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Abstract: Fog computing is a novel idea that extends cloud computing by offering services like processing, storage, 
analysis, and networking on fog devices closer to IoT devices. Numerous fog devices are required to process the 
ever-growing amount of data generated by IoT applications. The heterogeneous tasks from various IoT applications 
compete for a limited number of resources of these devices. The process of assigning this set of tasks to different 
available fog nodes according to QoS requirements for processing is resource scheduling. Resource scheduling aims to 
optimize resource utilization and performance metrics however, the dynamic nature of the Fog environment, resource-
constrained, and heterogeneity in fog devices make resource scheduling a complex issue. This research presents the 
design and implementation of a multi-objective optimization-based resource scheduling algorithm using Modified 
Particle Swarm Optimization (MPSO) that addresses the application module placement and task allocation issues. This 
two-step MPSO-based resource scheduling model finds the optimal fog node to place each application module and 
assigns appropriate tasks to the most optimal fog nodes for execution. The proposed model unlocks the full potential 
of fog resources along with maximization of overall system performance in terms of optimization of cost, latency, 
energy consumption, and network usage. The simulation results indicate that using MPSO energy consumption is 
reduced by 53.94% and 43.58% as compared to First Come First Serve (FCFS) and Particle Swarm Optimization 
(PSO), respectively. The loop delay, network usage and cost using MPSO are reduced by 40.3%, 67.69% and 90.01% 
respectively, as compared to PSO algorithm. 

Keywords: Fog Computing, MPSO, Multi-Objective Optimization, Resource Scheduling, Task Allocation, Cloud 
Computing, Internet of Things (IoT).

amount of data.  As CIoT architecture is centralized 
and the cloud data centers are multi-hops away 
that increases latency bandwidth consumption and 
network bottlenecks while processing this sheer 
amount of IoT data [2]. 

Later on, Edge computing was used to handle 
the high latency problem in delay-sensitive 
applications by providing storage and processing 
resources near the end user IoT devices. Edge 
computing provides many advantages like high-
speed processing, low latencies, and real-time 
availability of network resources. This paradigm 
can solve many issues like energy usage, security, 
and privacy by reducing the distance the data must 
travel [3]. However, although edge devices have 
short access latencies because of their proximity to 
end users, they are still resource-constrained and 
prone to availability issues. 

1.	 INTRODUCTION

The Internet of Things (IoT) is a groundbreaking 
technology that has the potential to transform the 
manner we live and work [1]. It’s a network of 
physical objects, machines, gadgets, automobiles, 
and other things, having sensors, software, and 
connectivity, that enables them to gather and share 
data to make intelligent decisions. IoT makes devices 
intelligent and responsive to their surroundings. 
This interconnected network of devices spans 
various industries, from smart homes, cars, and 
cities to healthcare and manufacturing, and has the 
potential to enhance automation, decision-making, 
and efficiency. This interconnectivity of devices 
has led to an accelerated growth in the amount of 
data produced by these devices. Currently, cloud-
based IoT (CIoT) is providing a powerful solution 
for storing, processing and analyzing this sheer 



To address this problem fog computing has 
been introduced, which just evolved as a logical 
extension of cloud computing [4]. The term 
“Fog Computing” refers to moving services like 
computing, processing, storage, and networking 
services near the proximity of the end user [5]. 
This results in reduced latency, faster decision-
making conservation of network bandwidth, 
and improved reliability. Fog computing has 
different characteristics like dense distribution of 
heterogeneous, resource-limited fog nodes, context 
awareness, mobility, real-time interaction, and 
executing diverse-natured IoT applications. The 
advancement in communication technologies and 
the development of pervasive computing caused 
a rapid surge in the number of IoT applications 
and IoT devices that generate a massive amount 
of data to be processed by these fog devices 
[6]. The heterogeneous, resource and energy-
limited, dynamic nature of fog applications makes 
resource management challenging [7]. Among 
various resource management techniques, resource 
scheduling is crucial for taking full benefits of fog 
computing. Resource scheduling determines when 
and where different applications or services should 
use resources, such as CPU, memory, storage, and 
network bandwidth. Resource scheduling aims to 
identify the available resources and allocate them 
to specific applications to ensure their effective 
utilization and timely completion of latency-
sensitive tasks. Efficient resource allocation thus 
leads to better resource utilization, reduced latency, 
energy consumption, and improved user experience. 
Resource scheduling becomes a challenging issue 
due to the diverse and highly dynamic nature of 
fog computing. We have reviewed the existing 
resource scheduling techniques for fog computing 
environments presented by researchers and 
highlighted different metrics optimized in these 
studies, such as latency, network bandwidth, energy 
consumption, cost, and quality of service, etc.

Benedetti et al. [8] developed the distributed job 
scheduler JarvSis for fog-based IoT applications. To 
optimize time and energy consumption, Movahdi 
et al. [9] employed Integer Linear Programming 
to formulate the task scheduling problem in fog 
computing environment. 

