
Proceedings of the Pakistan Academy of Sciences: A	 Pakistan Academy of Sciences
Physical and Computational Sciences 61(1): 19-31 (2024)
Copyright © Pakistan Academy of Sciences
ISSN (Print): 2518-4245; ISSN (Online): 2518-4253	
https://doi.org/10.53560/PPASA(61-1)674

Research Article

————————————————
Received: December 2023; Revised: February 2024; Accepted: March 2024
*Corresponding Author: Humaira Ijaz <humaira.bilalrasul@uos.edu.pk>

Efficient Resource Scheduling in Fog: A Multi-Objective
Optimization Approach

Tayyiba Hameed, Bushra Jamil, and Humaira Ijaz*

Department of Information Technology, University of Sargodha, Sargodha, Pakistan

Abstract: Fog computing is a novel idea that extends cloud computing by offering services like processing, storage,
analysis, and networking on fog devices closer to IoT devices. Numerous fog devices are required to process the
ever-growing amount of data generated by IoT applications. The heterogeneous tasks from various IoT applications
compete for a limited number of resources of these devices. The process of assigning this set of tasks to different
available fog nodes according to QoS requirements for processing is resource scheduling. Resource scheduling aims to
optimize resource utilization and performance metrics however, the dynamic nature of the Fog environment, resource-
constrained, and heterogeneity in fog devices make resource scheduling a complex issue. This research presents the
design and implementation of a multi-objective optimization-based resource scheduling algorithm using Modified
Particle Swarm Optimization (MPSO) that addresses the application module placement and task allocation issues. This
two-step MPSO-based resource scheduling model finds the optimal fog node to place each application module and
assigns appropriate tasks to the most optimal fog nodes for execution. The proposed model unlocks the full potential
of fog resources along with maximization of overall system performance in terms of optimization of cost, latency,
energy consumption, and network usage. The simulation results indicate that using MPSO energy consumption is
reduced by 53.94% and 43.58% as compared to First Come First Serve (FCFS) and Particle Swarm Optimization
(PSO), respectively. The loop delay, network usage and cost using MPSO are reduced by 40.3%, 67.69% and 90.01%
respectively, as compared to PSO algorithm.

Keywords: Fog Computing, MPSO, Multi-Objective Optimization, Resource Scheduling, Task Allocation, Cloud
Computing, Internet of Things (IoT).

amount of data. As CIoT architecture is centralized
and the cloud data centers are multi-hops away
that increases latency bandwidth consumption and
network bottlenecks while processing this sheer
amount of IoT data [2].

Later on, Edge computing was used to handle
the high latency problem in delay-sensitive
applications by providing storage and processing
resources near the end user IoT devices. Edge
computing provides many advantages like high-
speed processing, low latencies, and real-time
availability of network resources. This paradigm
can solve many issues like energy usage, security,
and privacy by reducing the distance the data must
travel [3]. However, although edge devices have
short access latencies because of their proximity to
end users, they are still resource-constrained and
prone to availability issues.

1.	 INTRODUCTION

The Internet of Things (IoT) is a groundbreaking
technology that has the potential to transform the
manner we live and work [1]. It’s a network of
physical objects, machines, gadgets, automobiles,
and other things, having sensors, software, and
connectivity, that enables them to gather and share
data to make intelligent decisions. IoT makes devices
intelligent and responsive to their surroundings.
This interconnected network of devices spans
various industries, from smart homes, cars, and
cities to healthcare and manufacturing, and has the
potential to enhance automation, decision-making,
and efficiency. This interconnectivity of devices
has led to an accelerated growth in the amount of
data produced by these devices. Currently, cloud-
based IoT (CIoT) is providing a powerful solution
for storing, processing and analyzing this sheer

To address this problem fog computing has
been introduced, which just evolved as a logical
extension of cloud computing [4]. The term
“Fog Computing” refers to moving services like
computing, processing, storage, and networking
services near the proximity of the end user [5].
This results in reduced latency, faster decision-
making conservation of network bandwidth,
and improved reliability. Fog computing has
different characteristics like dense distribution of
heterogeneous, resource-limited fog nodes, context
awareness, mobility, real-time interaction, and
executing diverse-natured IoT applications. The
advancement in communication technologies and
the development of pervasive computing caused
a rapid surge in the number of IoT applications
and IoT devices that generate a massive amount
of data to be processed by these fog devices
[6]. The heterogeneous, resource and energy-
limited, dynamic nature of fog applications makes
resource management challenging [7]. Among
various resource management techniques, resource
scheduling is crucial for taking full benefits of fog
computing. Resource scheduling determines when
and where different applications or services should
use resources, such as CPU, memory, storage, and
network bandwidth. Resource scheduling aims to
identify the available resources and allocate them
to specific applications to ensure their effective
utilization and timely completion of latency-
sensitive tasks. Efficient resource allocation thus
leads to better resource utilization, reduced latency,
energy consumption, and improved user experience.
Resource scheduling becomes a challenging issue
due to the diverse and highly dynamic nature of
fog computing. We have reviewed the existing
resource scheduling techniques for fog computing
environments presented by researchers and
highlighted different metrics optimized in these
studies, such as latency, network bandwidth, energy
consumption, cost, and quality of service, etc.

Benedetti et al. [8] developed the distributed job
scheduler JarvSis for fog-based IoT applications. To
optimize time and energy consumption, Movahdi
et al. [9] employed Integer Linear Programming
to formulate the task scheduling problem in fog
computing environment.

Wu et al. [10] presented a multi-objective
algorithm that learns and optimizes the fuzzy

offloading technique from various IoT applications
and allocate tasks in fog computing environment.
Jamil et al. [11] proposed a heuristic-based task-
scheduling algorithm that schedules the tasks on
the fog nodes according to their processing needs.
iFogSim is used for implementation with the
objective to optimize delay and energy consumption.
In another study, Josilo [12] considers a fog
computing system to offload the computational
tasks to nearby devices or an edge server.

The selection and distribution of resources
are studied by Zhang et al. [13], who use the
Stackelberg game for solving resource allocation
problems. Zhang [14] describes a game-based
resource management system consisting of three
entities authorized users, fog nodes, and data
service operators. This stable paradigm maximizes
the usefulness of each entity.

The resource scheduling between fog devices
in the same fog groups is presented by Sun et al.
[15] and Bitam et al. [16] using meta-heuristic
algorithms. Chen and Wang [17] developed two
dynamic scheduling methods based on dynamics in
the fog infrastructure response times and latency.

Bittencourt et al. [18] proposd a paradigm for
scheduling that categorizes applications and client
mobility as two key elements to provide effective
resource management related to scheduling.
Wadhwa and Aron [19] introduced OSCAR
to optimize task scheduling in fog-based IoT
environments. They use QoS-based scheduling and
task clustering to enhance system throughput and
increased bandwidth usage. Du et al. [20] proposed
a computational offloading method to reduce
device delay and energy usage. The method solves
the nested resource allocation problem by taking
offloading decisions.

Shahidani et al. [21] suggested a multi-
objective task scheduling approach for fog-edge-
cloud environment using reinforcement learning.
They optimized network congestion, service
delays, energy consumption and network usage.
Subbaraj et al. [22] proposed a hybrid metaheuristic
optimization technique called the Cow Search
Algorithm (CSA) for solving resource allocation
and scheduling issues in the fog environment.
The proposed algorithm combines the pivoting

20	 Hameed et al

rule (local search) with the crow search algorithm
(global search) to harness the advantages of both
exploration and exploitation.

Liu et al. [23] introduced a resource-
scheduling strategy to address the challenges
of load balancing and task scheduling in a fog
computing environment to decrease latency and
energy consumption. The proposed technique uses
a particle swarm optimization algorithm to search
the optimal load balance on fog devices in a single
cluster. They use a particle swarm algorithm for
genetic joint optimization and an Artificial Bee
Colony algorithm (PGABC) for optimizing the task
scheduling among fog clusters.

After reviewing the existing literature, we
found that most resource scheduling approaches
are based on mono or bi-objective optimization
that cannot balance these objectives effectively
generating sub-optimal solutions. Therefore, we
need a multi-objective optimization-based resource
scheduling that generates a set of Pareto-optimal
solutions to simultaneously trade off multiple and
conflicting objectives of various heterogeneous
tasks of different applications in a dynamic fog
computing environment. There is a need to design
an efficient multi-objective optimization-based
resource scheduling approach that will perform
optimal application module placement and
allocate resources of fog nodes to tasks along with
efficient utilization of resources and performance
optimization. Therefore, we have designed and
implemented a multi-objective optimization-based
resource-scheduling algorithm based on MPSO to
optimize different metrics. We have compared the
results of MPSO with PSO and FCFS using the
iFogsim simulator.

This research paper is concerned with the
design, implementation, and evaluation of a multi-
objective optimization-based resource scheduling
algorithm that efficiently allocates resources to
available suitable fog nodes according to the
given requirements. The following are the main
contributions of the suggested work.
1.	 To review current resource scheduling

techniques for fog computing.
2.	 To investigate the limitations and shortcomings

of the recently used task allocation (resource
scheduling) methods.

3.	 An MPSO-based two-level model for resource

scheduling is proposed that combines
application module placement and task
allocation with objectives to minimize latency,
network usage, cost, and energy consumption
to optimize resource utilization.

