, 1.0, True, -1

StackingClassifier estimators, final_estimator, cv RandomForestClassifier, 
XGBClassifier, 
LogisticRegression, 5

RF + Logistic Regression 
(Stacked)

rf__n_estimators, rf__max_depth, rf__min_
samples_split, rf__min_samples_leaf, lr__C, 
lr__penalty, lr__solver

100, 10, 2, 1, 1, l2, lbfgs

XGBoost + SVM (Stacked) xgb__n_estimators, xgb__learning_rate, 
xgb__max_depth, svm__C, svm__kernel, 
svm__gamma

100, 0.1, 6, 1, rbf, scale

Lasso + LightGBM (Hybrid) lasso__alpha, lgbm__n_estimators, lgbm__
learning_rate, lgbm__max_depth, lgbm__
num_leaves, lgbm__min_child_samples

0.1, 100, 0.1, 6, 31, 20

RF-FeatureSelection + LR 
(Hybrid)

rf__n_estimators, rf__max_depth, rf__min_
samples_split, rf__min_samples_leaf, lr__C, 
lr__penalty, lr__solver

100, 10, 2, 1, 1, l2, lbfgs

Blended Probabilities (LGBM 
+ CatBoost + XGB) + LR

lgbm__n_estimators, lgbm__learning_rate, 
catboost__iterations, catboost__learning_rate, 
xgb__n_estimators, lr__C

100, 0.1, 100, 0.1, 100, 1

Table 1. Hyperparameters tuned and their grid search values for each machine learning model.

This rigorous methodology underpins both the fairness and scientific validity of model comparison, ensuring that 
reported results are robust, replicable, and meaningful for biomedical decision-making.
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of model action and hybrid synergy, by which 
empirically information on what architectures will 
be evident in most clinically diverse situations. 
This is the gap, which is negatively addressed in 
the literature.

2.5. Hybrid Model Architectures

The study constructs and evaluates five advanced 
hybrid models, each leveraging the strengths of its 
constituent algorithms to address the nonlinearity, 
feature interaction, and potential collinearity within 
the dataset.

2.5.1. Hybrid 1: Random forest probabilities as 
          features for logistic regression (RF + LR)

First, a Random Forest classifier is trained on the 
original feature set, outputting class probabilities 
for each sample:

	 (9)

Where ht(x) is the prediction probability from tree 
t. The predicted probability ​ is then appended as 
a new feature to both the training and test datasets:

                        (10)

The hybrid RF+LR model follows a two-stage 
stacking formulation. Consider  is the 
random forest probability estimator then: 

                   (11)
	
We produce out of fold (OOF) predictions by using: 

                    (12)
	
The meta feature matrix becomes: 

                      (13)
	
Now the logistic regression function for the decision 
is given by:
 

       (14)

 represent the weight assigned to RF-derived 
probability, so the final hybrid prediction is 
computed using: 

              (15)

A Logistic Regression model is subsequently 
trained on X′, learning a linear boundary in 
the enriched feature space. This hybridization 
combines the nonlinear feature extraction capability 
of Random Forests with the interpretability and 
regularization strength of Logistic Regression. 
The hybrid model can potentially address 
nonlinearity and feature interactions missed by 
Logistic Regression alone. However, there is a 
risk of overfitting if the new probability feature 
is highly correlated with the target, particularly in 
small or unbalanced datasets. In this study, cross-
validation and the use of the test set mitigate such 
risks [22].