Wu et al. [10] presented a multi-objective 
algorithm that learns and optimizes the fuzzy 

offloading technique from various IoT applications 
and allocate tasks in fog computing environment. 
Jamil et al. [11] proposed a heuristic-based task-
scheduling algorithm that schedules the tasks on 
the fog nodes according to their processing needs. 
iFogSim is used for implementation with the 
objective to optimize delay and energy consumption.  
In another study, Josilo [12] considers a fog 
computing system to offload the computational 
tasks to nearby devices or an edge server. 

The selection and distribution of resources 
are studied by Zhang et al. [13], who use the 
Stackelberg game for solving resource allocation 
problems. Zhang [14] describes a game-based 
resource management system consisting of three 
entities authorized users, fog nodes, and data 
service operators. This stable paradigm maximizes 
the usefulness of each entity.

The resource scheduling between fog devices 
in the same fog groups is presented by Sun et al. 
[15] and Bitam et al. [16] using meta-heuristic 
algorithms. Chen and Wang [17] developed two 
dynamic scheduling methods based on dynamics in 
the fog infrastructure response times and latency. 

Bittencourt et al. [18] proposd a paradigm for 
scheduling that categorizes applications and client 
mobility as two key elements to provide effective 
resource management related to scheduling. 
Wadhwa and Aron [19] introduced OSCAR 
to optimize task scheduling in fog-based IoT 
environments. They use QoS-based scheduling and 
task clustering to enhance system throughput and 
increased bandwidth usage. Du et al. [20] proposed 
a computational offloading method to reduce 
device delay and energy usage. The method solves 
the nested resource allocation problem by taking 
offloading decisions.

Shahidani et al. [21] suggested a multi-
objective task scheduling approach for fog-edge-
cloud environment using reinforcement learning. 
They optimized network congestion, service 
delays, energy consumption and network usage. 
Subbaraj et al. [22] proposed a hybrid metaheuristic 
optimization technique called the Cow Search 
Algorithm (CSA) for solving resource allocation 
and scheduling issues in the fog environment. 
The proposed algorithm combines the pivoting 
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rule (local search) with the crow search algorithm 
(global search) to harness the advantages of both 
exploration and exploitation.

Liu et al. [23] introduced a resource-
scheduling strategy to address the challenges 
of load balancing and task scheduling in a fog 
computing environment to decrease latency and 
energy consumption. The proposed technique uses 
a particle swarm optimization algorithm to search 
the optimal load balance on fog devices in a single 
cluster. They use a particle swarm algorithm for 
genetic joint optimization and an Artificial Bee 
Colony algorithm (PGABC) for optimizing the task 
scheduling among fog clusters.

After reviewing the existing literature, we 
found that most resource scheduling approaches 
are based on mono or bi-objective optimization 
that cannot balance these objectives effectively 
generating sub-optimal solutions. Therefore, we 
need a multi-objective optimization-based resource 
scheduling that generates a set of Pareto-optimal 
solutions to simultaneously trade off multiple and 
conflicting objectives of various heterogeneous 
tasks of different applications in a dynamic fog 
computing environment. There is a need to design 
an efficient multi-objective optimization-based 
resource scheduling approach that will perform 
optimal application module placement and 
allocate resources of fog nodes to tasks along with 
efficient utilization of resources and performance 
optimization. Therefore, we have designed and 
implemented a multi-objective optimization-based 
resource-scheduling algorithm based on MPSO to 
optimize different metrics. We have compared the 
results of MPSO with PSO and FCFS using the 
iFogsim simulator.

This research paper is concerned with the 
design, implementation, and evaluation of a multi-
objective optimization-based resource scheduling 
algorithm that efficiently allocates resources to 
available suitable fog nodes according to the 
given requirements. The following are the main 
contributions of the suggested work.
1.	 To review current resource scheduling 

techniques for fog computing.
2.	 To investigate the limitations and shortcomings 

of the recently used task allocation (resource 
scheduling) methods.

3.	 An MPSO-based two-level model for resource 

scheduling is proposed that combines 
application module placement and task 
allocation with objectives to minimize latency, 
network usage, cost, and energy consumption 
to optimize resource utilization.

4.	 Moreover an effective task-scheduling 
algorithm based on the traditional Shortest 
Job First (SJF) is applied that prioritizes and 
executes the shortest tasks first on fog nodes, 
which minimizes the latency for critical tasks. 

5.	 To compare the performance of the suggested 
resource scheduling algorithm to other 
algorithms and evaluate the execution results.

The remainder of the article is structured as 
follows. Fog computing architecture and proposed 
modified optimization-based (MPSO) resource 
scheduling are presented. Then the proposed 
simulation model and evaluation results of the 
MPSO-based resource scheduling algorithm are 
described. Finally, we explain the present research 
outcomes and provide recommendations for further 
study.

2.	 MATERIALS AND METHODS

The Fog-IoT model is comprised of three layers, 
each performing crucial functions: IoT, fog, and 
cloud layer. Figure 1 presents the architecture of 
Fog computing.