4.	 Moreover an effective task-scheduling
algorithm based on the traditional Shortest
Job First (SJF) is applied that prioritizes and
executes the shortest tasks first on fog nodes,
which minimizes the latency for critical tasks.

5.	 To compare the performance of the suggested
resource scheduling algorithm to other
algorithms and evaluate the execution results.

The remainder of the article is structured as
follows. Fog computing architecture and proposed
modified optimization-based (MPSO) resource
scheduling are presented. Then the proposed
simulation model and evaluation results of the
MPSO-based resource scheduling algorithm are
described. Finally, we explain the present research
outcomes and provide recommendations for further
study.

2.	 MATERIALS AND METHODS

The Fog-IoT model is comprised of three layers,
each performing crucial functions: IoT, fog, and
cloud layer. Figure 1 presents the architecture of
Fog computing.

IoT Layer: The IoT layer is the bottommost
layer in FIoT architecture. It includes devices
such as sensors, actuators, and internet-connected
IoT devices closer to the end-users [4]. This layer
gathers and transfers data generated by IoT devices
to upper layers for further processing.

Fig. 1. Fog Computing Architecture.

Hameed et al

Fig. 1. Fog Computing Architecture.

IoT Layer: The IoT layer is the bottommost layer in FIoT
architecture. It includes devices such as sensors,
actuators, and internet-connected IoT devices closer to
the end-users [4]. This layer gathers and transfers data
generated by IoT devices to upper layers for further
processing.
Fog Layer: This intermediate layer is made up of
heterogeneous fog nodes having different processing,
storage, and networking capabilities; for example,
routers, roadside units, proxy servers, cellular base
stations, and mobiles [6]. These fog nodes collect data
from the IoT layer, process it, perform necessary
computations for intelligent decisions, and transfer it to
the Cloud Layer for long-term decision-making.
Cloud Layer: The topmost layer servers as the central
repository comprised of many powerful computers and
data centers. Data centers give storage and processing
services to IoT devices for storage and long-term
analysis.

Fog devices are heterogeneous, dynamic, and
resource-constrained, and the applications send
requests/tasks for processing to these nodes [24]. Firstly,
the resources of fog nodes are compared with the
computational needs of these tasks, and if the resources
are sufficient to process these tasks they should be
allocated to that node and executed. The task will be
shifted to the cloud for execution if no resources are

available at the fog nodes. Figure 2 presents the block
diagram of existing edge-ward resource scheduling in
which modules are placed using FCFS on the nearest
edge, fog nodes and cloud. Using FCFS, fog node
manager places incoming module on fog nodes in order
or arrival without prioritizing computing layers.

Fig. 2. Block Diagram of existing edge-ward resource
scheduling.

Effective task allocation or resource scheduling
strategies are necessary to optimize resources, accelerate
response times, and minimize cost and energy utilization.
Therefore, we have developed a multi-objective
optimization-based resource scheduling approach to
allocate resources of fog nodes to user’s jobs according
to their needs while maximizing resource utilization,
minimizing latency, cost, energy consumption, and
network usage.

2.1 Case Study

We have selected a healthcare scenario as a fog
computing use case that includes an Appointment
Coordination System, Health Record Management
System, and Urgent Notification System as healthcare
applications [12].
Urgent Notification System: The Urgent Notification
System monitors patient’s critical data such as heart rate,
sugar, blood pressure, oxygen saturation and generates
instant response to this critical data.
Appointment Coordination System: This system
manages appointments of different patients in different

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 21

Fog Layer: This intermediate layer is made
up of heterogeneous fog nodes having different
processing, storage, and networking capabilities;
for example, routers, roadside units, proxy servers,
cellular base stations, and mobiles [6]. These fog
nodes collect data from the IoT layer, process it,
perform necessary computations for intelligent
decisions, and transfer it to the Cloud Layer for
long-term decision-making.

Cloud Layer: The topmost layer servers as the
central repository comprised of many powerful
computers and data centers. Data centers give
storage and processing services to IoT devices for
storage and long-term analysis.

Fog devices are heterogeneous, dynamic, and
resource-constrained, and the applications send
requests/tasks for processing to these nodes [24].
Firstly, the resources of fog nodes are compared
with the computational needs of these tasks, and if
the resources are sufficient to process these tasks
they should be allocated to that node and executed.
The task will be shifted to the cloud for execution if
no resources are available at the fog nodes. Figure
2 presents the block diagram of existing edge-
ward resource scheduling in which modules are
placed using FCFS on the nearest edge, fog nodes
and cloud. Using FCFS, fog node manager places
incoming module on fog nodes in order or arrival
without prioritizing computing layers.

Effective task allocation or resource scheduling
strategies are necessary to optimize resources,
accelerate response times, and minimize cost and
energy utilization. Therefore, we have developed

a multi-objective optimization-based resource
scheduling approach to allocate resources of
fog nodes to user’s jobs according to their needs
while maximizing resource utilization, minimizing
latency, cost, energy consumption, and network
usage.

2.1. Case Study

We have selected a healthcare scenario as a fog
computing use case that includes an Appointment
Coordination System, Health Record Management
System, and Urgent Notification System as
healthcare applications [12].

Urgent Notification System: The Urgent Notification
System monitors patient’s critical data such as heart
rate, sugar, blood pressure, oxygen saturation and
generates instant response to this critical data.

Appointment Coordination System: This system
manages appointments of different patients in
different time slots with less critical data as
compared to data of urgent notification systems.

Health Record Management System: The Healthcare
Record Management System contains information
such as names, addresses, and historical records of
health that are recorded and stored on the cloud for
future analysis and decision-making.

Challenges: Accurate results and quick responses
are essential for real-time health data processing.
However, various tasks compete in a heterogeneous
environment for a limited number of resources of
fog devices. Therefore, one of the main difficulties
in fog and edge computing is resource management.
For instance, a patient’s status in a smart healthcare
system requires quick notice to rescue the patient.
It is difficult to allocate resources to requested tasks
while maintaining low latency and efficient energy
use. Therefore, we have applied a multi-objective
optimization-based resource scheduling algorithm
called MPSO to solve the resource management
issues of latency, energy consumption, and resource
utilization in smart healthcare.

2.1.1 MPSO algorithm for resource scheduling

Modified Particle Swarm Optimization (MPSO) [25]
is an ideal solution for resource scheduling because
it can handle multiple objectives and constraints Fig. 2. Block Diagram of existing edge-ward resource

scheduling.

Hameed et al

Fig. 1. Fog Computing Architecture.

IoT Layer: The IoT layer is the bottommost layer in FIoT
architecture. It includes devices such as sensors,
actuators, and internet-connected IoT devices closer to
the end-users [4]. This layer gathers and transfers data
generated by IoT devices to upper layers for further
processing.
Fog Layer: This intermediate layer is made up of
heterogeneous fog nodes having different processing,
storage, and networking capabilities; for example,
routers, roadside units, proxy servers, cellular base
stations, and mobiles [6]. These fog nodes collect data
from the IoT layer, process it, perform necessary
computations for intelligent decisions, and transfer it to
the Cloud Layer for long-term decision-making.
Cloud Layer: The topmost layer servers as the central
repository comprised of many powerful computers and
data centers. Data centers give storage and processing
services to IoT devices for storage and long-term
analysis.

Fog devices are heterogeneous, dynamic, and
resource-constrained, and the applications send
requests/tasks for processing to these nodes [24]. Firstly,
the resources of fog nodes are compared with the
computational needs of these tasks, and if the resources
are sufficient to process these tasks they should be
allocated to that node and executed. The task will be
shifted to the cloud for execution if no resources are

available at the fog nodes. Figure 2 presents the block
diagram of existing edge-ward resource scheduling in
which modules are placed using FCFS on the nearest
edge, fog nodes and cloud. Using FCFS, fog node
manager places incoming module on fog nodes in order
or arrival without prioritizing computing layers.

Fig. 2. Block Diagram of existing edge-ward resource
scheduling.

Effective task allocation or resource scheduling
strategies are necessary to optimize resources, accelerate
response times, and minimize cost and energy utilization.
Therefore, we have developed a multi-objective
optimization-based resource scheduling approach to
allocate resources of fog nodes to user’s jobs according
to their needs while maximizing resource utilization,
minimizing latency, cost, energy consumption, and
network usage.

2.1 Case Study

We have selected a healthcare scenario as a fog
computing use case that includes an Appointment
Coordination System, Health Record Management
System, and Urgent Notification System as healthcare
applications [12].
Urgent Notification System: The Urgent Notification
System monitors patient’s critical data such as heart rate,
sugar, blood pressure, oxygen saturation and generates
instant response to this critical data.
Appointment Coordination System: This system
manages appointments of different patients in different

22	 Hameed et al

due to its meta-heuristic nature. It is adaptive to
dynamic environments and easy to implement in
a distributed and scalable environment. In short,
MPSO-based resource scheduling can improve the
efficiency, adaptability, and user satisfaction of the
fog computing system, making it more suitable
for a wide range of applications. MPSO algorithm
follows the steps given below:

1.	 Issue Propagation
i.	 Reduce Latency: The main objective is

to reduce the time needed to process and
analyze health data.

ii.	 Reduce Energy Consumption: The second
objective is to reduce energy use, while
carrying out tasks through wearable
technology and fog nodes.