2.5.2. Hybrid 2: XGBoost probabilities as features 
          for SVM (XGBoost + SVM)

An XGBoost model, known for its gradient-boosted 
tree structure and robustness to feature collinearity, 
is first trained. The predicted probabilities for each 
sample, ​, are calculated:

       (16)

Where σ denotes the sigmoid function. These 
probabilities are appended as an additional feature 
to the input matrix, after which a Support Vector 
Machine (SVM) classifier is trained and OFF 
probabilities are concatenated with the input 
features:

                     (17)

The SVM with a radial bases function 
(RBF) kernel learns separating hyperplane in the 
augmented space:

	           (18)

The term  quantifies the contribution 
of initial stage boosted the probabilities to SVM 
margin. This hybrid combines XGBoost’s nonlinear 
learning capacity with the margin-maximizing 
properties of SVMs. This approach can significantly 
enhance performance if XGBoost probabilities 
encapsulate a high-level structure that is not 
easily captured by SVM alone. However, SVMs 
are sensitive to irrelevant features, so the benefit 
depends on the informativeness of the probability 
feature [23].
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2.5.3. Hybrid 3: Lasso feature selection followed 
          by LightGBM (Lasso + LightGBM)

A Logistic Regression model with L1 regularization 
(Lasso) is employed to perform feature s A Logistic 
Regression model with L1 regularization (Lasso) is 
employed to perform feature selection:

	 (19)

Where  is the likelihood,  are the coefficients, 
and  is the regularization parameter. Only features 
with nonzero coefficients are retained:

                      (20)

The reduced feature matrix is: 

                      (21)

LightGBM is trained on the reduced space: 

 		                   (22)

This hybrid is a sequential architecture an 
optimizing based selector followed by the gradient 
boosting. LightGBM, a fast and efficient gradient 
boosting implementation, is trained on the selected 
features. This hybrid is especially effective in high-
dimensional data, as it removes redundant and 
noisy variables before applying a strong tree-based 
learner. The risk is that overly aggressive feature 
selection can discard weak but informative features, 
potentially lowering overall model capacity [24].

2.5.4. Hybrid 4: Top N random forest feature 
          importance with logistic regression
         (RF-Feature Selection + LR)

Random Forests naturally provide feature 
importance measures based on mean decrease 
in impurity (MDI) or mean decrease in accuracy 
(MDA). Random forest computed the importance 
values by: 

               (23)

The top  features with the highest importance 
scores are selected:

      (24)

Logistic regression is trained on: 

                       (25)

The model is then given by: 

           (26)

This hybrid is featuring selection driven linear model 
contrasting with fully nonlinear boosters.  Logistic 
Regression is then trained on this reduced feature 
set. Selecting the most predictive variables reduces 
dimensionality and may improve generalization, 
especially for linearly separable relationships. 
However, feature importance scores can be unstable 
in the presence of multicollinearity or redundant 
predictors, and choosing N is somewhat heuristic 
[25].

2.5.5. Hybrid 5: Blended probabilities of multiple 
          boosting models with logistic regression 
         (Blended Probabilities + LR)

LightGBM, CatBoost, and XGBoost models are 
independently trained on the original dataset. For 
each sample, the predicted probabilities from each 
model are extracted:

                    (27)

                     (28)

                     (29)
 
These probabilities are concatenated with the 
original features to create a new, augmented feature 
space:

             (30)

Let the blended meta feature vector be: 

                          (31)

The final model is: 

   (32)

This is the probabilistic blending architecture that 
combines diverse gradient boosting models. 
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A Logistic Regression model is trained 
on X′′′, learning how to combine the output of 
diverse boosting models optimally. This method 
synthesizes predictions from heterogeneous 
boosting frameworks, enabling the final model to 
exploit differences in model behavior [26]. While 
potentially powerful, this approach increases the 
risk of overfitting if the boosting models themselves 
are highly correlated or overfit the training data.

The benefits of these hybrid models extend 
beyond the advantages of conventional classifiers 
(such as Random Forest and Logistic Regression) 
to more complex algorithms, including feature 
selection with Lasso, boosting on XGBoost, 
LightGBM, and CatBoost, as well as ensemble 
learning methods like Stacking and Blended 
Probabilities. The hybrid models that use the 
probabilities generated by one model as input for 
the other model are helpful for the consideration 
of complexities like intricate feature interactions 
and nonlinearity that providing a novel approach 
to increase the model performance.  A stronger 
decision is achieved using combined models, 
such as RF + LR, XGBoost + SVM, and Lasso + 
LightGBM, which present a novel perspective for 
processing high-dimensional imbalanced data.