IoT Layer: The IoT layer is the bottommost 
layer in FIoT architecture. It includes devices 
such as sensors, actuators, and internet-connected 
IoT devices closer to the end-users [4]. This layer 
gathers and transfers data generated by IoT devices 
to upper layers for further processing.

Fig. 1. Fog Computing Architecture.
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from the IoT layer, process it, perform necessary 
computations for intelligent decisions, and transfer it to 
the Cloud Layer for long-term decision-making. 
Cloud Layer: The topmost layer servers as the central 
repository comprised of many powerful computers and 
data centers. Data centers give storage and processing 
services to IoT devices for storage and long-term 
analysis. 

Fog devices are heterogeneous, dynamic, and 
resource-constrained, and the applications send 
requests/tasks for processing to these nodes [24]. Firstly, 
the resources of fog nodes are compared with the 
computational needs of these tasks, and if the resources 
are sufficient to process these tasks they should be 
allocated to that node and executed. The task will be 
shifted to the cloud for execution if no resources are 

available at the fog nodes. Figure 2 presents the block 
diagram of existing edge-ward resource scheduling in 
which modules are placed using FCFS on the nearest 
edge, fog nodes and cloud. Using FCFS, fog node 
manager places incoming module on fog nodes in order 
or arrival without prioritizing computing layers.  

 
Fig. 2. Block Diagram of existing edge-ward resource 
scheduling. 

Effective task allocation or resource scheduling 
strategies are necessary to optimize resources, accelerate 
response times, and minimize cost and energy utilization. 
Therefore, we have developed a multi-objective 
optimization-based resource scheduling approach to 
allocate resources of fog nodes to user’s jobs according 
to their needs while maximizing resource utilization, 
minimizing latency, cost, energy consumption, and 
network usage. 

2.1 Case Study 

We have selected a healthcare scenario as a fog 
computing use case that includes an Appointment 
Coordination System, Health Record Management 
System, and Urgent Notification System as healthcare 
applications [12].  
Urgent Notification System: The Urgent Notification 
System monitors patient’s critical data such as heart rate, 
sugar, blood pressure, oxygen saturation and generates 
instant response to this critical data. 
Appointment Coordination System: This system 
manages appointments of different patients in different 
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Fog Layer: This intermediate layer is made 
up of heterogeneous fog nodes having different 
processing, storage, and networking capabilities; 
for example, routers, roadside units, proxy servers, 
cellular base stations, and mobiles [6]. These fog 
nodes collect data from the IoT layer, process it, 
perform necessary computations for intelligent 
decisions, and transfer it to the Cloud Layer for 
long-term decision-making.

Cloud Layer: The topmost layer servers as the 
central repository comprised of many powerful 
computers and data centers. Data centers give 
storage and processing services to IoT devices for 
storage and long-term analysis.

Fog devices are heterogeneous, dynamic, and 
resource-constrained, and the applications send 
requests/tasks for processing to these nodes [24]. 
Firstly, the resources of fog nodes are compared 
with the computational needs of these tasks, and if 
the resources are sufficient to process these tasks 
they should be allocated to that node and executed. 
The task will be shifted to the cloud for execution if 
no resources are available at the fog nodes. Figure 
2 presents the block diagram of existing edge-
ward resource scheduling in which modules are 
placed using FCFS on the nearest edge, fog nodes 
and cloud. Using FCFS, fog node manager places 
incoming module on fog nodes in order or arrival 
without prioritizing computing layers. 

Effective task allocation or resource scheduling 
strategies are necessary to optimize resources, 
accelerate response times, and minimize cost and 
energy utilization. Therefore, we have developed 

a multi-objective optimization-based resource 
scheduling approach to allocate resources of 
fog nodes to user’s jobs according to their needs 
while maximizing resource utilization, minimizing 
latency, cost, energy consumption, and network 
usage.

2.1. Case Study

We have selected a healthcare scenario as a fog 
computing use case that includes an Appointment 
Coordination System, Health Record Management 
System, and Urgent Notification System as 
healthcare applications [12]. 

Urgent Notification System: The Urgent Notification 
System monitors patient’s critical data such as heart 
rate, sugar, blood pressure, oxygen saturation and 
generates instant response to this critical data.

Appointment Coordination System: This system 
manages appointments of different patients in 
different time slots with less critical data as 
compared to data of urgent notification systems.

Health Record Management System: The Healthcare 
Record Management System contains information 
such as names, addresses, and historical records of 
health that are recorded and stored on the cloud for 
future analysis and decision-making.

Challenges: Accurate results and quick responses 
are essential for real-time health data processing. 
However, various tasks compete in a heterogeneous 
environment for a limited number of resources of 
fog devices. Therefore, one of the main difficulties 
in fog and edge computing is resource management. 
For instance, a patient’s status in a smart healthcare 
system requires quick notice to rescue the patient. 
It is difficult to allocate resources to requested tasks 
while maintaining low latency and efficient energy 
use. Therefore, we have applied a multi-objective 
optimization-based resource scheduling algorithm 
called MPSO to solve the resource management 
issues of latency, energy consumption, and resource 
utilization in smart healthcare.