2.	 Population Initialization
	 Each possible solution in the population

represents a method for task allocation
(resource scheduling). Each solution specifies,
taking into consideration processing power and
energy resources, which tasks are assigned to
which fog nodes. The population (swarm) is
initialized randomly in the MPSO algorithm.

3.	 MPSO Execution
	 To identify a collection of best-optimal

solutions that balance minimizing delay,
network usage, cost and energy usage, MPSO
develops the population. To select the best work
task allocation arrangements, MPSO refines
solutions by adding a new variable named
inertia weight w to the initial part of velocity
updation.

4.	 Fitness Evaluation
	 Based on task execution time, communication

latency, and energy consumption, solutions
are assessed. The properties of wearable
technology, fog nodes, and the communication
network are used to determine these measures.

5.	 Inertia Weight
	 The best optimal solutions found by MPSO

using additional concept inertia weight in PSO
reflect various trade-offs between reducing
latency and maximizing energy efficiency.

6.	 MPSO Swarm Update
	 MPSO particles modify their locations to move

in the direction by updating their local best and
global best by changing velocity and position.
The task allocation (resource scheduling)
configurations are improved using the swarm
exploration method.

7.	 Resource Allocation Decision
The trade-offs between minimizing latency
and energy usage are considered while making
final resource allocation selections. To save
energy, fewer time-sensitive processes might
be assigned to the cloud and, critical jobs can
be allocated to fog nodes for speedy analysis.
To utilize resources, we arranged tasks into two
categories: critical and non-critical.

Fog computing’s resource allocation system
enhances real-time health data analysis in healthcare
settings by combining MPSO algorithms. In a
hospital setting, this method assures prompt replies,
resource efficiency, and energy effectiveness, all of
which improve patient care and medical decision-
making.

Therefore, we have proposed an MPSO-based
two-level model for resource scheduling that
combines application module placement and task
allocation with the objectives of minimizing latency,
network usage, cost, and energy consumption to
optimize resource utilization and improve system
performance. In the first step, the application
module placement is used to find the optimal fog
node to place each application module, considering
different criteria such as the computing capacity,
available bandwidth, and energy consumption of
each node.

Afterward, task allocation deals with assigning
the appropriate tasks to the most optimal fog nodes
for execution by taking into account the available
resources of fog nodes and the requirements
of various heterogeneous tasks of different
applications. This two-step MPSO-based resource
scheduling model has paved the way to unlock the
full potential of fog resources and optimize overall
system performance.

The algorithm for MPSO-based resource
scheduling is given as (Algorithm 1). We adopted
MPSO for resource scheduling in our proposed
algorithm. To choose the optimal tool for processing
incoming jobs, MPSO is employed. In this
algorithm, we’ve created a resource pool in which
all resources are kept. In the first step, the decision
maker will decide where to place the application
modules. In the second step, when a task arrives, it
will compare with the resources of each fog device
using MPSO before sending it to fog devices; if the

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 23

device is found then it will be added to the hash
map (queue). If the current device is not suitable,
then the same steps will be performed for searching
the next devices. If not, all available devices fulfill
the task’s needs, it will move to the cloud.

Algo. 1. MPSO-based resource scheduling.

Algorithm 2 will assign resources to tasks to the
appropriate fog nodes.
Algo. 2. Steps of MPSO

The steps of Algorithm 2 are given as follows:
1.	 Begin each particle with its position and

speed.
2.	 Each particle’s fitness value is assessed

in comparison to its top performance, the
personal best (pbest). If the current fitness

value is higher, the pbest is upgraded to the
new best.

3.	 Calculate the fitness value of each particle
using the fitness function.

4.	 Assign the particle with the highest fitness
value, determined in the previous phase
to a new position; it was then randomly
positioned with a radius of r around it, and
the other particles’ positions and velocities
were adjusted following the fitness
function. To determine whether a particle’s
new position is appropriate, compare it
to the particle with the lowest (optimal)
fitness value.

5.	 To find the optimal answer, verify the stated
criteria (fitness function); if it is discovered,
the algorithm has done iterating; otherwise,
return to step 4.

Figure 3 presents the flowchart of the MPSO
algorithm.

2.2. Simulation Setup

We have selected a healthcare scenario as a fog
computing use case discussed in subsection 2.1
and simulated it using iFogSim. Our work can be
considered as a combination of both theoretical
and experimental work. In a theoretical sense, we

Hameed et al

combining MPSO algorithms. In a hospital setting, this
method assures prompt replies, resource efficiency, and
energy effectiveness, all of which improve patient care
and medical decision-making.

Therefore, we have proposed an MPSO-based two-
level model for resource scheduling that combines
application module placement and task allocation with
the objectives of minimizing latency, network usage,
cost, and energy consumption to optimize resource
utilization and improve system performance. In the first
step, the application module placement is used to find
the optimal fog node to place each application module,
considering different criteria such as the computing
capacity, available bandwidth, and energy consumption
of each node.

Afterward, task allocation deals with assigning the
appropriate tasks to the most optimal fog nodes for
execution by taking into account the available resources
of fog nodes and the requirements of various
heterogeneous tasks of different applications. This two-
step MPSO-based resource scheduling model has paved
the way to unlock the full potential of fog resources and
optimize overall system performance.

The algorithm for MPSO-based resource
scheduling is given as (Algorithm 1). We adopted
MPSO for resource scheduling in our proposed
algorithm. To choose the optimal tool for processing
incoming jobs, MPSO is employed. In this algorithm,
we've created a resource pool in which all resources are
kept. In the first step, the decision maker will decide
where to place the application modules. In the second
step, when a task arrives, it will compare with the
resources of each fog device using MPSO before
sending it to fog devices; if the device is found then it
will be added to the hash map (queue). If the current
device is not suitable, then the same steps will be
performed for searching the next devices. If not, all
available devices fulfill the task's needs, it will move to
the cloud

Algo. 1. MPSO-based resource scheduling.

Algorithm 2 will assign resources to tasks to the
appropriate fog nodes.

Algo. 2. Steps of MPSO

The steps of Algorithm 2 are given as follows:

1. Begin each particle with its position and speed.
2. Each particle's fitness value is assessed in

comparison to its top performance, the personal
best (pbest). If the current fitness value is higher,
the pbest is upgraded to the new best.

Hameed et al

combining MPSO algorithms. In a hospital setting, this
method assures prompt replies, resource efficiency, and
energy effectiveness, all of which improve patient care
and medical decision-making.

Therefore, we have proposed an MPSO-based two-
level model for resource scheduling that combines
application module placement and task allocation with
the objectives of minimizing latency, network usage,
cost, and energy consumption to optimize resource
utilization and improve system performance. In the first
step, the application module placement is used to find
the optimal fog node to place each application module,
considering different criteria such as the computing
capacity, available bandwidth, and energy consumption
of each node.

Afterward, task allocation deals with assigning the
appropriate tasks to the most optimal fog nodes for
execution by taking into account the available resources
of fog nodes and the requirements of various
heterogeneous tasks of different applications. This two-
step MPSO-based resource scheduling model has paved
the way to unlock the full potential of fog resources and
optimize overall system performance.

The algorithm for MPSO-based resource
scheduling is given as (Algorithm 1). We adopted
MPSO for resource scheduling in our proposed
algorithm. To choose the optimal tool for processing
incoming jobs, MPSO is employed. In this algorithm,
we've created a resource pool in which all resources are
kept. In the first step, the decision maker will decide
where to place the application modules. In the second
step, when a task arrives, it will compare with the
resources of each fog device using MPSO before
sending it to fog devices; if the device is found then it
will be added to the hash map (queue). If the current
device is not suitable, then the same steps will be
performed for searching the next devices. If not, all
available devices fulfill the task's needs, it will move to
the cloud

Algo. 1. MPSO-based resource scheduling.

Algorithm 2 will assign resources to tasks to the
appropriate fog nodes.

Algo. 2. Steps of MPSO

The steps of Algorithm 2 are given as follows:

1. Begin each particle with its position and speed.
2. Each particle's fitness value is assessed in

comparison to its top performance, the personal
best (pbest). If the current fitness value is higher,
the pbest is upgraded to the new best.

Fig. 3. Flowchart of MPSO.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

3. Calculate the fitness value of each particle using
the fitness function.

4. Assign the particle with the highest fitness value,
determined in the previous phase to a new position;
it was then randomly positioned with a radius of r
around it, and the other particles' positions and
velocities were adjusted following the fitness
function. To determine whether a particle's new
position is appropriate, compare it to the particle
with the lowest (optimal) fitness value.

5. To find the optimal answer, verify the stated
criteria (fitness function); if it is discovered, the
algorithm has done iterating; otherwise, return to
step 4.

Figure 3 presents the flowchart of the MPSO
algorithm.

Fig. 3. Flowchart of MPSO.