2.6. Evaluation Metrics

The performance and robustness of these 
classification models are evaluated using specific 
metrics. These provide complementary information, 
accurately reflecting the overall correctness of the 
model, while precision measures how many of the 
predicted positives are truly positive. Recall shows 
how many actual positives are identified correctly 
and the F1-score balances the tradeoff between 
false positive and false negative. Cohen’s Kappa, 
Hamming loss, and Jaccard Index capture the 
nuances of agreement and multi-label performance. 
The use of these measures enables a more advanced 
and less biased assessment of predictive models in 
various situations under different data distributions 
[27].

             (33)

                   (34)

                      (35)

      (36)

                  (37)

      (38)

                   (39)

This rigorous methodology underpins both the 
fairness and scientific validity of model comparison, 
ensuring that reported results are robust, replicable, 
and meaningful for biomedical decision-making.

3.    RESULTS AND DISCUSSION

The cross-evaluation of model benchmarks reveals 
reasonable differences in various measures, 
indicating the impact of different machine learning 
and hybrid methods for classifying Alzheimer’s 
disease. Table 2 presents the evaluation metrics 
values for all models. The best accuracy is reported 
for , CatBoost, and Lasso + LightGBM, both 
scoring 0.961240, closely followed by XGBoost 
0.961041,  LightGBM and stacking at 0.958140 
and Blended Probabilities (LGBM + CatBoost 
+ XGB) + LR at 0.956589. This identifies the 
better performance of gradient boosting-based and 
ensemble hybrid methods for classifying the disease 
status. On the other hand, the KNN (0.737984) 
and RF-FeatureSelection + LR (0.846512) models 
exhibit relatively lower accuracy, which stems from 
high dimensionality and the sensitivity to feature 
selection, respectively. The accuracy achieved in 
this research is slightly higher than previous values 
of 0.9635 reported by Mahamud et al.  [13] and 
0.9380 recorded by Jin et al. [10].

Table 2 shows that the highest precision is 
recorded for CatBoost (0.951111) and XGBoost 
+ SVM (0.950893), which are higher than the 
previous values of 0.95 stated by Mahamud et al. 
[13] and 0.9396 (with proposed model), reported 
by Jin et al. [10]. Both are effective in minimizing 
false positive rates and thereby curtailing diagnosis 
overestimation, which is crucial for less invasive 
procedures in clinical practice. Traditional 
classifiers, such as SVM (0.774336) and KNN 
(0.680982), perform markedly worse and are 
often unable to manage the class imbalance and 
complexity of features, despite normalization.
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The XGBoost and Lasso + LightGBM achieved 
the highest values of recall, that are 0.943468 and 
0.947368, respectively, that is higher than the value 
of 0.9380, reported by Jin et al. [10]. This aspect 
is crucial in clinical practice, where this kind of 
performance is needed to minimize the number 
of missed cases. Models such as the KNN model 
(score = 0.486842) have vast potential for further 
improvement, indicating that a simple model is 
underfitted in the presence of complex data.

As shown in Table 2, XGBoost (0.941155), 
CatBoost (0.944812), and Lasso + LightGBM 
(0.945295) achieved the highest F1-score, 
indicating that they can balance the precision-recall 
tradeoff better than other models, which is crucially 
important for medical diagnosis. The error spread is 
small; therefore, we can expect good accuracy from 
these algorithms.