2.1.1 MPSO algorithm for resource scheduling

Modified Particle Swarm Optimization (MPSO) [25] 
is an ideal solution for resource scheduling because 
it can handle multiple objectives and constraints Fig. 2. Block Diagram of existing edge-ward resource 

scheduling.
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due to its meta-heuristic nature. It is adaptive to 
dynamic environments and easy to implement in 
a distributed and scalable environment. In short, 
MPSO-based resource scheduling can improve the 
efficiency, adaptability, and user satisfaction of the 
fog computing system, making it more suitable 
for a wide range of applications. MPSO algorithm 
follows the steps given below:

1.	 Issue Propagation
i.	 Reduce Latency: The main objective is 

to reduce the time needed to process and 
analyze health data.

ii.	 Reduce Energy Consumption: The second 
objective is to reduce energy use, while 
carrying out tasks through wearable 
technology and fog nodes.

2.	 Population Initialization
	 Each possible solution in the population 

represents a method for task allocation 
(resource scheduling). Each solution specifies, 
taking into consideration processing power and 
energy resources, which tasks are assigned to 
which fog nodes. The population (swarm) is 
initialized randomly in the MPSO algorithm.

3.	 MPSO Execution
	 To identify a collection of best-optimal 

solutions that balance minimizing delay, 
network usage, cost and energy usage, MPSO 
develops the population. To select the best work 
task allocation arrangements, MPSO refines 
solutions by adding a new variable named 
inertia weight w to the initial part of velocity 
updation.

4.	 Fitness Evaluation
	 Based on task execution time, communication 

latency, and energy consumption, solutions 
are assessed. The properties of wearable 
technology, fog nodes, and the communication 
network are used to determine these measures.

5.	 Inertia Weight
	 The best optimal solutions found by MPSO 

using additional concept inertia weight in PSO 
reflect various trade-offs between reducing 
latency and maximizing energy efficiency.

6.	 MPSO Swarm Update
	 MPSO particles modify their locations to move 

in the direction by updating their local best and 
global best by changing velocity and position. 
The task allocation (resource scheduling) 
configurations are improved using the swarm 
exploration method.

7.	 Resource Allocation Decision
The trade-offs between minimizing latency 
and energy usage are considered while making 
final resource allocation selections. To save 
energy, fewer time-sensitive processes might 
be assigned to the cloud and, critical jobs can 
be allocated to fog nodes for speedy analysis. 
To utilize resources, we arranged tasks into two 
categories: critical and non-critical.

Fog computing’s resource allocation system 
enhances real-time health data analysis in healthcare 
settings by combining MPSO algorithms. In a 
hospital setting, this method assures prompt replies, 
resource efficiency, and energy effectiveness, all of 
which improve patient care and medical decision-
making. 

Therefore, we have proposed an MPSO-based 
two-level model for resource scheduling that 
combines application module placement and task 
allocation with the objectives of minimizing latency, 
network usage, cost, and energy consumption to 
optimize resource utilization and improve system 
performance. In the first step, the application 
module placement is used to find the optimal fog 
node to place each application module, considering 
different criteria such as the computing capacity, 
available bandwidth, and energy consumption of 
each node.

Afterward, task allocation deals with assigning 
the appropriate tasks to the most optimal fog nodes 
for execution by taking into account the available 
resources of fog nodes and the requirements 
of various heterogeneous tasks of different 
applications. This two-step MPSO-based resource 
scheduling model has paved the way to unlock the 
full potential of fog resources and optimize overall 
system performance.

The algorithm for MPSO-based resource 
scheduling is given as (Algorithm 1). We adopted 
MPSO for resource scheduling in our proposed 
algorithm. To choose the optimal tool for processing 
incoming jobs, MPSO is employed. In this 
algorithm, we’ve created a resource pool in which 
all resources are kept. In the first step, the decision 
maker will decide where to place the application 
modules. In the second step, when a task arrives, it 
will compare with the resources of each fog device 
using MPSO before sending it to fog devices; if the 
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device is found then it will be added to the hash 
map (queue). If the current device is not suitable, 
then the same steps will be performed for searching 
the next devices. If not, all available devices fulfill 
the task’s needs, it will move to the cloud.

Algo. 1. MPSO-based resource scheduling.

Algorithm 2 will assign resources to tasks to the 
appropriate fog nodes.
Algo. 2. Steps of MPSO 

The steps of Algorithm 2 are given as follows:
1.	 Begin each particle with its position and 

speed.
2.	 Each particle’s fitness value is assessed 

in comparison to its top performance, the 
personal best (pbest). If the current fitness 

value is higher, the pbest is upgraded to the 
new best. 