2.2 Simulation Setup

We have selected a healthcare scenario as a fog
computing use case discussed in subsection 2.1 and
simulated it using iFogSim. Our work can be considered

as a combination of both theoretical and experimental
work. In a theoretical sense, we have simulated a real-
world healthcare scenario consisting of three healthcare
applications: Appointment Coordination System, Health
Record Management System, and Urgent Notification
System. In fog computing, it is common practice to
compare the resource scheduling based on modified-
PSO to base-PSO and First-Come-First-Serve (FCFS)
for many reasons. PSO is a nature-inspired optimisation
algorithm that finds the optimal solution by moving a
population of candidate solutions, known as particles,
around the search space. Each particle adjusts its
position based on its own and its neighbours' experiences,
to arrive at the best solution. Whereas, the FCFS
scheduling algorithm is a basic scheduling technique
that arranges tasks according to arrival order and always
executes the first task. These algorithms serve as
baseline scheduling algorithms that help researchers to
establish a baseline for performance evaluation that
demonstrates the impact and effectiveness of introduced
changes, ensuring a thorough evaluation and
understanding of their contributions in the context of
resource optimization. These comparisons also help to
understand the trade-offs between conflicting objectives
introduced by the modifications in PSO and whether
they strike a better balance across multiple performance
criteria such as latency, network usage, cost and energy
in a dynamic fog computing environment.

In terms of experimentation, we used iFogsim to
compare our proposed resource scheduling algorithm
MPSO with traditional (FCFS) and recent meta-heuristic
resource scheduling algorithm (PSO) under various
conditions and policies. We used real-world data and
different scenarios to test our model against real-world
performance metrics, showcasing the practical benefits
and limitations of modified PSO.

We have used iFogSim [26] to simulate our MPSO-
based resource scheduling (task allocation) strategies to
allocate the available resources to the task. IFogsim is a
powerful toolset for simulating resource management

24	 Hameed et al

have simulated a real-world healthcare scenario
consisting of three healthcare applications:
Appointment Coordination System, Health Record
Management System, and Urgent Notification
System. In fog computing, it is common practice
to compare the resource scheduling based on
modified-PSO to base-PSO and First-Come-
First-Serve (FCFS) for many reasons. PSO is a
nature-inspired optimisation algorithm that finds
the optimal solution by moving a population of
candidate solutions, known as particles, around the
search space. Each particle adjusts its position based
on its own and its neighbours’ experiences, to arrive
at the best solution. Whereas, the FCFS scheduling
algorithm is a basic scheduling technique that
arranges tasks according to arrival order and always
executes the first task. These algorithms serve as
baseline scheduling algorithms that help researchers
to establish a baseline for performance evaluation
that demonstrates the impact and effectiveness
of introduced changes, ensuring a thorough
evaluation and understanding of their contributions
in the context of resource optimization. These
comparisons also help to understand the trade-offs
between conflicting objectives introduced by the
modifications in PSO and whether they strike a
better balance across multiple performance criteria
such as latency, network usage, cost and energy in a
dynamic fog computing environment.

In terms of experimentation, we used iFogsim
to compare our proposed resource scheduling
algorithm MPSO with traditional (FCFS) and
recent meta-heuristic resource scheduling algorithm
(PSO) under various conditions and policies. We
used real-world data and different scenarios to test
our model against real-world performance metrics,
showcasing the practical benefits and limitations of
modified PSO.

We have used iFogSim [26] to simulate our
MPSO-based resource scheduling (task allocation)
strategies to allocate the available resources to the
task. IFogsim is a powerful toolset for simulating
resource management strategies in IoT and fog
computing scenarios. For this, we have extended
iFogSim with the proposed case study of the
healthcare scenario and added some more classes.
These classes are used to implement our proposed
MPSO-based scheduler. Below is a quick overview
of the classes commonly used:

Sensors: The sensor class helps to simulate IoT
sensors that generate data tuples with variable
lengths and then send them to fog devices.

Fog Device: This class instance imitates different
fog nodes with specified memory, computing
power, storage space, and uplink and downstream
bandwidth.

Tuples: All Fog’s entities communicate with each
other utilizing tuple class instances. Each tuple
has source, destination, and processing demands
expressed in MIPS.

Actuator: This class simulates an actuator by
defining the outcome of actuation and its network
connectivity properties. When a tuple from an
application module is received, this classes executes
a method that calculates useful metrics.
MPSO System: This class contains the details of fog
devices involved in the modified proposed particle
swarm algorithm that is in charge of assigning tasks
to appropriate fog nodes.

PSO System: This class contains the implementation
of the PSO algorithm that employs a group of
potential solutions, i.e., particles (known as a
swarm). We can use certain equations to shift these
particles in the search space.

Scheduler: This class controls the sequence of
execution of a list of upcoming tuples by using
different algorithms (FCFS, PSO, MPSO).

Particles: The particle class is used for the swarm
of particles and looks for the optimal position in the
search space. Each element has a specific location
pi = (pi1, pi2…. piN) and the speed si = (vi1, vi2,
. . . , viN) in the N-dimensional issue space, the
ith particle is represented by I, and N specifies the
problem’s dimension or the number of unknown
variables.

Vector: Vector class is used to determine the specific
position and coordinates. To find the location of the
particle or node requires the axis and coordinates
information. With the help of that, the system can
find out the specific location. The vector class,
location inside the search space, and best-known
position of the entire swarm all serve as cues for
the particle motions. These will eventually start

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 25

to direct the swarm’s motions once better sites are
found.

Swarm: The MPSO algorithm’s fundamental
version uses a swarm class, which employs a
population of potential solutions (called particles).
These particles are moved around in the search
space using a few simple formulae.

Figure 4 displays the tuple emission, MPSO-
based task allocation, and execution of tuples. In
the first step, the sensor transmits a tuple using the
transmit() function. The MPSO-based scheduler
class calls the findbestFog() function to choose
the best fog node for placement of appropriate
application modules on optimal fog nodes.
Afterward, the tasks are allocated to these modules
for processing. In findbestFog() function the
MPSO scheduler uses both the local best module
placement and task allocation solution that it has
found by using any task allocation strategy and a
set of non-dominated module placement and task
allocation strategies for multiple objectives to
find the overall best fog node to process the task.
The objective function was to minimize delay,
energy consumption, and cost. When a tuple
is received at any fog node, the fog node calls
processTupleArrival() function to execute the tuple
or forward it to a higher-level fog node. When a
tuple is fully executed, the CloudletFinish() method

notifies the scheduler to request the execution of the
next tuple.

2.2.1 Configurations

We have conducted a thorough simulation-based
investigation to examine the impact of the modified
particle swarm optimization (MPSO) technique.
In our simulation, we have used six topologies of
100, 150, 200, 250, 300, and 350 nodes that are
arranged in four tiers: sensors and actuators at
the bottom-most layer are connected with a set of
low-level fog devices that serve as Data Collector
and Processor (DCP). These lower-level fog nodes
are connected with upper-level fog nodes (that
serve as the Coordinator) at the third tier and these
high-level fog devices are connected with the
Cloud (serving as the patient record database) at
the top. We fixed the number of cloud and high-
level fog devices for each set of experiments to 1
and 4, respectively. The number of low-level fog
generators we used ranged from 25, 50, 75, and
100, resulting in six topologies with 100, 150,
200, 250, 300, and 350 nodes, respectively. Each
fog device receives information from sensors that
are attached to it and takes appropriate action. For
each arrangement, the simulation takes 400 units of
time. The configuration of fog devices containing
MIPS, Ram, upper-level bandwidth, and down-
level bandwidth are given in Table 1.

The details of tuples that are generated by modules
and their respective CPU length requirements are
mentioned in Table 2.

3.	 RESULTS AND DISCUSSION

We have compared the performance of MPSO with
both traditional and recent meta-heuristic resource
scheduling algorithms. We have chosen FCFS from
traditional algorithms and PSO from recent meta-

Fig. 4. Sequence diagram of resource scheduling on
best node by using MPSO.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

Fig. 4. Sequence diagram of resource scheduling on best
node by using MPSO.

2.2.1 Configurations

We have conducted a thorough simulation-based
investigation to examine the impact of the modified
particle swarm optimization (MPSO) technique. In our
simulation, we have used six topologies of 100, 150, 200,
250, 300, and 350 nodes that are arranged in four tiers:
sensors and actuators at the bottom-most layer are
connected with a set of low-level fog devices that serve
as Data Collector and Processor (DCP). These lower-
level fog nodes are connected with upper-level fog nodes
(that serve as the Coordinator) at the third tier and these
high-level fog devices are connected with the Cloud
(serving as the patient record database) at the top. We
fixed the number of cloud and high-level fog devices for
each set of experiments to 1 and 4, respectively. The
number of low-level fog generators we used ranged from
25, 50, 75, and 100, resulting in six topologies with 100,
150, 200, 250, 300, and 350 nodes, respectively. Each
fog device receives information from sensors that are
attached to it and takes appropriate action. For each
arrangement, the simulation takes 400 units of time. The
configuration of fog devices containing MIPS, Ram,

upper-level bandwidth, and down-level bandwidth are
given in Table 1.

Table 1. Fog nodes configuration.
Device
Name

MIPS Memory UBW DBW

Cloud 44800 40000 100 10000

Base station 5600 4000 10000 10000

Upper-level
Fog Nodes

5600 4000 10000 10000

Lower-level
Fog Node

800 1000 10000 270

The details of tuples that are generated by modules and
their respective CPU length requirements are mentioned
in Table 2.

Table 2. Tuples with their CPU length (in MIPS).
Tuple type CPU length

ECG 3000

SENSOR 3500

DATA_REC 1000

DATA_Type 14

RECV_REQ 28

CRITICAL 1000
NON_CRITICAL 1000

DISPLAY 500

3. RESULTS AND DISCUSSION

We have compared the performance of MPSO with both
traditional and recent meta-heuristic resource scheduling
algorithms. We have chosen FCFS from traditional
algorithms and PSO from recent meta-heuristic
algorithms as used in many recent studies [26-34]. The
performance of MPSO algorithms is evaluated by
minimizing latency, network usage, cost, and energy
consumption.