Table 3 presents the Cohen’s Kappa values 
of hybrid and ensemble approaches, including 
XGBoost (0.915284), CatBoost (0.914946), and 
Lasso + LightGBM (0.915284), which demonstrate 
considerable reliability in model classification 
consistency and performance, as well as reasonable 
performance. With Kappa point classification, 
the SVM (0.646527) and KNN (0.387154) are 
considered too soft, indicating that both have 

insufficient reliability to validate incomplete 
agreement. The hamming loss value is decreased 
with perfect classification and is particularly low 
when models XGBoost (0.038760), Catboost 
(0.038760) and Lass + LightGBM (0.038760) 
outperform the other models.  As expected, KNN, 
due to its loss, suffers significant losses, which 
remain at 0.262016, primarily due to poor recall 
and precision, resulting in numerous mismatches. 
The three algorithms, XGBoost, CatBoost, and 
Lasso + LightGBM, scored the best with scores of 
0.896266, 0.895397, and 0.896266, respectively, 
indicating that they have better predictive ability 
than other models and align more closely with the 
predicted true label. Many traditional and hybrid 
strategies like KNN (0.39642) and RF-feature 
Selection + LR (0.64388) performed below the 
chance level as expected due to their lower overall 
classification performance.  

These results support the reasoning behind 
the methodology’s focus on ensembles of hybrid 
models, as the integration of feature selection with 
probabilistic augmentation and gradient boosting 
is expected to improve performance significantly. 
The dataset underwent extensive preprocessing, 
including the meticulous imputation of missing 
values, label encoding, normalization, and 
stratified train-test splitting, which preserved class 

Model Accuracy Precision Recall F1-Score
RandomForest 0.941085 0.943925 0.885965 0.914027
SVM 0.838760 0.774336 0.767544 0.770925
KNN 0.737984 0.680982 0.486842 0.567775
LogisticRegression 0.838760 0.787037 0.745614 0.765766
XGBoost 0.961041 0.941831 0.943468 0.941155
LightGBM 0.958140 0.938865 0.942982 0.940919
CatBoost 0.961240 0.951111 0.938596 0.944812
AdaBoost 0.927132 0.891775 0.903509 0.897603
Bagging 0.947287 0.925439 0.925439 0.925439
Stacking 0.958140 0.942731 0.938596 0.940659
RF + LR 0.945736 0.940639 0.903509 0.921700
XGBoost + SVM 0.959690 0.950893 0.934211 0.942478
Lasso + LightGBM 0.961240 0.943231 0.947368 0.945295
RF-FeatureSelection + LR 0.846512 0.781659 0.785088 0.783370
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.956589 0.942478 0.934211 0.938326

Table 2. Performance metrics (Accuracy, Precision, Recall, F1-Score) for various machine learning models evaluated 
in Alzheimer’s disease classification.
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proportions to ensure the data’s integrity while 
enhancing model generalizability. Grid search with 
stratified cross-validation for class-preserved folds 
enabled extensive multi-criteria hyperparameter 
optimization, minimizing the risk of overfitting and 
further augmenting model performance through 
fine-tuned hyperparameter adjustment.

The complicated nonlinear correlations 
observed in clinical and demographic data cannot 
be fully represented by simpler models such as 
KNN and Logistic Regression, in addition to the 
more traditional boundary-defining approximations 
and closest neighbor assumptions. The successful 
use of feature engineering and hyperparameter 
tuning has led to the development of clinical 
decision support tools for testing, highlighting the 
potential of complicated ensemble models for early 
Alzheimer’s disease identification.

Figure 2 illustrates the pairwise distributions 
and interrelations between the significant predictors 
(Functional Assessment, ADL, MMSE, Memory 
Complaints, Behavioral Problems, and Sleep 
Quality) by diagnosis class. It is also easy to note 
clear differences between the Alzheimer and non-
Alzheimer groups of the Functional Assessment, 
ADL, and MMSE, which indicates their great 
discriminative power. Contrastingly, Memory 

Complaints and Behavioral Problems have a 
higher overlap, meaning a lower predictive ability 
independently. Such visual trends are reflected in 
the rankings of feature importance gained with 
the help of Random Forest and Lasso selection, 
with functional and cognitive measures prevailing. 
Feature selection methods like mRMR and mutual 
information have also explained their efficiency in 
enhancing the prediction of Alzheimer’s disease 
with an accuracy of 0.9908 [28].  