3.	 Calculate the fitness value of each particle 
using the fitness function.

4.	 Assign the particle with the highest fitness 
value, determined in the previous phase 
to a new position; it was then randomly 
positioned with a radius of r around it, and 
the other particles’ positions and velocities 
were adjusted following the fitness 
function. To determine whether a particle’s 
new position is appropriate, compare it 
to the particle with the lowest (optimal) 
fitness value.

5.	 To find the optimal answer, verify the stated 
criteria (fitness function); if it is discovered, 
the algorithm has done iterating; otherwise, 
return to step 4. 

Figure 3 presents the flowchart of the MPSO 
algorithm.

2.2. Simulation Setup

We have selected a healthcare scenario as a fog 
computing use case discussed in subsection 2.1 
and simulated it using iFogSim. Our work can be 
considered as a combination of both theoretical 
and experimental work. In a theoretical sense, we 
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applications: Appointment Coordination System, Health 
Record Management System, and Urgent Notification 
System. In fog computing, it is common practice to 
compare the resource scheduling based on modified-
PSO to base-PSO and First-Come-First-Serve (FCFS) 
for many reasons. PSO is a nature-inspired optimisation 
algorithm that finds the optimal solution by moving a 
population of candidate solutions, known as particles, 
around the search space. Each particle adjusts its 
position based on its own and its neighbours' experiences, 
to arrive at the best solution. Whereas, the FCFS 
scheduling algorithm is a basic scheduling technique 
that arranges tasks according to arrival order and always 
executes the first task. These algorithms serve as 
baseline scheduling algorithms that help researchers to 
establish a baseline for performance evaluation that 
demonstrates the impact and effectiveness of introduced 
changes, ensuring a thorough evaluation and 
understanding of their contributions in the context of 
resource optimization. These comparisons also help to 
understand the trade-offs between conflicting objectives 
introduced by the modifications in PSO and whether 
they strike a better balance across multiple performance 
criteria such as latency, network usage, cost and energy 
in a dynamic fog computing environment. 

In terms of experimentation, we used iFogsim to 
compare our proposed resource scheduling algorithm 
MPSO with traditional (FCFS) and recent meta-heuristic 
resource scheduling algorithm (PSO) under various 
conditions and policies. We used real-world data and 
different scenarios to test our model against real-world 
performance metrics, showcasing the practical benefits 
and limitations of modified PSO. 

We have used iFogSim [26] to simulate our MPSO-
based resource scheduling (task allocation)  strategies to 
allocate the available resources to the task. IFogsim is a 
powerful toolset for simulating resource management 
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in the context of resource optimization. These 
comparisons also help to understand the trade-offs 
between conflicting objectives introduced by the 
modifications in PSO and whether they strike a 
better balance across multiple performance criteria 
such as latency, network usage, cost and energy in a 
dynamic fog computing environment.

In terms of experimentation, we used iFogsim 
to compare our proposed resource scheduling 
algorithm MPSO with traditional (FCFS) and 
recent meta-heuristic resource scheduling algorithm 
(PSO) under various conditions and policies. We 
used real-world data and different scenarios to test 
our model against real-world performance metrics, 
showcasing the practical benefits and limitations of 
modified PSO.

We have used iFogSim [26] to simulate our 
MPSO-based resource scheduling (task allocation)  
strategies to allocate the available resources to the 
task. IFogsim is a powerful toolset for simulating 
resource management strategies in IoT and fog 
computing scenarios. For this, we have extended 
iFogSim with the proposed case study of the 
healthcare scenario and added some more classes. 
These classes are used to implement our proposed 
MPSO-based scheduler. Below is a quick overview 
of the classes commonly used:

Sensors: The sensor class helps to simulate IoT 
sensors that generate data tuples with variable 
lengths and then send them to fog devices.

Fog Device: This class instance imitates different 
fog nodes with specified memory, computing 
power, storage space, and uplink and downstream 
bandwidth. 

Tuples: All Fog’s entities communicate with each 
other utilizing tuple class instances. Each tuple 
has source, destination, and processing demands 
expressed in MIPS.

Actuator: This class simulates an actuator by 
defining the outcome of actuation and its network 
connectivity properties. When a tuple from an 
application module is received, this classes executes 
a method that calculates useful metrics. 
MPSO System: This class contains the details of fog 
devices involved in the modified proposed particle 
swarm algorithm that is in charge of assigning tasks 
to appropriate fog nodes. 

PSO System: This class contains the implementation 
of the PSO algorithm that employs a group of 
potential solutions, i.e., particles (known as a 
swarm). We can use certain equations to shift these 
particles in the search space. 

Scheduler: This class controls the sequence of 
execution of a list of upcoming tuples by using 
different algorithms (FCFS, PSO, MPSO). 

Particles: The particle class is used for the swarm 
of particles and looks for the optimal position in the 
search space. Each element has a specific location 
pi = (pi1, pi2…. piN ) and the speed si = (vi1, vi2, 
. . . , viN ) in the N-dimensional issue space, the 
ith particle is represented by I, and N specifies the 
problem’s dimension or the number of unknown 
variables.