Table 1. Fog nodes configuration.

Device Name MIPS Memory UBW DBW

Cloud 44800 40000 100 10000

Base station 5600 4000 10000 10000

Upper-level
Fog Nodes

5600 4000 10000 10000

Lower-level
Fog Node

800 1000 10000 270

26	 Hameed et al

heuristic algorithms as used in many recent studies
[26-34]. The performance of MPSO algorithms is
evaluated by minimizing latency, network usage,
cost, and energy consumption.

3.1	 Performance Metrics

We have chosen four metrics, latency is calculated
using the overall system whole loop as well as for
each loop, energy consumption, network utilization,
and cost of execution.

i) Average Loop Delay

We have used the term “loop delay” to calculate the
end-to-end latency. Loop delay refers to the time
required to shift data in multiple modules that are
placed on different nodes. The end-to-end latency
of each module in the loop is calculated by using a
control loop. We have calculated the control loops
for different types of tuples transferring data among
different modules of the healthcare case study
that are explained in subsection 2.1, namely, the
Appointment Coordination System, Health Record
Management System, and Urgent Notification
System.

i.	 Urgent Notification Loop: DCP->Coordinator-
>display

ii.	 Appointment Coordination Loop: DCP->
Coordinator ->DCP->display

iii.	 Healthcare Record Management Loop: DCP-
> Coordinator ->Medical Record Database

iv.	 History: Coordinator -> Medical Record
Database-> Coordinator ->DCP

v.	 ECG -> MedicalRecordDB-> Coordinator->
MedicalRecordDB -> display

To determine the loop latency, we computed

the average processor time Tcpu, consumed by tuples
of the same type. This average is then calculated
using Equation (1).

Where ITi is the initial execution time by all
tuples of a specific type of tuple, LTi is the end
execution time of ith tuple, and N is the total number
of executed tuples of a certain type. By using
Equation (2) we can calculate the execution delay
of each tuple.

 Delayi = LTi -ITi ∀i ∈ T (2)

Where T represents the current tuple set.

We have shown along the x-axis number of
nodes and y-axis loop delay in Figures 5, 6, 7, 8,
9, and 10 with blue, red, and green bars for FCFS,
PSO, and MPSO, respectively. Figure 5 shows the
average loop delay for an emergency alert system
computed using FCFS, PSO, and MPSO. The loop
delay of MPSO and PSO remains almost the same
even with an increasing number of nodes but for
FCFS it fluctuates.

The urgent notification system needs minimal
latency to be efficient, therefore, both PSO and
MPSO have placed the urgent notification system at
edge devices ingrained in low latency, high priority
and local data processing that leads to similar
performance.

In Figure 6 the loop delay of the Appointment
Coordination System is shown. The results of

Table 2. Tuples with their CPU length (in MIPS).
Tuple type CPU length

ECG 3000

SENSOR 3500

DATA_REC 1000

DATA_Type 14

RECV_REQ 28

CRITICAL 1000
NON_CRITICAL 1000

DISPLAY 500

Hameed et al

3.1 Performance Metrics

We have chosen four metrics, latency is calculated using
the overall system whole loop as well as for each loop,
energy consumption, network utilization, and cost of
execution.
i) Average Loop Delay
We have used the term "loop delay" to calculate the end-
to-end latency. Loop delay refers to the time required to
shift data in multiple modules that are placed on different
nodes. The end-to-end latency of each module in the
loop is calculated by using a control loop. We have
calculated the control loops for different types of tuples
transferring data among different modules of the
healthcare case study that are explained in subsection 2.1,
namely, the Appointment Coordination System, Health
Record Management System, and Urgent Notification
System.
These loops are given below:

i. Urgent Notification Loop: DCP->Coordinator-
>display

ii. Appointment Coordination Loop: DCP->
Coordinator ->DCP->display

iii. Healthcare Record Management Loop: DCP->
Coordinator ->Medical Record Database

iv. History: Coordinator -> Medical Record Database-
> Coordinator ->DCP

v. ECG -> MedicalRecordDB-> Coordinator->
MedicalRecordDB -> display

To determine the loop latency, we computed the
average processor time Tcpu, consumed by tuples of the
same type. This average is then calculated using
Equation (1).

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =

{

𝐼𝐼𝐼𝐼𝑐𝑐×N+ 𝐿𝐿𝐿𝐿𝑖𝑖−𝐼𝐼𝐼𝐼𝑖𝑖
𝑁𝑁+1 , 𝑖𝑖f the average CPU

 time is already computed

𝐿𝐿𝐿𝐿𝑖𝑖 − 𝐼𝐼𝐼𝐼𝑖𝑖, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1)

Where ITi is the initial execution time by all tuples of a
specific type of tuple, LTi is the end execution time of ith
tuple, and N is the total number of executed tuples of a

certain type. By using Equation (2) we can calculate the
execution delay of each tuple.

Delayi = LTi -ITi ∀i ∈ T (2)

Where T represents the current tuple set.

We have shown along the x-axis number of nodes
and y-axis loop delay in Figures 5, 6, 7, 8, 9, and 10 with
blue, red, and green bars for FCFS, PSO, and MPSO,
respectively. Figure 5 shows the average loop delay for
an emergency alert system computed using FCFS, PSO,
and MPSO. The loop delay of MPSO and PSO remains
almost the same even with an increasing number of
nodes but for FCFS it fluctuates.

The urgent notification system needs minimal
latency to be efficient, therefore, both PSO and MPSO
have placed the urgent notification system at edge
devices ingrained in low latency, high priority and local
data processing that leads to similar performance.

Fig. 5. Loop delay for Urgent Alert.

In Figure 6 the loop delay of the Appointment
Coordination System is shown. The results of MPSO are
better than PSO and FCSF. FCFS has a greater amount
of delay starting from a small size and grows as the no.
of nodes rises, whereas the PSO and MPSO are the same
denoted by bars.

Fig. 5. Loop delay for Urgent Alert.

Hameed et al

3.1 Performance Metrics

We have chosen four metrics, latency is calculated using
the overall system whole loop as well as for each loop,
energy consumption, network utilization, and cost of
execution.
i) Average Loop Delay
We have used the term "loop delay" to calculate the end-
to-end latency. Loop delay refers to the time required to
shift data in multiple modules that are placed on different
nodes. The end-to-end latency of each module in the
loop is calculated by using a control loop. We have
calculated the control loops for different types of tuples
transferring data among different modules of the
healthcare case study that are explained in subsection 2.1,
namely, the Appointment Coordination System, Health
Record Management System, and Urgent Notification
System.
These loops are given below:

i. Urgent Notification Loop: DCP->Coordinator-
>display

ii. Appointment Coordination Loop: DCP->
Coordinator ->DCP->display

iii. Healthcare Record Management Loop: DCP->
Coordinator ->Medical Record Database

iv. History: Coordinator -> Medical Record Database-
> Coordinator ->DCP

v. ECG -> MedicalRecordDB-> Coordinator->
MedicalRecordDB -> display

To determine the loop latency, we computed the
average processor time Tcpu, consumed by tuples of the
same type. This average is then calculated using
Equation (1).

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =

{

𝐼𝐼𝐼𝐼𝑐𝑐×N+ 𝐿𝐿𝐿𝐿𝑖𝑖−𝐼𝐼𝐼𝐼𝑖𝑖
𝑁𝑁+1 , 𝑖𝑖f the average CPU

 time is already computed

𝐿𝐿𝐿𝐿𝑖𝑖 − 𝐼𝐼𝐼𝐼𝑖𝑖, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1)

Where ITi is the initial execution time by all tuples of a
specific type of tuple, LTi is the end execution time of ith
tuple, and N is the total number of executed tuples of a

certain type. By using Equation (2) we can calculate the
execution delay of each tuple.

Delayi = LTi -ITi ∀i ∈ T (2)

Where T represents the current tuple set.

We have shown along the x-axis number of nodes
and y-axis loop delay in Figures 5, 6, 7, 8, 9, and 10 with
blue, red, and green bars for FCFS, PSO, and MPSO,
respectively. Figure 5 shows the average loop delay for
an emergency alert system computed using FCFS, PSO,
and MPSO. The loop delay of MPSO and PSO remains
almost the same even with an increasing number of
nodes but for FCFS it fluctuates.

The urgent notification system needs minimal
latency to be efficient, therefore, both PSO and MPSO
have placed the urgent notification system at edge
devices ingrained in low latency, high priority and local
data processing that leads to similar performance.

Fig. 5. Loop delay for Urgent Alert.

In Figure 6 the loop delay of the Appointment
Coordination System is shown. The results of MPSO are
better than PSO and FCSF. FCFS has a greater amount
of delay starting from a small size and grows as the no.
of nodes rises, whereas the PSO and MPSO are the same
denoted by bars.

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 27

MPSO are better than PSO and FCSF. FCFS has a
greater amount of delay starting from a small size
and grows as the no. of nodes rises, whereas the
PSO and MPSO are the same denoted by bars.