More importantly, the figure also presents 
qualitative data on why the hybrid and ensemble 
models (e.g., Lasso + LightGBM) performed well: 
these models can learn nonlinear and partially 
collinear relationships between features, especially 
between cognitive and behavioral variables. Such 
curved or overlapping boundaries are not easily 
modeled using standard linear classifiers (e.g., 
Logistic Regression), which is why such classifiers 
achieve relatively low recall and F1 scores. That 
is why a pair-plot is not only justifying feature 
selection, but also the models’ success, as it sets up 
the data structure visually and demonstrates where 
simple models may fail. 

3.1. Model Behavior and Error Analysis 

Lasso + LightGBM. L1 selection yielded a sparse 

Model Cohen Kappa Hamming Loss Jaccard Index
RandomForest 0.869284 0.058915 0.841667
SVM 0.646527 0.161240 0.627240
KNN 0.387154 0.262016 0.396429
LogisticRegression 0.642971 0.161240 0.620438
XGBoost 0.915284 0.038760 0.896266
LightGBM 0.908506 0.041860 0.888430
CatBoost 0.914946 0.038760 0.895397
AdaBoost 0.841049 0.072868 0.814229
Bagging 0.884671 0.052713 0.861224
Stacking 0.908324 0.041860 0.887967
RF + LR 0.880208 0.054264 0.854772
XGBoost + SVM 0.911455 0.040310 0.891213
Lasso + LightGBM 0.915284 0.038760 0.896266
RF-FeatureSelection + LR 0.664523 0.153488 0.643885
Blended Probabilities (LGBM + CatBoost + XGB) + LR 0.904834 0.043411 0.883817

Table 3. Cohen’s Kappa, Hamming Loss, and Jaccard Index scores for different machine learning models in 
Alzheimer’s disease classification.
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and lower-correlation subsample that reduces noise 
and redundancy; LightGBM then learned nonlinear 
interactions in this low-dimensional space, which 
are consistent with the more evident separations 
in the cases of Functional Assessment, ADL, and 
MMSE in Figure 2. Blended probabilities + LR. 
The base boosters had a high prediction correlation 
due to theoretical gains, which constrained the 
meta-learner’s ability to be diverse. In a small 
sample size, the inclusion of correlated probability 
enhanced variance and decreased net benefit; 
moreover, variation in probability calibration was 
likely a restraining factor for the LR combiner. 
The combination of RF with Adaboost achieved 
0.9255 accuracy which explained the benefits of 
ensemble learning in boosting model performance. 
The combination of DT, Adaboost and LR achieved 
highest accuracy of 0.9546 which shows the 
effectiveness of blending different models [29].

The study relies on a single dataset from 
Kaggle that may limit the generalizability of 
the model to clinical datasets. The models in the 
present study were evaluated only on provided 
dataset and external validation on an independent 
dataset was not performed. It is difficult to confirm 
the robustness and real-world applicability of the 
proposed models. Hybrid models such as Lasso + 
LightGBM and blended probabilities show strong 
performance; these may remain complex and less 

interpretable. This can limit their practical use in 
clinical settings where model transparency and 
interpretability are very important for clinical trust 
and decision-making. 

RF-FeatureSelection + LR. RF importances 
based on impurity can be unstable under collinearity 
and biased against specific types of features; in a 
top-N heuristic, weak yet informative variables 
can be discarded. A linear LR fitted on this subset 
underfits the nonlinear structure, shown in Figure 
2, which explains the gap between the accuracy 
and recall. Practical note: Future variants will (i) 
apply permutation/Boruta or stability selection to 
features, (ii) impose out-of-fold predictions and 
temperature/Platt calibration in blending, and (iii) 
take into account Elastic-Net LR or monotone-
constrained boosting to make the thus far observed 
structure more like reality.