Vector: Vector class is used to determine the specific 
position and coordinates. To find the location of the 
particle or node requires the axis and coordinates 
information. With the help of that, the system can 
find out the specific location. The vector class, 
location inside the search space, and best-known 
position of the entire swarm all serve as cues for 
the particle motions. These will eventually start 
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to direct the swarm’s motions once better sites are 
found. 

Swarm: The MPSO algorithm’s fundamental 
version uses a swarm class, which employs a 
population of potential solutions (called particles). 
These particles are moved around in the search 
space using a few simple formulae.

Figure 4 displays the tuple emission, MPSO-
based task allocation, and execution of tuples. In 
the first step, the sensor transmits a tuple using the 
transmit() function. The MPSO-based scheduler 
class calls the findbestFog() function to choose 
the best fog node for placement of appropriate 
application modules on optimal fog nodes. 
Afterward, the tasks are allocated to these modules 
for processing. In findbestFog() function the 
MPSO scheduler uses both the local best module 
placement and task allocation solution that it has 
found by using any task allocation strategy and a 
set of non-dominated module placement and task 
allocation strategies for multiple objectives to 
find the overall best fog node to process the task. 
The objective function was to minimize delay, 
energy consumption, and cost. When a tuple 
is received at any fog node, the fog node calls 
processTupleArrival() function to execute the tuple 
or forward it to a higher-level fog node. When a 
tuple is fully executed, the CloudletFinish() method 

notifies the scheduler to request the execution of the 
next tuple.

2.2.1 Configurations

We have conducted a thorough simulation-based 
investigation to examine the impact of the modified 
particle swarm optimization (MPSO) technique. 
In our simulation, we have used six topologies of 
100, 150, 200, 250, 300, and 350 nodes that are 
arranged in four tiers: sensors and actuators at 
the bottom-most layer are connected with a set of 
low-level fog devices that serve as Data Collector 
and Processor (DCP). These lower-level fog nodes 
are connected with upper-level fog nodes (that 
serve as the Coordinator) at the third tier and these 
high-level fog devices are connected with the 
Cloud (serving as the patient record database) at 
the top. We fixed the number of cloud and high-
level fog devices for each set of experiments to 1 
and 4, respectively. The number of low-level fog 
generators we used ranged from 25, 50, 75, and 
100, resulting in six topologies with 100, 150, 
200, 250, 300, and 350 nodes, respectively. Each 
fog device receives information from sensors that 
are attached to it and takes appropriate action. For 
each arrangement, the simulation takes 400 units of 
time. The configuration of fog devices containing 
MIPS, Ram, upper-level bandwidth, and down-
level bandwidth are given in Table 1. 

The details of tuples that are generated by modules 
and their respective CPU length requirements are 
mentioned in Table 2.

3.	 RESULTS AND DISCUSSION

We have compared the performance of MPSO with 
both traditional and recent meta-heuristic resource 
scheduling algorithms. We have chosen FCFS from 
traditional algorithms and PSO from recent meta-

Fig. 4. Sequence diagram of resource scheduling on 
best node by using MPSO.
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(serving as the patient record database) at the top. We 
fixed the number of cloud and high-level fog devices for 
each set of experiments to 1 and 4, respectively. The 
number of low-level fog generators we used ranged from 
25, 50, 75, and 100, resulting in six topologies with 100, 
150, 200, 250, 300, and 350 nodes, respectively. Each 
fog device receives information from sensors that are 
attached to it and takes appropriate action. For each 
arrangement, the simulation takes 400 units of time. The 
configuration of fog devices containing MIPS, Ram, 

upper-level bandwidth, and down-level bandwidth are 
given in Table 1.  

Table 1. Fog nodes configuration. 
Device 
Name 

MIPS Memory UBW DBW 

Cloud 44800 40000 100 10000 

Base station 5600 4000 10000 10000 

Upper-level 
Fog Nodes 

5600 4000 10000 10000 

Lower-level 
Fog Node 

800 1000 10000 270 

The details of tuples that are generated by modules and 
their respective CPU length requirements are mentioned 
in Table 2. 

Table 2. Tuples with their CPU length (in MIPS). 
Tuple type CPU length 

ECG 3000 

SENSOR 3500 

DATA_REC 1000 

DATA_Type 14 

RECV_REQ 28 

CRITICAL 1000 
NON_CRITICAL 1000 

DISPLAY 500 

3. RESULTS AND DISCUSSION 

We have compared the performance of MPSO with both 
traditional and recent meta-heuristic resource scheduling 
algorithms. We have chosen FCFS from traditional 
algorithms and PSO from recent meta-heuristic 
algorithms as used in many recent studies [26-34]. The 
performance of MPSO algorithms is evaluated by 
minimizing latency, network usage, cost, and energy 
consumption. 
 