Figure 7 shows the loop delay for medical

record management where FCFS performs better
than PSO and MPSO but with an increase in the
number of nodes from 250 to 350 MPSO shows
better results than FCFS and PSO.

In Figure 8 the loop delay of the medical
history of patients is plotted, which shows that
MPSO causes less delay in processing this record

as compared to PSO and MPSO even with an
increasing number of nodes.

ii) System whole loop delay

System whole loop latency is the time delay
between the start of the application in a system to
the end of the results of the application in a system.
Equation (3) shows the formalization of System
Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp		 (3)

Where ET is the total execution time of Nth tuples
Ntp, Tf is the final time of tuple N, Nttp is the total
number of tuples, and Ti is a tuple’s initial time.

Figure 9 presents the combo plot of the system
whole loop delay of FCFS, PSO, and MPSO.
MPSO shows less delay as compared to PSO. The
blue line represents the loop delay of FCFS which
is quite large as compared to the MPSO and PSO.

iii) Energy Consumption

Energy loss is defined as energy supplied to
a system that is not immediately consumed by
computing processes such as power delivery and
conversion, cooling, and lighting. Equation (4) is
used to calculate the devices in the system’s energy
consumption; we can calculate how much energy a
Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH (4)

The energy consumption of any fog node is
calculated by the power of all the host nodes in a
specific period required for execution. Ei denotes
the current consumed energy, Tpf is the recent time,

Fig. 6. Loop delay for appointment coordination.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

Fig. 6. Loop delay for appointment coordination.

Figure 7 shows the loop delay for medical record
management where FCFS performs better than PSO and
MPSO but with an increase in the number of nodes from
250 to 350 MPSO shows better results than FCFS and
PSO.

Fig. 7. Loop delay for healthcare record management.

In Figure 8 the loop delay of the medical history of
patients is plotted, which shows that MPSO causes less
delay in processing this record as compared to PSO and
MPSO even with an increasing number of nodes.

Fig. 8. Loop delay for history.

ii) System whole loop delay
System whole loop latency is the time delay between

the start of the application in a system to the end of the
results of the application in a system. Equation (3) shows
the formalization of System Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp (3)

Where ET is the total execution time of Nth tuples Ntp, Tf
is the final time of tuple N, Nttp is the total number of
tuples, and Ti is a tuple's initial time.

Fig. 9. System whole loop delay.

Figure 9 presents the combo plot of the system
whole loop delay of FCFS, PSO, and MPSO. MPSO
shows less delay as compared to PSO. The blue line
represents the loop delay of FCFS which is quite large
as compared to the MPSO and PSO.
iii) Energy Consumption

Energy loss is defined as energy supplied to a system
that is not immediately consumed by computing
processes such as power delivery and conversion,
cooling, and lighting. Equation (4) is used to calculate
the devices in the system's energy consumption; we can
calculate how much energy a Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH (4)

The energy consumption of any fog node is
calculated by the power of all the host nodes in a specific
period required for execution. Ei denotes the current
consumed energy, Tpf is the recent time, Tpi is the update
time of last utilization, and PH is the host power in last
utilization.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

Fig. 6. Loop delay for appointment coordination.

Figure 7 shows the loop delay for medical record
management where FCFS performs better than PSO and
MPSO but with an increase in the number of nodes from
250 to 350 MPSO shows better results than FCFS and
PSO.

Fig. 7. Loop delay for healthcare record management.

In Figure 8 the loop delay of the medical history of
patients is plotted, which shows that MPSO causes less
delay in processing this record as compared to PSO and
MPSO even with an increasing number of nodes.

Fig. 8. Loop delay for history.

ii) System whole loop delay
System whole loop latency is the time delay between

the start of the application in a system to the end of the
results of the application in a system. Equation (3) shows
the formalization of System Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp (3)

Where ET is the total execution time of Nth tuples Ntp, Tf
is the final time of tuple N, Nttp is the total number of
tuples, and Ti is a tuple's initial time.

Fig. 9. System whole loop delay.

Figure 9 presents the combo plot of the system
whole loop delay of FCFS, PSO, and MPSO. MPSO
shows less delay as compared to PSO. The blue line
represents the loop delay of FCFS which is quite large
as compared to the MPSO and PSO.
iii) Energy Consumption

Energy loss is defined as energy supplied to a system
that is not immediately consumed by computing
processes such as power delivery and conversion,
cooling, and lighting. Equation (4) is used to calculate
the devices in the system's energy consumption; we can
calculate how much energy a Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH (4)

The energy consumption of any fog node is
calculated by the power of all the host nodes in a specific
period required for execution. Ei denotes the current
consumed energy, Tpf is the recent time, Tpi is the update
time of last utilization, and PH is the host power in last
utilization.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

Fig. 6. Loop delay for appointment coordination.

Figure 7 shows the loop delay for medical record
management where FCFS performs better than PSO and
MPSO but with an increase in the number of nodes from
250 to 350 MPSO shows better results than FCFS and
PSO.

Fig. 7. Loop delay for healthcare record management.

In Figure 8 the loop delay of the medical history of
patients is plotted, which shows that MPSO causes less
delay in processing this record as compared to PSO and
MPSO even with an increasing number of nodes.

Fig. 8. Loop delay for history.

ii) System whole loop delay
System whole loop latency is the time delay between

the start of the application in a system to the end of the
results of the application in a system. Equation (3) shows
the formalization of System Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp (3)

Where ET is the total execution time of Nth tuples Ntp, Tf
is the final time of tuple N, Nttp is the total number of
tuples, and Ti is a tuple's initial time.

Fig. 9. System whole loop delay.

Figure 9 presents the combo plot of the system
whole loop delay of FCFS, PSO, and MPSO. MPSO
shows less delay as compared to PSO. The blue line
represents the loop delay of FCFS which is quite large
as compared to the MPSO and PSO.
iii) Energy Consumption

Energy loss is defined as energy supplied to a system
that is not immediately consumed by computing
processes such as power delivery and conversion,
cooling, and lighting. Equation (4) is used to calculate
the devices in the system's energy consumption; we can
calculate how much energy a Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH (4)

The energy consumption of any fog node is
calculated by the power of all the host nodes in a specific
period required for execution. Ei denotes the current
consumed energy, Tpf is the recent time, Tpi is the update
time of last utilization, and PH is the host power in last
utilization.

Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach

Fig. 6. Loop delay for appointment coordination.

Figure 7 shows the loop delay for medical record
management where FCFS performs better than PSO and
MPSO but with an increase in the number of nodes from
250 to 350 MPSO shows better results than FCFS and
PSO.

Fig. 7. Loop delay for healthcare record management.

In Figure 8 the loop delay of the medical history of
patients is plotted, which shows that MPSO causes less
delay in processing this record as compared to PSO and
MPSO even with an increasing number of nodes.

Fig. 8. Loop delay for history.

ii) System whole loop delay
System whole loop latency is the time delay between

the start of the application in a system to the end of the
results of the application in a system. Equation (3) shows
the formalization of System Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp (3)

Where ET is the total execution time of Nth tuples Ntp, Tf
is the final time of tuple N, Nttp is the total number of
tuples, and Ti is a tuple's initial time.

Fig. 9. System whole loop delay.

Figure 9 presents the combo plot of the system
whole loop delay of FCFS, PSO, and MPSO. MPSO
shows less delay as compared to PSO. The blue line
represents the loop delay of FCFS which is quite large
as compared to the MPSO and PSO.
iii) Energy Consumption

Energy loss is defined as energy supplied to a system
that is not immediately consumed by computing
processes such as power delivery and conversion,
cooling, and lighting. Equation (4) is used to calculate
the devices in the system's energy consumption; we can
calculate how much energy a Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH (4)

The energy consumption of any fog node is
calculated by the power of all the host nodes in a specific
period required for execution. Ei denotes the current
consumed energy, Tpf is the recent time, Tpi is the update
time of last utilization, and PH is the host power in last
utilization.

Fig. 7. Loop delay for healthcare record management.

Fig. 8. Loop delay for history.

Fig. 9. System whole loop delay.

28	 Hameed et al

Tpi is the update time of last utilization, and PH is the
host power in last utilization.

Figure 10 shows the energy utilized by various
fog nodes of the system. Along the x-axis we have
plotted the number of fog nodes for all six sets
of experiments starting from 100 and ending at
350. Along the y-axis we have plotted the energy
consumed by these fog devices.

iv) Network Usage

Network utilization, Nuse, is the third assessment
factor. As the quantity of units expands, so does
network consumption, which causes congestion.
We compute network usage using Equation (5).

N signifies the total number of tuples, Di denotes

the delay, and Ni is the size of the ith tuple.

To illustrate how fog devices use the network,
this section compares the FCFS algorithm to the
MPSO and PSO. The network use of PSO, MPSO,
and FCFS is compared using a combo plot in Figure
11. The x-axis represents the number of nodes,
and the y-axis represents the average network
utilization. The outcome demonstrates that network
usage of MPSO is less than PSO and FCFS for all
sets of nodes in all experiments.

v) Cost of Execution

To check the availability and reliability of the
proposed module, one of the parameters is the cost
of execution. Execution cost can be computed by
using Equation (6).

CE = FC + VC/NUP (6)

CE is the total cost of execution FC is for the
fixed cost VC is used instead of variable cost and
NUP is for the number of units produced.