To evaluate the robustness, consistency 
and adaptability of the models, we used many 
established mechanisms. Robustness and 
generalization were assessed by using the stratified 
5-folds cross validation, where models were trained 
and validate on multiple class preserving split ad 
by using was the out-of-fold (OOF) predictions to 
avoid the information leakage in hybrid stacking. 
Consistency was verified by using a various set of 
metrics like accuracy, precision, recall, F1score, 

Fig. 2. Pairwise feature relationships by Alzheimer’s diagnosis.
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kappa, hamming loss, Jaccard index that showed 
stable rankings within the Table 2 and Table 3. 
Adaptability was evaluated testing the models on 
heterogeneous mix of demographic. Cognitive, 
behavioral and clinical features. Lastly, all results 
were confirmed on a held 30% unseen test set to 
ensure the valid generalization. 

3.2. Comparative Discussion

Direct and cross-paper comparisons of point 
estimations (e.g., accuracy or F1) are necessarily 
constrained since results are highly dependent on 
the particular dataset (size, difficulty, feature set, 
and class balance) and preprocessing options, as 
well as the evaluation protocol. We therefore do not 
claim that we are better than previous studies solely 
because our point estimates (e.g., accuracy 0.961) 
are numerically larger than those obtained with 
other datasets and setups (e.g., 0.938). Rather, we 
place our findings on a par with ranges reported in 
recent literature on classifying ADs using gradient-
boosted and hybrid ensemble classifiers, with 
overall similar levels of accuracy and F1 where 
tasks and data are similar [10, 12, 13].

Future research must incorporate evaluation 
on common publicly available benchmarks (e.g., 
using the same train/test splits with ADNI, OASIS, 
or the same Kaggle dataset). It also incorporates 
the standardization of preprocessing pipelines to 
reduce variability and measurement of uncertainty 
(e.g. per-split results and 95% CIs through 
bootstrapping) and paired-sample tests (e.g., 
McNemar test to establish accuracy, DeLong test 
to establish AUC). Calibration and decision-curve 
analyses to supplement the results are indicated 
within these limits, we find that hybrid strategies 
(e.g., Lasso + LightGBM) can produce state-of-the-
art dataset competitive performance and practical 
interpretability in line with the trends of previous 
work [10, 12, 13]. 

4.    CONCLUSIONS	

The paper compared conventional, ensemble, and 
hybrid supervised classifiers in the classification 
of Alzheimer’s disease using tabular clinical data. 
CatBoost and Lasso + LightGBM (accuracy = 
0.96124) were the closest as the strongest point 
estimate, and XGBoost was considered the third 
closest (accuracy = 0.96104). All with a strong F1 

(0.94 - 0.95). Since we did not report any measures 
of variance or formal tests of significance, we do not 
claim to have been statistically better than the other 
models; instead, the models can be viewed as those 
that perform best and are statistically equivalent, 
given the evidence at hand. On a methodological 
level, the results are congruent with the hypothesis 
that, with L1-Based selection, features may be 
denoised and decorrelated, allowing a gradient-
boosting learner (LightGBM) to represent 
nonlinear feature interactions more effectively. 
Nevertheless, we have seen that the Lasso + 
LightGBM hybrid cannot be readily interpreted: 
Lasso produces sparse selections, but the black box 
model of the final boosted model remains a black 
box. Future studies will (i) quantify the uncertainty 
(per-fold results, bootstrap CIs, paired tests such 
as McNemar/DeLong) to find out whether small 
metric deltas are statistically significant; (ii) provide 
explanatory analyses (e.g. SHAP global summaries, 
local explanations, partial dependence/ICE, and 
calibration curves) to describe how the output 
of functional and cognitive measures drives the 
predictions; (iii) assess blending/stacking on out-
of-fold meta-features and probability calibration to 
increase the diversity among base learners. These 
criteria suggest that gradient-boosted and hybrid 
studies are dataset-competitive in AD classification 
on structured clinical data, and that an additional 
investigation into uncertainty and explainability 
is necessary to make comparative or clinical 
assertions.
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