 
 

Table 1. Fog nodes configuration.

Device Name MIPS Memory UBW DBW

Cloud 44800 40000 100 10000

Base station 5600 4000 10000 10000

Upper-level 
Fog Nodes

5600 4000 10000 10000

Lower-level 
Fog Node

800 1000 10000 270
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heuristic algorithms as used in many recent studies 
[26-34]. The performance of MPSO algorithms is 
evaluated by minimizing latency, network usage, 
cost, and energy consumption.

3.1	 Performance  Metrics

We have chosen four metrics, latency is calculated 
using the overall system whole loop as well as for 
each loop, energy consumption, network utilization, 
and cost of execution.

i)  Average Loop Delay

We have used the term “loop delay”  to calculate the 
end-to-end latency. Loop delay refers to the time 
required to shift data in multiple modules that are 
placed on different nodes. The end-to-end latency 
of each module in the loop is calculated by using a 
control loop. We have calculated the control loops 
for different types of tuples transferring data among 
different modules of the healthcare case study 
that are explained in subsection 2.1, namely, the 
Appointment Coordination System, Health Record 
Management System, and Urgent Notification 
System.

i.	 Urgent Notification Loop: DCP->Coordinator-
>display

ii.	 Appointment Coordination Loop: DCP-> 
Coordinator ->DCP->display

iii.	 Healthcare Record Management Loop: DCP-
> Coordinator ->Medical Record Database

iv.	 History: Coordinator -> Medical Record 
Database-> Coordinator ->DCP

v.	 ECG -> MedicalRecordDB-> Coordinator-> 
MedicalRecordDB -> display

To determine the loop latency, we computed 

the average processor time Tcpu, consumed by tuples 
of the same type. This average is then calculated 
using Equation (1).

     

Where ITi is the initial execution time by all 
tuples of a specific type of tuple, LTi is the end 
execution time of ith tuple, and N is the total number 
of executed tuples of a certain type. By using 
Equation (2) we can calculate the execution delay 
of each tuple.

           Delayi =  LTi -ITi         ∀i ∈ T            (2)

Where T represents the current tuple set.

We have shown along the x-axis number of 
nodes and y-axis loop delay in Figures 5, 6, 7, 8, 
9, and 10 with blue, red, and green bars for FCFS, 
PSO, and MPSO, respectively. Figure 5 shows the 
average loop delay for an emergency alert system 
computed using FCFS, PSO, and MPSO. The loop 
delay of MPSO and PSO remains almost the same 
even with an increasing number of nodes but for 
FCFS it fluctuates. 

The urgent notification system needs minimal 
latency to be efficient, therefore, both PSO and 
MPSO have placed the urgent notification system at 
edge devices ingrained in low latency, high priority 
and local data processing that leads to similar 
performance. 

In Figure 6 the loop delay of the Appointment 
Coordination System is shown. The results of 

Table 2. Tuples with their CPU length (in MIPS).
Tuple type CPU length

ECG 3000

SENSOR 3500

DATA_REC 1000

DATA_Type 14

RECV_REQ 28

CRITICAL 1000
NON_CRITICAL 1000

DISPLAY 500
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almost the same even with an increasing number of 
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latency to be efficient, therefore, both PSO and MPSO 
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In Figure 6 the loop delay of the Appointment 
Coordination System is shown. The results of MPSO are 
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In Figure 6 the loop delay of the Appointment 
Coordination System is shown. The results of MPSO are 
better than PSO and FCSF. FCFS has a greater amount 
of delay starting from a small size and grows as the no. 
of nodes rises, whereas the PSO and MPSO are the same 
denoted by bars. 

	 Efficient Resource Scheduling in Fog: A Multi-Objective Optimization Approach	 27



MPSO are better than PSO and FCSF. FCFS has a 
greater amount of delay starting from a small size 
and grows as the no. of nodes rises, whereas the 
PSO and MPSO are the same denoted by bars.

 
Figure 7 shows the loop delay for medical 

record management where FCFS performs better 
than PSO and MPSO but with an increase in the 
number of nodes from 250 to 350 MPSO shows 
better results than FCFS and PSO.

In Figure 8 the loop delay of the medical 
history of patients is plotted, which shows that 
MPSO causes less delay in processing this record 

as compared to PSO and MPSO even with an 
increasing number of nodes.

ii) System whole loop delay

System whole loop latency is the time delay 
between the start of the application in a system to 
the end of the results of the application in a system. 
Equation (3) shows the formalization of System 
Latency Lsys.

Lsys = ET × Ntp (Tf-Ti)/Nttp		  (3)

Where ET is the total execution time of Nth tuples 
Ntp, Tf is the final time of tuple N, Nttp is the total 
number of tuples, and Ti is a tuple’s initial time.