Figure 12 shows the execution cost of all six
sets of nodes for all experiments. Along x-axis
we have taken several nodes and along the y-axis,
the cost consumed by various fog nodes in all
experiments. The combo graph shows that MPSO
has less cost as compared to PSO. The execution
cost using FCFS is represented by a blue line that
indicates its worst performance.

The outcomes demonstrate that the suggested
MPSO outperforms FCFS and PSO in all
performance metrics including latency, energy
consumption, network usage, and cost of execution.
These results reveal the effectiveness and superiority
of the proposed MPSO-based resource scheduling
as compared to the traditional FCFS and recent
meta-heuristic PSO.

4.	 CONCLUSIONS

Resource scheduling in fog computing aims to
maximize resource utilization along different
performance metrics, but the heterogeneity of
resource-limited fog devices, and the dynamic nature
of the fog environment, make resource scheduling a
challenging problem. To address this issue, we have
proposed a Modified Particle Swarm Optimization
(MPSO) based resource scheduling algorithm that Fig. 10. Energy Consumption.

Fig. 11. Network Usage.

Hameed et al

Figure 10 shows the energy utilized by various fog
nodes of the system. Along the x-axis we have plotted
the number of fog nodes for all six sets of experiments
starting from 100 and ending at 350. Along the y-axis we
have plotted the energy consumed by these fog devices.

Fig. 10. Energy Consumption.

iv) Network Usage
Network utilization, Nuse, is the third assessment factor.
As the quantity of units expands, so does network
consumption, which causes congestion. We compute
network usage using Equation (5).

𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝐷𝐷𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖
𝑁𝑁
𝑖𝑖=1 (5)

N signifies the total number of tuples, Di denotes the
delay, and Ni is the size of the ith tuple.

Fig. 11. Network Usage.

To illustrate how fog devices use the network, this
section compares the FCFS algorithm to the MPSO and
PSO. The network use of PSO, MPSO, and FCFS is
compared using a combo plot in Figure 11. The x-axis
represents the number of nodes, and the y-axis

represents the average network utilization. The outcome
demonstrates that network usage of MPSO is less than
PSO and FCFS for all sets of nodes in all experiments.
v) Cost of Execution
To check the availability and reliability of the proposed
module, one of the parameters is the cost of execution.
Execution cost can be computed by using Equation (6).

CE = FC + VC/NUP (6)
CE is the total cost of execution FC is for the fixed cost
VC is used instead of variable cost and NUP is for the
number of units produced.

Fig. 12. Cost of Execution.

Figure 12 shows the execution cost of all six sets of
nodes for all experiments. Along x-axis we have taken
several nodes and along the y-axis, the cost consumed
by various fog nodes in all experiments. The combo
graph shows that MPSO has less cost as compared to
PSO. The execution cost using FCFS is represented by a
blue line that indicates its worst performance.

The outcomes demonstrate that the suggested
MPSO outperforms FCFS and PSO in all performance
metrics including latency, energy consumption, network
usage, and cost of execution. These results reveal the
effectiveness and superiority of the proposed MPSO-
based resource scheduling as compared to the traditional
FCFS and recent meta-heuristic PSO.

4. CONCLUSIONS

Resource scheduling in fog computing aims to maximize
resource utilization along different performance metrics,

Hameed et al

Figure 10 shows the energy utilized by various fog
nodes of the system. Along the x-axis we have plotted
the number of fog nodes for all six sets of experiments
starting from 100 and ending at 350. Along the y-axis we
have plotted the energy consumed by these fog devices.

Fig. 10. Energy Consumption.

iv) Network Usage
Network utilization, Nuse, is the third assessment factor.
As the quantity of units expands, so does network
consumption, which causes congestion. We compute
network usage using Equation (5).

𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝐷𝐷𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖
𝑁𝑁
𝑖𝑖=1 (5)

N signifies the total number of tuples, Di denotes the
delay, and Ni is the size of the ith tuple.

Fig. 11. Network Usage.

To illustrate how fog devices use the network, this
section compares the FCFS algorithm to the MPSO and
PSO. The network use of PSO, MPSO, and FCFS is
compared using a combo plot in Figure 11. The x-axis
represents the number of nodes, and the y-axis

represents the average network utilization. The outcome
demonstrates that network usage of MPSO is less than
PSO and FCFS for all sets of nodes in all experiments.
v) Cost of Execution
To check the availability and reliability of the proposed
module, one of the parameters is the cost of execution.
Execution cost can be computed by using Equation (6).

CE = FC + VC/NUP (6)
CE is the total cost of execution FC is for the fixed cost
VC is used instead of variable cost and NUP is for the
number of units produced.

Fig. 12. Cost of Execution.

Figure 12 shows the execution cost of all six sets of
nodes for all experiments. Along x-axis we have taken
several nodes and along the y-axis, the cost consumed
by various fog nodes in all experiments. The combo
graph shows that MPSO has less cost as compared to
PSO. The execution cost using FCFS is represented by a
blue line that indicates its worst performance.

The outcomes demonstrate that the suggested
MPSO outperforms FCFS and PSO in all performance
metrics including latency, energy consumption, network
usage, and cost of execution. These results reveal the
effectiveness and superiority of the proposed MPSO-
based resource scheduling as compared to the traditional
FCFS and recent meta-heuristic PSO.

4. CONCLUSIONS

Resource scheduling in fog computing aims to maximize
resource utilization along different performance metrics,

Hameed et al

Figure 10 shows the energy utilized by various fog
nodes of the system. Along the x-axis we have plotted
the number of fog nodes for all six sets of experiments
starting from 100 and ending at 350. Along the y-axis we
have plotted the energy consumed by these fog devices.

Fig. 10. Energy Consumption.

iv) Network Usage
Network utilization, Nuse, is the third assessment factor.
As the quantity of units expands, so does network
consumption, which causes congestion. We compute
network usage using Equation (5).

𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝐷𝐷𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖
𝑁𝑁
𝑖𝑖=1 (5)

N signifies the total number of tuples, Di denotes the
delay, and Ni is the size of the ith tuple.

Fig. 11. Network Usage.

To illustrate how fog devices use the network, this
section compares the FCFS algorithm to the MPSO and
PSO. The network use of PSO, MPSO, and FCFS is
compared using a combo plot in Figure 11. The x-axis
represents the number of nodes, and the y-axis

represents the average network utilization. The outcome
demonstrates that network usage of MPSO is less than
PSO and FCFS for all sets of nodes in all experiments.
v) Cost of Execution
To check the availability and reliability of the proposed
module, one of the parameters is the cost of execution.
Execution cost can be computed by using Equation (6).

CE = FC + VC/NUP (6)
CE is the total cost of execution FC is for the fixed cost
VC is used instead of variable cost and NUP is for the
number of units produced.

Fig. 12. Cost of Execution.

Figure 12 shows the execution cost of all six sets of
nodes for all experiments. Along x-axis we have taken
several nodes and along the y-axis, the cost consumed
by various fog nodes in all experiments. The combo
graph shows that MPSO has less cost as compared to
PSO. The execution cost using FCFS is represented by a
blue line that indicates its worst performance.

The outcomes demonstrate that the suggested
MPSO outperforms FCFS and PSO in all performance
metrics including latency, energy consumption, network
usage, and cost of execution. These results reveal the
effectiveness and superiority of the proposed MPSO-
based resource scheduling as compared to the traditional
FCFS and recent meta-heuristic PSO.

4. CONCLUSIONS

Resource scheduling in fog computing aims to maximize
resource utilization along different performance metrics,

Hameed et al

Figure 10 shows the energy utilized by various fog
nodes of the system. Along the x-axis we have plotted
the number of fog nodes for all six sets of experiments
starting from 100 and ending at 350. Along the y-axis we
have plotted the energy consumed by these fog devices.

Fig. 10. Energy Consumption.

iv) Network Usage
Network utilization, Nuse, is the third assessment factor.
As the quantity of units expands, so does network
consumption, which causes congestion. We compute
network usage using Equation (5).

𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝐷𝐷𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖
𝑁𝑁
𝑖𝑖=1 (5)

N signifies the total number of tuples, Di denotes the
delay, and Ni is the size of the ith tuple.

Fig. 11. Network Usage.

To illustrate how fog devices use the network, this
section compares the FCFS algorithm to the MPSO and
PSO. The network use of PSO, MPSO, and FCFS is
compared using a combo plot in Figure 11. The x-axis
represents the number of nodes, and the y-axis

represents the average network utilization. The outcome
demonstrates that network usage of MPSO is less than
PSO and FCFS for all sets of nodes in all experiments.
v) Cost of Execution
To check the availability and reliability of the proposed
module, one of the parameters is the cost of execution.
Execution cost can be computed by using Equation (6).

CE = FC + VC/NUP (6)
CE is the total cost of execution FC is for the fixed cost
VC is used instead of variable cost and NUP is for the
number of units produced.

Fig. 12. Cost of Execution.

Figure 12 shows the execution cost of all six sets of
nodes for all experiments. Along x-axis we have taken
several nodes and along the y-axis, the cost consumed
by various fog nodes in all experiments. The combo
graph shows that MPSO has less cost as compared to
PSO. The execution cost using FCFS is represented by a
blue line that indicates its worst performance.

The outcomes demonstrate that the suggested
MPSO outperforms FCFS and PSO in all performance
metrics including latency, energy consumption, network
usage, and cost of execution. These results reveal the
effectiveness and superiority of the proposed MPSO-
based resource scheduling as compared to the traditional
FCFS and recent meta-heuristic PSO.

4. CONCLUSIONS

Resource scheduling in fog computing aims to maximize
resource utilization along different performance metrics,

Fig. 12. Cost of Execution.

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 29

combines application module placement and task
allocation by finding the optimal fog node to place
each application module and assign appropriate
tasks to the most suitable fog nodes for execution.
The MPSO-based resource scheduling aims to
maximize the utilization of resources by doing a
trade-off of multiple objectives simultaneously,
such as minimization of latency, network usage,
energy consumption, and execution cost. We have
applied our MPSO-based resource scheduling
on a healthcare scenario with three healthcare
applications namely the Urgent Notification
System, Appointment Coordination System, and
Health Record Management System as part of our
fog computing use case. We then used iFogSim
to design, model, and evaluate the performance
of these systems under various conditions and
scenarios. MPSO outperforms FCFS and PSO in
minimizing latency for all healthcare applications
including, the Urgent Notification System,
Appointment Coordination System, and Health
Record Management System. The comparison
of results show that MPSO is better suited for all
three applications of healthcare scenarios. At the
start, the FCFS shows less loop delay than PSO
and MPSO, but as the number of nodes increases
MPSO shows better results as compared to FCFS
and PSO. Furthermore, the analysis of results
reveals that MPSO optimizes resource utilization
by consuming less energy, low network usage, and
reduced cost when compared with FCFS and PSO.

Although the modified PSO improved the
performance in dynamic and distributed fog
computing environment, but it also results in
additional computational complexity and slow
convergence. In future, we will address these
challenges by applying machine learning algorithm
with MPSO to improve its performance.

5.	 CONFLICT OF INTEREST

The authors declare no conflict of interest.

6.	 REFERENCES

1.	 A. Alabdulatif, N.N. Thilakarathne, Z.K. Lawal,
K.E. Fahim, and R.Y. Zakari. Internet of nano-
things (iont): A comprehensive review from
architecture to security and privacy challenges.
Sensors 23(5): 1–26 (2023).

2.	 F. Alhaidari, A. Rahman, and R. Zagrouba.
Cloud of Things: architecture, applications and
challenges. Journal of Ambient Intelligence and

Humanized Computing 14(5): 5957-5975 (2023).
3.	 K. Cao, Y. Liu, G. Meng, and Q. Sun. An overview

on edge computing research. IEEE access 8:
85714–85728 (2020).

4.	 S.N. Srirama. A decade of research in fog
computing: relevance, challenges, and
future directions. Software: Practice and
Experience 54(1): 3-23 (2024).

5.	 M. Aazam, S. Zeadally, and K.A. Harras. Fog
computing architecture, evaluation, and future
research directions. IEEE Communications
Magazine 56(5): 46–52 (2018).

6.	 B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R.
Buyya. Resource allocation and task scheduling
in fog computing and internet of everything
environments: A taxonomy, review, and future
directions. ACM Computing Surveys 54(11s): 233
(2022).

7.	 M. Ghobaei-Arani, A. Souri, and A.A. Rahmanian.
Resource management approaches in fog
computing: a comprehensive review. Journal of
Grid Computing 18(1): 1–42 (2020).

8.	 M.D. Benedetti, F. Messina, G. Pappalardo, and C.
Santoro. JarvSis: a distributed scheduler for IoT
applications. Cluster Computing 20(2): 1775–1790
(2017).

9.	 Z. Movahedi, B. Defude, and A.M. Hosseininia.
An efficient population-based multi-objective task
scheduling approach in fog computing systems.
Journal of Cloud Computing: Advances, Systems
and Applications 10(1): 53 (2021).

10.	 C.G. Wu, W. Li, L. Wang, and A.Y. Zomaya. An
evolutionary fuzzy scheduler for multi-objective
resource allocation in fog computing. Future
Generation Computer Systems 117: 498-509
(2021).

11.	 B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir,
and H. Ijaz. A job scheduling algorithm for delay
and performance optimization in fog computing.
Concurrency and Computation: Practice and
Experience 32(7): e5581 (2019).

12.	 S. Jošilo, and G. Dán. Decentralized algorithm
for randomized task allocation in fog computing
systems. IEEE/ACM Transactions on Networking
27(1): 85–97 (2019).

13.	 H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and
Z. Han. Computing resource allocation in three-tier
IoT fog networks: A joint optimization approach
combining Stackelberg game and matching. IEEE
Internet of Things Journal 4(5): 1204–1215 (2017).

14.	 H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and
Z. Han. A hierarchical game framework for
resource management in fog computing. IEEE
Communications Magazine 55(8): 52–57 (2017).

15.	 Y. Sun, F. Lin, and H. Xu. Multi-objective
optimization of resource scheduling in fog
computing using an improved NSGA-II. Wireless

30	 Hameed et al

Personal Communications 102(2): 1369–1385
(2018).

16.	 S. Bitam, S. Zeadally, and A. Mellouk. Fog
computing job scheduling optimization based on
bees swarm. Enterprise Information Systems 12(4):
373–397 (2018).

17.	 X. Chen, and L. Wang. Exploring fog computing-
based adaptive vehicular data scheduling policies
through a compositional formal method - PEPA.
IEEE Communications Letters 21(4): 745–748
(2017).

18.	 L.F. Bittencourt, J. Diaz-Montes, R. Buyya, O.F.
Rana, and M. Parashar. Mobility-aware application
scheduling in fog computing. IEEE Cloud
Computing 4(2): 26–35 (2017).

19.	 H. Wadhwa, and R. Aron. Optimized task
scheduling and preemption for distributed resource
management in fog-assisted IoT environment. The
Journal of Supercomputing 79(2): 2212-2250
(2023).

20.	 J. Du, L. Zhao, J. Feng, and X. Chu. Computation
offloading and resource allocation in mixed fog/
cloud computing systems with min-max fairness
guarantee. IEEE Transactions on Communications
66(4): 1594–1608 (2018).

21.	 F.R. Shahidani, A. Ghasemi, A.T. Haghighat, and
A. Keshavarzi. Task scheduling in edge-fog-cloud
architecture: a multi-objective load balancing
approach using reinforcement learning algorithm.
Computing 105(6): 1337-1359 (2023).

22.	 S. Subbaraj, R. Thiyagarajan, and M. Rengaraj.
A smart fog computing based real-time secure
resource allocation and scheduling strategy using
multi-objective crow search algorithm. Journal of
Ambient Intelligence and Humanized Computing
14: 1003–1015 (2023).

23.	 W. Liu, C. Li, A. Zheng, Z. Zheng, Z. Zhang, and
Y. Xiao. Fog Computing Resource-Scheduling
Strategy in IoT Based on Artificial Bee Colony
Algorithm. Electronics 12(7): 1511 (2023).

24.	 M. Aldossary. Multi-layer fog-cloud architecture
for optimizing the placement of IoT applications
in smart cities. Computers, Materials &
Continua 75(1): 633-649 (2023).

25.	 D. Tian, and Z. Shi. MPSO: Modified particle
swarm optimization and its applications. Swarm
and Evolutionary Computation 41: 49-68 (2018).

26.	 H. Gupta, V.D. Amir, K.G. Soumya, and R.
Buyya. iFogSim: A toolkit for modeling and
simulation of resource management techniques in
the Internet of Things, Edge and Fog computing
environments. Software: Practice and Experience
47(9): 1275-1296 (2017).

27.	 R. Poli, J. Kennedy, and T. Blackwell. Particle
swarm optimization: An overview. Swarm
Intelligence 1: 33-57 (2007).

28.	 S.S. Hajam, and S.A. Sofi. Resource management
in fog computing using greedy and semi-greedy
spider monkey optimization. Soft Computing
27(24): 18697-18707 (2023).

29.	 N. Potu, C. Jatoth, and P. Parvataneni. Optimizing
resource scheduling based on extended
particle swarm optimization in fog computing
environments. Concurrency and Computation:
Practice and Experience 33(23): e6163 (2021).

30.	 C. Huang, H. Wang, L. Zeng, and T. Liu. Resource
scheduling and energy consumption optimization
based on Lyapunov optimization in fog computing.
Sensors 22(9): 3572 (2022).

31.	 M. Fahad, M. Shojafar, M. Abbas, I. Ahmed, and H.
Ijaz. A multi‐queue priority‐based task scheduling
algorithm in fog computing environment.
Concurrency and Computation: Practice and
Experience 34(28): e7376 (2022).

32.	 S. Javanmardi, M. Shojafar, V. Persico, and A.
Pescapè. FPFTS: A joint fuzzy particle swarm
optimization mobility‐aware approach to fog
task scheduling algorithm for Internet of Things
devices. Software: Practice and Experience
51(12): 2519-2539 (2021).

33.	 U.K. Saba, S.ul. Islam, H. Ijaz, J.J. Rodrigues,
A. Gani, and K. Munir. Planning Fog networks
for time-critical IoT requests. Computer
Communications 172(C): 75-83 (2021).

34.	 H. Rafique, M.A. Shah, S.U. Islam, T. Maqsood,
S. Khan, and C. Maple. A novel bio-inspired
hybrid algorithm (NBIHA) for efficient resource
management in fog computing. IEEE Access 7:
115760-115773 (2019).

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 31