Figure 9 presents the combo plot of the system 
whole loop delay of FCFS, PSO, and MPSO. 
MPSO shows less delay as compared to PSO. The 
blue line represents the loop delay of FCFS which 
is quite large as compared to the MPSO and PSO.

iii)  Energy Consumption

Energy loss is defined as energy supplied to 
a system that is not immediately consumed by 
computing processes such as power delivery and 
conversion, cooling, and lighting. Equation (4) is 
used to calculate the devices in the system’s energy 
consumption; we can calculate how much energy a 
Fog device EFN uses.

EFN = Ei + (Tpf− Tpi) × PH             (4)

The energy consumption of any fog node is 
calculated by the power of all the host nodes in a 
specific period required for execution. Ei denotes 
the current consumed energy, Tpf is the recent time, 

Fig. 6. Loop delay for appointment coordination.
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calculate how much energy a Fog device EFN uses. 

EFN = Ei + (Tpf− Tpi) × PH             (4) 

The energy consumption of any fog node is 
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period required for execution. Ei denotes the current 
consumed energy, Tpf is the recent time, Tpi is the update 
time of last utilization, and PH is the host power in last 
utilization. 
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Tpi is the update time of last utilization, and PH is the 
host power in last utilization.

Figure 10 shows the energy utilized by various 
fog nodes of the system. Along the x-axis we have 
plotted the number of fog nodes for all six sets 
of experiments starting from 100 and ending at 
350. Along the y-axis we have plotted the energy 
consumed by these fog devices.

iv)  Network Usage

Network utilization, Nuse, is the third assessment 
factor. As the quantity of units expands, so does 
network consumption, which causes congestion. 
We compute network usage using Equation (5). 

                       
N signifies the total number of tuples, Di denotes 

the delay, and Ni is the size of the ith tuple.

To illustrate how fog devices use the network, 
this section compares the FCFS algorithm to the 
MPSO and PSO. The network use of PSO, MPSO, 
and FCFS is compared using a combo plot in Figure 
11. The x-axis represents the number of nodes, 
and the y-axis represents the average network 
utilization. The outcome demonstrates that network 
usage of MPSO is less than PSO and FCFS for all 
sets of nodes in all experiments.

v)   Cost of Execution

To check the availability and reliability of the 
proposed module,  one of the parameters is the cost 
of execution. Execution cost can be computed by 
using Equation (6).

CE = FC + VC/NUP                                     (6)

CE is the total cost of execution FC is for the 
fixed cost VC is used instead of variable cost and 
NUP is for the number of units produced. 

Figure 12 shows the execution cost of all six 
sets of nodes for all experiments. Along x-axis 
we have taken several nodes and along the y-axis, 
the cost consumed by various fog nodes in all 
experiments. The combo graph shows that MPSO 
has less cost as compared to PSO. The execution 
cost using FCFS is represented by a blue line that 
indicates its worst performance.

The outcomes demonstrate that the suggested 
MPSO outperforms FCFS and PSO in all 
performance metrics including latency, energy 
consumption, network usage, and cost of execution. 
These results reveal the effectiveness and superiority 
of the proposed MPSO-based resource scheduling 
as compared to the traditional FCFS and recent 
meta-heuristic PSO.

4.	 CONCLUSIONS 

Resource scheduling in fog computing aims to 
maximize resource utilization along different 
performance metrics, but the heterogeneity of 
resource-limited fog devices, and the dynamic nature 
of the fog environment, make resource scheduling a 
challenging problem. To address this issue, we have 
proposed a Modified Particle Swarm Optimization 
(MPSO) based resource scheduling algorithm that Fig. 10. Energy Consumption.
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combines application module placement and task 
allocation by finding the optimal fog node to place 
each application module and assign appropriate 
tasks to the most suitable fog nodes for execution. 
The MPSO-based resource scheduling aims to 
maximize the utilization of resources by doing a 
trade-off of multiple objectives simultaneously, 
such as minimization of latency, network usage, 
energy consumption, and execution cost. We have 
applied our MPSO-based resource scheduling 
on a healthcare scenario with three healthcare 
applications namely the Urgent Notification 
System, Appointment Coordination System, and 
Health Record Management System as part of our 
fog computing use case. We then used iFogSim 
to design, model, and evaluate the performance 
of these systems under various conditions and 
scenarios. MPSO outperforms FCFS and PSO in 
minimizing latency for all healthcare applications 
including, the Urgent Notification System, 
Appointment Coordination System, and Health 
Record Management System. The comparison 
of results show that MPSO is better suited for all 
three applications of healthcare scenarios. At the 
start, the FCFS shows less loop delay than PSO 
and MPSO, but as the number of nodes increases 
MPSO shows better results as compared to FCFS 
and PSO. Furthermore, the analysis of results 
reveals that MPSO optimizes resource utilization 
by consuming less energy, low network usage, and 
reduced cost when compared with FCFS and PSO. 

Although the modified PSO improved the 
performance in dynamic and distributed fog 
computing environment, but it also results in 
additional computational complexity and slow 
convergence. In future, we will address these 
challenges by applying machine learning algorithm 
with MPSO to improve its performance.  
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